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Evolution and Global Collapse of Trapped Bose Condensates under Variations
of the Scattering Length
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We develop the idea of selectively manipulating the condensate in a trapped Bose-condensed gas
without perturbing the thermal cloud. The idea is based on the possibility to modify the mean field inter-
action between atoms (scattering length) by nearly resonant incident light or by spatially uniform change
of the trapping magnetic field. For the gas in the Thomas-Fermi regime we find analytical scaling so-
lutions for the condensate wave function evolving under arbitrary variations of the scattering lengtha.
The change ofa from positive to negative induces a global collapse of the condensate, and the final
stages of the collapse will be governed by intrinsic decay processes. [S0031-9007(97)04185-9]
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The discovery of Bose-Einstein condensation (BEC)
trapped clouds of ultracold alkali atoms [1–3] opene
unique possibilities to investigate collective many-bod
effects in dilute gases. Isolation of a trapped gas fro
the environment, provided by a wall-less magnetic co
finement, makes this object attractive for studying fund
mental problems of the physics of many-body quantu
systems, such as relaxation and the loss of cohere
in the evolving macroscopic quantum state (condensa
In ongoing experiments [4–8] the condensate is set in
motion (for example, undergoes oscillations) by varyin
the confining field. Scaling theory of coherent evolutio
(without damping and relaxation) of a Bose condensa
in harmonic traps under arbitrary frequency variations h
been developed in [9,10]. It is important, however, th
variations of the confining potential also cause the evo
tion of the thermal component of a trapped gas. Mor
over, in the hydrodynamic regime the thermal cloud
many aspects evolves similarly to the condensate [9]. F
example, the asymmetry of free expansion and eigenf
quencies of small oscillations are almost the same.

In this paper we develop the idea of selectively m
nipulating the condensate, without perturbing the therm
cloud. This is especially important for studying the in
teraction between the condensate and the thermal com
nent. The idea is based on the possibility to modify th
mean field interaction between atoms. At low temper
tures the latter is proportional to the scattering lengtha
which, as found in [11], can be changed under the infl
ence of red-detuned nearly resonant light. Another opti
to modify the scattering length relies on the magnetic fie
dependence ofa, predicted in [12], and assumes spatiall
uniform variations of the trapping field, without changin
the trap frequencies. Since the shape of the condens
wave function is predetermined by the interaction betwe
particles, the change ofa will cause the evolution of the
condensate at constant frequencies of the confining pot
tial. Remarkably, at temperaturesT ¿ nŨ (n is the gas
density,Ũ ­ 4p h̄2aym, andm the atom mass) only the
0031-9007y97y79(14)y2604(4)$10.00
in
d
y
m
n-
a-
m
nce
te).
to
g
n
te
as
at
lu-
e-
in
or

re-

a-
al
-
po-
e
a-

u-
on
ld
y
g
ate

en

en-

condensate evolution will be pronounced, which resemb
the picture of the fourth sound in superfluid helium. In th
temperature range the shape of the thermal cloud is ma
determined by the trapping potential and temperature. T
perturbation of the thermal component will be small com
pared to that of the condensate, at least asnŨyT .

The change ofa in the field of nearly resonant red
detuned light is provided by virtual radiative transition
of a pair of atoms to a bound electronically excite
molecular state. Since the resonance dipole interact
between atoms in the excited state is much stronger t
the interaction in the ground state, already for modera
light intensities the effective interatomic interaction an
hence, the scattering length can be significantly chang
It is even possible to switch the sign ofa [11].

The magnetic field dependence of the scattering leng
found in [12], has a resonance structure. Therefo
spatially uniform variations of the field can also chang
a substantially and reverse its sign.

Below we find analytical scaling solutions for the con
densate wave function evolving under arbitrary variatio
of the scattering length. We consider the most interest
situation, where the mean field interaction between ato
greatly exceeds the level spacing in the trap (Thom
Fermi regime). The case of switchinga from positive
to negative and inducing a global collapse of the conde
sate is specially analyzed.

Let us consider the evolution of a condensate in
harmonic potentialV srd ­ m

P
i v

2
i r2

i y2, with constant
frequenciesvi, induced by variations of the mean field
interaction between particles. The equation for the co
densate wave functionC0sr, td, with above-condensate
particles neglected, can be represented in the form

ih̄
≠C0

≠t
­ 2

h̄2

2m
DC0

1
m
2

X
i

v2
i r2

i C0 1 Ũstd jC0j
2C0 . (1)
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HereŨstd ­ 4p h̄2astdym, andastd is the time-dependent
scattering length. Along the lines of the general metho
developed in [9], we introduced scaling parametersbistd,
where d is the dimension of the system. Turning to
new coordinate and time variablesri ­ riybistd, tstd ­Rt dt0 gst0dyV st0d, with gstd ­ ŨstdyŨ0 and Ũ0 the ini-
tial value ofŨstd, we search for the solution in the form

C0sr, td ­ V 21y2stdx0sssr, tstdddd expsssiFsr, tdddd , (2)

where the dimensionless volumeV std ­
Q

i bistd. Sub-
stituting Eq. (2) into Eq. (1) we require the cancellation o
the=rx0 terms. This leads to the relation for the phase

Fsr, td ­ smy2h̄d
X

i

r2
i f Ùbistdybistdg . (3)

The scaling parametersbistd will be chosen such that they
are governed by the equations

b̈i 1 v2
i bi ­ v2

i gstdybiV std , (4)

with initial conditions bis0d ­ 1, Ùbis0d ­ 0. Then, we
arrive at the equation of motion

ih̄
≠x0

≠t
­ 2

h̄2

2m

X
i

V std
gstdb2

i std
≠2x0

≠r
2
i

1
m
2

X
i

v2
i r2

i x0 1 Ũ0jx0j
2x0 . (5)

In the case of initially repulsivefas0d . 0g and strong
interaction between particles (Thomas-Fermi regime) t
initial chemical potentialm0 ­ n0Ũ0 ¿ h̄vi (n0 is the
maximum density in the initial static condensate), an
the kinetic energy term in Eq. (5) is initially small com-
pared to the nonlinear interaction term. In the course
evolution the ratio of the kinetic to interaction term scale
as ´std ­

P
ifh̄viym0bistdg2V stdygstd. Assuming that

the condition´std ø 1 is satisfied at anyt, the kinetic
energy term can be omitted. Then in the variablesri, t

Eq. (5) is reduced to that for the static case, with initia
interaction between particles. The solution has the w
known form (see [13,14])

x0sssr, tstdddd ­
1

Ũ
1y2
0

√
m0 2

m
2

X
i

v2
i r2

i

!1y2

3 exp

√
2im0tstd

h̄

!
(6)

in the spatial region where the argument of the squa
root is positive and zero otherwise. Thus, the condens
evolution under arbitrary variations of the scatterin
length is described by a universal scaling solution fo
C0sr, td, following from Eqs. (2) and (6). Actually, the
problem is reduced to the solution of classical equatio
(4) for the scaling parametersbistd (cf. [9]).

Equation (1) and the scaling solution obtained forC0
describe a coherent evolution of the condensate, witho
relaxation and the loss of coherence. Variations ofa
lead only to a change in the potential and kinetic ener
of the evolving condensate which remains a macroscop
quantum state with zero entropy.
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The results ford ­ 2, obtained below, can be applied
equally well to the radial evolution ofC0 in very long
samples where the axial frequency is much smaller tha
the radial one, and to a first approximation the dependenc
of C0 on the axial coordinate can be omitted.

In the limiting case of adiabatically slow variations of
the scattering length, that is on a time scalet0 ¿ v

21
i ,

the solution of Eq. (4) leads to simple relations

bistd ­ fgstdg1ys21dd; V std ­ fgstdgdys21dd. (7)

Assuming that att ¿ t0 the scattering length acquires a
constant valuea1 [Ũstd ­ Ũ1, gstd ­ Ũ1yŨ0 ; g1], for
the phase in Eq. (6) we obtainm0tstd ­ m1t, where the
quantitym1 ­ m0g

2ys21dd
1 is equal to the chemical poten-

tial of the gas with the interparticle interactioñU1. Then,
from Eqs. (6) and (2) one can see that the initial condensa
is adiabatically transformed to the static condensate wit
the wave function corresponding to the interactionŨ1.

For an abrupt change of the interparticle interaction from
Ũ0 to Ũ1 scaling equations (4) take the form

b̈i 1 v2
i bi ­ v2

i g1ybiV std . (8)

In fact, for g1 ­ Ũ1yŨ0 . 0 these equations resemble
those in [9] for the scaling parameters of the condensa
evolution after an abrupt change of the trap frequencies
The solution of Eq. (8) gives oscillatingbistd which ensure
undamped oscillations of the condensate wave function
Forg1 close to 1 the frequency spectrum of the condensa
oscillations coincides with the set of eigenfrequencies o
small shape oscillations of the initial condensate, found fo
cylindrically symmetric traps in the JILA [4] and MIT [7]
experiments and calculated in [9,10,15,16].

The structure of the condensate oscillations caused b
the change of the scattering length can be easily analyze
in the case of isotropic trapping configuration. Ford ­ 2
Eq. (8) has the analytical solution

b2
i std ­ b2std ­ f1 1 g1 1 s1 2 g1d cos2vtgy2 . (9)

Once the scattering length is decreasedsg1 , 1d there
will be “compression oscillations”: Compression of the
condensate will be followed by its expansion to the initial
shape. An increase ofa sg1 . 1d induces “expansion
oscillations”; i.e., the condensate is expanding and the
compressing to the initial shape. In both cases th
scaling parameterb varies from 1 to

p
g1. In the 3D

case the condensate oscillations are anharmonic, wi
a characteristic period somewhat smaller than that fo
d ­ 2. The parameterb is varying from 1 to

p
2g1y3.

For initially negative scattering length the stability of
the initial condensate requires the conditionn0jŨ0j , h̄v

[17,18] which is opposite to the above used condition o
the Thomas-Fermi regime, and the study of the conden
sate evolution should rely on a different approach. The
response of the condensate to small variations ofŨ can be
found directly from Eq. (1). Large variations ofŨ require
a separate investigation, since the initial Bose-condense
2605
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state is actually metastable and is separated by an ene
barrier from totally unstable collapsing states (see [18]).

The dynamics of the system, induced by the change
the interparticle interaction, is drastically different from
that caused by variations of the trap frequencies. In t
former case the condensate oscillates, whereas the ther
component is only weakly perturbed and practicall
remains static. In the latter case the thermal cloud is fu
involved in the oscillatory evolution process. Preferenti
evolution of the condensate under the change of t
scattering length resembles the fourth sound in superflu
helium, where the superfluid part of the density oscillate
on the background of a static normal component.

The change of the interaction between particles can le
to an interesting phenomenon, a global collapse of t
condensate as a whole. Let us assume that initially t
scattering lengtha . 0, and the system is in a stationary
state. Then, for an abrupt change of the sign ofa
the solution of scaling equations (8) immediately lead
to a self-compression (collapse) of the condensate.
the d ­ 2 isotropic case this directly follows from the
exact solution (9): Forg1 , 0 the scaling parameterb
decreases and reaches zero att ­ tp, where

tp ­ v21 arcsins1y
p

1 1 jg1j d . (10)

In the 3D isotropic casetp is close to that from Eq. (10).
In the vicinity of tp, wherevDt ø minfjg1j

1yd , jg1j
21y2g

sDt ­ tp 2 td, the solution of Eq. (8) takes the form

b2std ­ fs
p

jg1j vDtd s2 1 ddy
p

2d g4ys21dd. (11)

In both cases the compression rate increases with
creasingDt: The quantity Ùbstdybstd ­ 2yfsd 1 2dDtg,
and the characteristic velocity of the condensate bounda
y ~ fDtg2dysd12d. In the course of collapse the small pa
rameter´std remains constantsd ­ 2d or even decreases
sd ­ 3d, which justifies the neglect of the kinetic energ
term in Eq. (5). The kinetic energy of the system is dete
mined by the behavior of the phaseFsrd (3) which dras-
tically increases with decreasingDt. A strong rise of the
kinetic energy in the course of collapse is compensated
decreasing potential energysa , 0d, which ensures the
conservation of the total energy.

The increase of density in the collapsing condensa
enhances intrinsic inelastic processes, such as three-b
recombination and spin-dipole relaxation in binary coll
sions. This leads to particle losses, since fast atoms a
molecules produced in the inelastic processes escape fr
the trap. Assuming that the mean free path of the fast p
ticles greatly exceeds the sample size, we neglect heat
resulting from their collisions with the gas atoms. We wi
mainly analyze the influence of inelastic processes on t
dynamics of collapse in the isotropicd ­ 2 and d ­ 3
cases. The atom loss rate is determined by the relation

ÙN ­ 2as

Z
ddrjC0sr, tdj4 2 ar

Z
ddrjC0sr, tdj6, (12)

where as and ar are the rate constants of spin relax
ation and three-body recombination, respectively. Wi
2606
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increasing density in the course of collapse, the ratio
the recombination to relaxation rate increases. In ultraco
alkali atom gasesas is in the range10214 10216 cm3ys
and ar , 10228 cm6ys. Accordingly, considering ini-
tial condensate densitiesn0 , 1013 1014 cm23 (currently
achieved in Rb and Na BEC experiments [4–8]), we s
that already for moderate compression of the condens
three-body recombination dominates over spin relaxatio
Therefore, the process of spin relaxation is omitted in t
further analysis. For the same reason, in the case of lig
induced change of the scattering length we omit the proc
of photoassociation in pair collisions.

The loss of atoms from the condensate influences
evolution through the change of the condensate poten
and kinetic energy. The character of the evolution depen
on the density of the collapsing condensate,nstd, and is
predetermined by the relation between the characteris
time of three-body recombination,tr , sarn2d21, and the
correlation timetc , h̄ynjŨ1j. The latter is responsible
for establishing the shape of the condensate wave funct
corresponding to the instantaneous value of the numbe
particlesNstd. There will be two different stages of the
evolution. The role of three-body recombination becom
especially important at densities

n , np ; jŨ1jyh̄ar ¿ n0 , (13)

where the compression is very strong andtr , tc. Then
already the shape ofjC0sr, tdj is determined by the re-
combination losses (see below). With realistic numbe
ja1j , 10 Å , andar , 10228 cm6ys, we see that the den-
sity np will be in the range1017 1018 cm23 and still sat-
isfies the criterion of weakly interacting gas,npja1j

3 ø 1.
At densitiesn ø np the recombination timetr ¿ tc

and the loss of particles occurs in a quasistationary regim
For C0sr, td one can use the scaling solution following
from Eqs. (2) and (6), with instantaneous values ofN and
the chemical potentialm ~ N2ys21dd. For the maximum
condensate density in the quasistationary stage we obt

nstd ­ n0fbstdg2dfNstdyN0g2ys21dd, (14)

whereN0 is the initial number of condensate particles.
Below we assume thatjg1j & 1. Then the charac-

teristic time of collapse,tp , v21. Since for realistic
parameters of the system the initial recombination tim
tr0 ¿ v21, a major part of the compression occurs with
out particle losses. This is the case even att rather close
to tp, the condensate density being determined by Eq. (1
with the scaling parameterb from Eq. (11) andN ø N0:

nstd ø n0s
p

jg1j vDtd22dys21dd. (15)

Equation (15) is no longer valid when the number of lo
particles becomes comparable withN0. The characteristic
time DtL and the densitynL at which this happens can be
found from Eq. (12), withC0 determined by Eqs. (2) and
(5) and the scaling parameterbstd given by Eq. (11):
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ÙN ­ 2
ar

Ũ3
0

Z ddr

b2dstd
sm0 2 mv2r2y2d3

ø 2
N0

tr0s
p

jg1j vDtd4dys21dd
.

Comparing the number of lost atoms withN0 we obtainp
jg1j vDtL ø s

p
jg1j vtr0d2s21ddys3d22d; (16)

nL ø n0s
p

jg1j vtr0d2dys3d22d. (17)

Assuming
p

jg1j vtr0 ¿ 1 we see thatnL ¿ n0.
Equation (13) can be rewritten asnp ø n0jg1j 3

svtr0d sm0yh̄vd, and the condition´st ! 0d ø sh̄vy
m0

p
jg1j d2 ø 1 ensures the inequalitynL ø np which

justifies the use of the quasistationary approach in der
ing Eqs. (15), (16), and (17).

The conditionnL ø np means that the collapse contin
ues to occur in the quasistationary regime also at tim
Dt , DtL. In this time interval, using Eqs. (11), (14)
(16), and Eq. (12) written in the formÙN ø 2arn2std 3

Nstd, for the number of particles we find

Nstd ø N0sDtyDtLds3d22dy4. (18)

The condensate density increases as

nstd ø n0

p
tr0yDt , (19)

i.e., slower than in the initial stage of the compression.
At times very close totp, i.e., atDt ø trp ­ sarn2

pd21,
the density approachesnp, and the picture of collapse
changes. Actually,np plays a role of a critical density.
If n becomes larger thannp, then the decrease ofn due to
particle losses already dominates over the dynamic co
pression. Moreover, the particle losses decrease the
of the condensate in such a way that the parameter´std in-
creases. Atn , np it already becomes of order unity and
the kinetic energy term in Eq. (5), omitted in our scalin
approach, also prevents the dynamic compression. T
means that the compression of the condensate ton , np

can be followed by its expansion, with an extra decrea
of density due to recombination losses. Even at maximu
compression the scattering amplitude practically rema
unchanged as the characteristic “momenta of the relat
motion” for a pair of interacting atoms satisfy the cond
tion kja1j , snja1j

3d1y2 ø 1.
The above described picture of collapse is somewh

idealized, but we believe that the main results should
main unchanged. The scenario of collapse can be
served by measuring the recombination losses of partic

Considering the global collapse in an anisotropic ha
monic potential we should return to scaling equations (8
with g1 , 0. The rate of the self-compression is the high
est in the direction corresponding to the largest frequen
In the case of cylindrical symmetry with the ratio of th
axial to radial frequency,b ­ vzyvr , 1, there will be
a characteristic timetp at which brstpd ­ 0, but bzstpd
remains finite. In the time interval, wherebrstd ø 1,
Eq. (8) for brstd is reduced to that for the isotropic 2D
collapse, withg1 replaced byg1ybzstpd. Thus, the global
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collapse will occur along the lines of the above describ
2D scenario, in combination with a “slow” compressio
in the axial direction. Forb . 1 the condensate predom
inantly collapses in the axial direction and the kinetic e
ergy term in Eq. (5) increases. Eventually the param
ter ´std becomes of order unity, and our scaling approa
breaks down. Such a rise of the kinetic energy preve
the further compression and can lead to a nontrivial osc
latory character of the global collapse.

Density fluctuations on the background of the glob
collapse can lead to the appearance of local collaps
with linear dimensions of order the healing length. A
though their influence on the global collapse can be r
duced by decreasing the ration0Ũyh̄v, the study of the
role of the local collapses requires a separate analysis.
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