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Evolution and Global Collapse of Trapped Bose Condensates under Variations
of the Scattering Length
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We develop the idea of selectively manipulating the condensate in a trapped Bose-condensed gas,
without perturbing the thermal cloud. The idea is based on the possibility to modify the mean field inter-
action between atoms (scattering length) by nearly resonant incident light or by spatially uniform change
of the trapping magnetic field. For the gas in the Thomas-Fermi regime we find analytical scaling so-
lutions for the condensate wave function evolving under arbitrary variations of the scattering dength
The change of: from positive to negative induces a global collapse of the condensate, and the final
stages of the collapse will be governed by intrinsic decay processes. [S0031-9007(97)04185-9]

PACS numbers: 03.75.Fi

The discovery of Bose-Einstein condensation (BEC) incondensate evolution will be pronounced, which resembles
trapped clouds of ultracold alkali atoms [1-3] openedthe picture of the fourth sound in superfluid helium. In this
unique possibilities to investigate collective many-bodytemperature range the shape of the thermal cloud is mainly
effects in dilute gases. Isolation of a trapped gas frondetermined by the trapping potential and temperature. The
the environment, provided by a wall-less magnetic conperturbation of the thermal component will be small com-
finement, makes this object attractive for studying fundapared to that of the condensate, at leastGgT.
mental problems of the physics of many-body quantum The change otz in the field of nearly resonant red-
systems, such as relaxation and the loss of coherenaketuned light is provided by virtual radiative transitions
in the evolving macroscopic quantum state (condensatepf a pair of atoms to a bound electronically excited
In ongoing experiments [4—8] the condensate is set intanolecular state. Since the resonance dipole interaction
motion (for example, undergoes oscillations) by varyingbetween atoms in the excited state is much stronger than
the confining field. Scaling theory of coherent evolutionthe interaction in the ground state, already for moderate
(without damping and relaxation) of a Bose condensatéight intensities the effective interatomic interaction and,
in harmonic traps under arbitrary frequency variations hasence, the scattering length can be significantly changed.
been developed in [9,10]. It is important, however, thatlt is even possible to switch the sign @f11].
variations of the confining potential also cause the evolu- The magnetic field dependence of the scattering length,
tion of the thermal component of a trapped gas. Morefound in [12], has a resonance structure. Therefore,
over, in the hydrodynamic regime the thermal cloud inspatially uniform variations of the field can also change
many aspects evolves similarly to the condensate [9]. Fat substantially and reverse its sign.
example, the asymmetry of free expansion and eigenfre- Below we find analytical scaling solutions for the con-
guencies of small oscillations are almost the same. densate wave function evolving under arbitrary variations

In this paper we develop the idea of selectively ma-of the scattering length. We consider the most interesting
nipulating the condensate, without perturbing the thermasituation, where the mean field interaction between atoms
cloud. This is especially important for studying the in- greatly exceeds the level spacing in the trap (Thomas-
teraction between the condensate and the thermal compBermi regime). The case of switching from positive
nent. The idea is based on the possibility to modify theto negative and inducing a global collapse of the conden-
mean field interaction between atoms. At low temperasate is specially analyzed.
tures the latter is proportional to the scattering length Let us consider the evolution of a condensate in a
which, as found in [11], can be changed under the influharmonic potentialV(r) = mY,; w?r?/2, with constant
ence of red-detuned nearly resonant light. Another optiofirequenciesw;, induced by variations of the mean field
to modify the scattering length relies on the magnetic fieldnteraction between particles. The equation for the con-
dependence df, predicted in [12], and assumes spatially densate wave functioVy(r, t), with above-condensate
uniform variations of the trapping field, without changing particles neglected, can be represented in the form
the trap frequencies. Since the shape of the condensate
wave function is predetermined by the interaction between 9y, K2
particles, the change af will cause the evolution of the ih ot 2m AW,
condensate at constant frequencies of the confining poten-
tial. Remarkably, at temperatur@s> nU (n is the gas + Z w?r?W, + U() |[Po|*V,. (1)
density, 7 = 4mh%a/m, andm the atom mass) only the 24
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HereU(t) = 4w h?a(t)/m, anda(z) is the time-dependent  The results ford = 2, obtained below, can be applied
scattering length. Along the lines of the general methodequally well to the radial evolution o, in very long
developed in [9], we introducé scaling parameteris;(r),  samples where the axial frequency is much smaller than
where d is the dimension of the system. Turning to the radial one, and to a first approximation the dependence
new coordinate and time variables = r;/b;(z), 7(t) =  of ¥, on the axial coordinate can be omitted.
[far’ y(t")) V(t'), with y(t) = U(1)/Ty and U, the ini- In the limiting case of adiabatically slow variations of
tial value of U/(r), we search for the solution in the form  the scattering length, that is on a time scale> w; ',
To(r,1) = V20 xolp, 7)) expli® (r, 1)),  (2) the solution of Eq. (4) leads to simple relations

where the dimensionless volum¥(s) = []; b;(r). Sub- bi(1) = [y, V(@) = [y()]*TD. (7)
stituting Eq. (2) into Eq. (1) we require the cancellation of

the V, xo terms. This leads to the relation for the phase: Assuming that at > 7o the scaftering length acquires a

constant valuey, [U(¢) = Uy, y(t) = U,/Uy = 1], for
d(r,1) = (m/2h)Zr,-2[b,-(t)/b,»(t)]. 3) the phase in Eq. (g%z\ivg pbtamOr(t) = uit, Where the
i quantity w; = wovyi is equal to the chemical poten-
The scaling parametets(r) will be chosen such that they tial of the gas with the interparticle interactién. Then,
are governed by the equations from Egs. (6) and (2) one can see that the initial condensate
is adiabatically transformed to the static condensate with

2p. = @2 A ~
bi + wibi = ] 7(t)/.b’y(t)’ (4) the wave function corresponding to the interaction
with initial conditions b;(0) = 1, 5;(0) = 0. Then, we  Foran abrupt change of the interparticle interaction from
arrive at the equation of motion Uy to U, scaling equations (4) take the form
2 2 .
g% _ s VO Ox bi + wlbi = Wiy /b V(). (8)
ot 2m Ty ()b (1) dp;

m In fact, for v, = U,/U, > 0 these equations resemble
+—> wlp?xo + Uolxol’xo. (5) those in [9] for the scaling parameters of the condensate
25 evolution after an abrupt change of the trap frequencies.
In the case of initially repulsivea(0) > 0] and strong The solution of Eq. (8) gives oscillatirig(¢) which ensure
interaction between particles (Thomas-Fermi regime) theindamped oscillations of the condensate wave function.
initial chemical potentialug = noUy > hw; (ng is the  Fory; close to 1 the frequency spectrum of the condensate
maximum density in the initial static condensate), andoscillations coincides with the set of eigenfrequencies of
the kinetic energy term in Eq. (5) is initially small com- small shape oscillations of the initial condensate, found for
pared to the nonlinear interaction term. In the course otylindrically symmetric traps in the JILA [4] and MIT [7]
evolution the ratio of the kinetic to interaction term scalesexperiments and calculated in [9,10,15,16].
as e(t) = Y ;[hw;/mobi()? V(t)/v(t). Assuming that The structure of the condensate oscillations caused by
the conditione(r) < 1 is satisfied at any, the kinetic the change of the scattering length can be easily analyzed
energy term can be omitted. Then in the varialesr  in the case of isotropic trapping configuration. Hor 2
Eq. (5) is reduced to that for the static case, with initialEqg. (8) has the analytical solution
:(nntg\r/\;anctllgpmb(e;t\évee([elng"pﬁr]t;cles. The solution has the well b2 = (1) =1 + 1 + (I — 1) co2wr]/2. (9)

1 m ) 2 Once the scattering length is decreaded < 1) there
xolp. 7(1)) = iz \Ho fzw'pi will be “compression oscillations”: Compression of the
0 ) ' condensate will be followed by its expansion to the initial
X exp(_"“‘”(t)> (6) shape. An increase of (y1 > 1) induces “expansion
h oscillations”; i.e., the condensate is expanding and then

in the spatial region where the argument of the squareompressing to the initial shape. In both cases the
root is positive and zero otherwise. Thus, the condensatgcaling parameteb varies from 1 to,/y;. In the 3D
evolution under arbitrary variations of the scatteringcase the condensate oscillations are anharmonic, with
length is described by a universal scaling solution fora characteristic period somewhat smaller than that for
Wy(r, 1), following from Egs. (2) and (6). Actually, the d = 2. The parameteb is varying from 1 to,/2y,/3.
problem is reduced to the solution of classical equations For initially negative scattering length the stability of
(4) for the scaling parametets(r) (cf. [9]). the initial condensate requires the conditignly| < hw
Equation (1) and the scaling solution obtained ¥  [17,18] which is opposite to the above used condition of
describe a coherent evolution of the condensate, withouhe Thomas-Fermi regime, and the study of the conden-
relaxation and the loss of coherence. Variationsaof sate evolution should rely on a different approach. The
lead only to a change in the potential and kinetic energyesponse of the condensate to small variationS ofn be
of the evolving condensate which remains a macroscopitound directly from Eq. (1). Large variations bf require
gquantum state with zero entropy. a separate investigation, since the initial Bose-condensed
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state is actually metastable and is separated by an ener@creasing density in the course of collapse, the ratio of
barrier from totally unstable collapsing states (see [18]). the recombination to relaxation rate increases. In ultracold
The dynamics of the system, induced by the change odilkali atom gasesy; is in the rangel0~'4-10"1¢ cm? /s
the interparticle interaction, is drastically different from and «a, ~ 10728 cm®/s.  Accordingly, considering ini-
that caused by variations of the trap frequencies. In théial condensate densitieg ~ 10'*~10'* cm™3 (currently
former case the condensate oscillates, whereas the thernaalhieved in Rb and Na BEC experiments [4-8]), we see
component is only weakly perturbed and practicallythat already for moderate compression of the condensate
remains static. In the latter case the thermal cloud is fullythree-body recombination dominates over spin relaxation.
involved in the oscillatory evolution process. PreferentialTherefore, the process of spin relaxation is omitted in the
evolution of the condensate under the change of théurther analysis. For the same reason, in the case of light-
scattering length resembles the fourth sound in superfluithduced change of the scattering length we omit the process
helium, where the superfluid part of the density oscillateof photoassociation in pair collisions.
on the background of a static normal component. The loss of atoms from the condensate influences the
The change of the interaction between particles can leaevolution through the change of the condensate potential
to an interesting phenomenon, a global collapse of thand kinetic energy. The character of the evolution depends
condensate as a whole. Let us assume that initially then the density of the collapsing condensaté), and is
scattering lengtta > 0, and the system is in a stationary predetermined by the relation between the characteristic
state. Then, for an abrupt change of the signaof time of three-body recombination, ~ («,n*)!, and the
the solution of scaling equations (8) immediately leadscorrelation timer. ~ i/n|U,|. The latter is responsible
to a self-compression (collapse) of the condensate. Ifor establishing the shape of the condensate wave function
the d = 2 isotropic case this directly follows from the corresponding to the instantaneous value of the number of
exact solution (9): Fory; < 0 the scaling parametdr  particlesN(¢). There will be two different stages of the

decreases and reaches zero at t., where evolution. The role of three-body recombination becomes
t = o larcsin(l /N1 + []). (10) especially important at densities

In the 3D isotropic case. is close to that from Eq. (10). n~ n. = |U|/ha, > ng, (13)

In the vicinity of 7., wherew Ar << min[|y;]4, |y,|7/2] o

(At = t. — 1), the solution of Eq. (8) takes the form where the compression is very strong and~ 7.. Then

already the shape dWy(r,¢)| is determined by the re-
b*(1) = [yl 0An) 2 + d)/N2d /2. (11) combir}:ation Iosses (see below). With realist}ilc numbers
In both cases the compression rate increases with d¢a;| ~ 10 A, anda, ~ 10728 cnf/s, we see that the den-
creasingAr: The quantityb(r)/b(t) = 2/[(d + 2)At],  sity n. will be in the rangel0'7-10'® cm™3 and still sat-
and the characteristic velocity of the condensate boundarysfies the criterion of weakly interacting gas/a;|* < 1.
v o [Ar]74/@*2)  |n the course of collapse the small pa- At densitiesn < n. the recombination time, > 7,
rametere(r) remains constantd = 2) or even decreases and the loss of particles occurs in a quasistationary regime.
(d = 3), which justifies the neglect of the kinetic energy For W(r,r) one can use the scaling solution following
term in Eq. (5). The kinetic energy of the system is deterfrom Egs. (2) and (6), with instantaneous value#Vaénd
mined by the behavior of the phadg(r) (3) which dras- the chemical potentigk o« N2/2*4) For the maximum
tically increases with decreasinky. A strong rise of the condensate density in the quasistationary stage we obtain
kinetic energy in the course of collapse is compensated by
decreasing potential enerdy < 0), which ensures the n(t) = no[b(O)] [N (1) / N/ **9, (14)
conservation of the total energy. i . i
The increase of density in the collapsing condensat¥/hereNy is the initial number of condensate particles.
enhances intrinsic inelastic processes, such as three-bod Below we assume thaty, | 5_11' Then the charac-
recombination and spin-dipole relaxation in binary colli- t€ristic time of collapses. ~ ™. Since for realistic
sions. This leads to particle losses, since fast atoms arfframeters of the system the initial recombination time
molecules produced in the inelastic processes escape frofr0 > @, & major part of the compression occurs with-
the trap. Assuming that the mean free path of the fast paUt Particle losses. This is the case even mither close
ticles greatly exceeds the sample size, we neglect heatirig 7+ the condensate density being determined by Eq. (14)
resulting from their collisions with the gas atoms. We will With the scaling parameter from Eq. (11) andV ~ No:
mainly analyze the influence of inelastic processes on the _ — —2d/(2+d
dynamics of collapse in the isotropit = 2 andd = 3 n(0) = noWlyilwdn 2. (15)

cases. The atom loss rate is determined by the relation Equation (15) is no longer valid when the number of lost

G d 4 d 6 particles becomes comparable wil. The characteristic

N asf dr|¥o(r. 1) a’f dir|[¥o(r. ). (12) time Az, and the density;;, at which this happens can be
where a; and «, are the rate constants of spin relax- found from Eq. (12), with¥, determined by Egs. (2) and
ation and three-body recombination, respectively. With(5) and the scaling parametk(r) given by Eq. (11):
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\ ar ddp 3 s
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706/ 1y1l @ Ar)4d/2rd)

Comparing the number of lost atoms witly we obtain

Vil wAr, = Wyl @7.0)" @962 (16)

nr = no(Wlyll @7.0)*4/3472), (17)

Assumingy/|yi| w70 > 1 we see that; > ny.
Equation (13) can be rewritten as. = ng|y;| X
(wT,0) (uo/hw), and the conditione(r — 0) = (hw/

ing Egs. (15), (16), and (17).

The conditionn;, < n. means that the collapse contin-
ues to occur in the quasistationary regime also at time
At < Atp. In this time interval, using Egs. (11), (14),
(16), and Eq. (12) written in the forl¥V =~ —a,n?(t) X
N(z), for the number of particles we find

N(t) = No(At/At)B3¢=2/4, (18)
The condensate density increases as
n(t) = nov7r0/At, (19)

i.e., slower than in the initial stage of the compression.
At times very close ta., i.e., atAr = 7,. = (a,n2)" !,
the density approaches., and the picture of collapse
changes. Actuallyn. plays a role of a critical density.
If n becomes larger tham., then the decrease afdue to

particle losses already dominates over the dynamic com+;
pression. Moreover, the particle losses decrease the size

of the condensate in such a way that the paramsteiin-
creases. An ~ n. it already becomes of order unity and
the kinetic energy term in Eq. (5), omitted in our scaling
approach, also prevents the dynamic compression. Th
means that the compression of the condensaie ton..

can be followed by its expansion, with an extra decrease
of density due to recombination losses. Even at maximum 8
compression the scattering amplitude practically remains!®]

unchanged as the characteristic “momenta of the relativ
motion” for a pair of interacting atoms satisfy the condi-
tion kla;| ~ (nla;]?)/? <« 1.

collapse will occur along the lines of the above described
2D scenario, in combination with a “slow” compression
in the axial direction. Fop > 1 the condensate predom-
inantly collapses in the axial direction and the kinetic en-
ergy term in Eq. (5) increases. Eventually the parame-
ter () becomes of order unity, and our scaling approach
breaks down. Such a rise of the kinetic energy prevents
the further compression and can lead to a nontrivial oscil-
latory character of the global collapse.

Density fluctuations on the background of the global
collapse can lead to the appearance of local collapses,
with linear dimensions of order the healing length. Al-
though their influence on the global collapse can be re-

vduced by decreasing the ratigU/fiw, the study of the

role of the local collapses requires a separate analysis.
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