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Nonequivalence between Stationary Matter Wave Optics and Stationary Light Optics
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Stationary matter wave optics and stationary light optics are equivalent when we consider one-
particle systems in vacuum. We show that, in contrast, stationary optics of energy-entangled particles
is completely different for matter waves and for light. This difference is illustrated comparing the two-
particle interference patterns exhibited by matter waves and by light, respectively. The time-independent
probability for simultaneous detection of the two massive particles or of the two photons is strikingly
nonequivalent. [S0031-9007(97)04118-5]

PACS numbers: 03.75.—b, 03.65.—-w, 42.50.—p

It is well known that matter waves and light show com-for light in vacuum [4] is a spherical shell about the point
pletely equivalent diffraction phenomena in stationary ex-source, expanding with the radial velocity5]
periments in vacuum. There both massive-particle waves 5(r — rol/c — (t — 1))
and photon waves obey the same (Helmholtz) equatiorG' " (r, 7, ry, 7)) = 0 76
One might naively expect that the equivalence between
stationary matter wave and stationary light optics is also (1)
preserved in the case when we consider multiparticle sysn contrast, the Green’s function of the nonrelativistic
tems. In the present paper we investigate this questioBchrodinger equation in vacuum immediately becomes
and we will find that this is not the case. unequal zero everywhere as soon rasliffers from

The present problem is not only of interest from apecause here the disturbance at a point source contains
fundamental viewpoint but also with respect to recenfg|| velocity components [5]
experiments with entangled particles in a variety of
systems (photon pairs produced by parametric down G™(r, 7,10, )
conversion [1], light-induced dissociation of molecules m 1 imle—rl?
with laser pulses [2], simultaneous observation of atoms, = \2min m e gt — 1)  (2)
and spontaneously emitted photons [3]). 0

The elementary multiparticle wave coming from a pointThe step functio® (r — t,) is required by causality.
source (the Green’s function) together with the source dis- Stationary optics implies time independence of the
tribution containall information about the system consid- probability to find the particle; i.e., the probability to
ered. Thus, to examine whether or not stationary mattedetect the particle at a given position in space is the same
wave optics and stationary light optics are equivalent irat everytime of observation.
general, it suffices to compare the stationary multiparticle Now, we look for the one-particle Green’s function
Green’s functions for matter waves and light. Throughouffor stationary optical experiments. We consider a point
the paper we shall use the term particle for both massiveource starting at timey = —o to emit elementary
particle and photon. nonstationary one-particle waves harmonically in time

The nonstationary Green'’s function describes the effecvith a frequencywy; that is, the source function is given
of a point source localized at positiany at time o on by e ‘®_ Then the effect of a point source localized
the observation point at times. An elementary wave at pointry on the observation point at time r can be
emitted by a point source and obeying the wave equationbtained as a superposition of all effects of elementary

(t — 1).
[r — rol
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nonstationary waves emitted at different instants until thehe complementary quantity, the frequency of the two-

observation time particle wave (4), is well defined; that is, the pair has
! i woto - light matter the well-definedtotal energy iwy. Yet we have no
]_x dige GEE(r, 1, 10, 1) information which particle takes which part of the total

k(@) el energy. This is most directly seen when we rewrite the
e 0 0 . . . ! . . .
= ———— ¢ fed  (3) stationary two-particle Green’s function (4) in terms of its
Ir — rol Fourier components as [8]
where the dispersion relation iwo) = wg/c for light
and k(wy) = +/2mwo/hi for matter waves. In both  Gia(ri, 12, 1,10) Z[ dw

cases we obtain the well-known Green’s function of

eik(w) vy —rol

lr; — rol

ik(wo— ) |r—ry|

the Helmholtz equation. This identity of the stationary X o iwt € o ilw—w)t
Green's function for matter waves and for light clearly [ry — rol ’
implies full equivalence of stationary optics for matter (5)

waves and for light in single-particle systems.

The superposition given by expression (3) is connecte
with complete lack of information about the instant of
emission of a particle. While thus the time of emission
is completely undefined, the complementary quantity, th

frequency of the one-particle wave (3), is well defined;.l.hiS clearlv i ; ;
. . ; y is a highly entangled state. While the energy
that is, the particle has the well-defined ener,. of the pair is well defined, we have complete lack of

Eg;srigif:ge particles only the nonrelativistic energy 'Snformation about the energy of each individual particle.

L It is also clear that the superposition (5) now depends
We now turn to the multiparticle case. In analogySharply on the specific dispersion relatiofw).

muliparticis systems sueh that thecidencaronabity - e EmPhasize that alinough every nstan of enis
is time independent; i.e., the probability to detect the'o" the point source emits thr@nentanglectlementary

articles of the system in coincidence at given positiona. 0-Particle waveGi (ry, 1, xo, 70)Ga(rs, £, ro, fo) the result-
P . y : 9 P ?ng elementary stationary two-particle wave (5) is a highly
in space is the same averytime of observation.

. : . entangledstate. Also, it is obvious that the coincidence
We shall now obtain stationary two-particle Green’s 9 ’

functions for matter waves and for light. For simplicity probability obtained from the two-particle wave function

. ; : 5) is time independent. It can be shown that even when
we consider here two-particle systems, yet our consideray

: . ) MR he particles are observed at constant time difference the
tions can easily be generalized to multiparticle systems.

| | to th ticl ider th f<:oincidence probability is again time independent.
n analogy 1o the one-particlie case we consider tn€ €t~ 1, stationary two-particle Green’s function for light
fect of a two-particle point source localized at positign

at time ¢, on the observation points of the first andr, obtained from Eq. (4) by direct integration is

hus the effect of a stationary two-particle point source
a superposition of all product states of single-particle
stationary Green’s functions for the first and second
articles with such combination of the wave numbers that
he sum of the energies of the two particles is always.

of the second particle at time[6]. We assume that after light _ cd(lry — 1ol — Ir; — 1ol)
e , - G, (ry,ra,t,rp) =
the emission the two particles propagate freely, without Ir; — rol vy — 1ol
any interaction between them. Therefore, for the time of X ol 22 (n=rol=c) ©6)
observatiorr the two-particle nonstationary Green’s func- '

tion is the product stat&(r;, ¢, ro, 10)Ga(r2, 1,0, 70). In  Thus if one photon is detected at point the probability
order to obtain the stationary two-particle Green'’s functo find simultaneously another photon is unequal zero
tion we consider a point source locatedr@emitting ele-  only on the spherical shell centered at the common point
mentary nonstationary two-particle waves harmonicallysource with the radiug; — rp|. This can be seen as a
in time with frequencywy; that is, the source function consequence of the fact that the two photons produced
is e ', as in the one-particle case. For the infinitely simultaneously both propagate with the constant velocity
long duration of emission, the resulting effect of the pointof light ¢c. By detection of the first photon at point at
source on the observation points of the first andr, of  time r we obtain information about the instant of emission
the second particle at timecan be obtained as the super- of both photonsty = ¢ — ronl,

e . . ¢ .
position [7] The stationary two-particle Green’s function for matter
t ot waves obtained from the integral (4) is
Gia(ry, 1o, 1,10) = dtge "G (ry, 1,10, to)
- G (r1, 12, 1,10)
N X Gs(ra, 1,10, 1p) - - (4) ei\/zino (11 —ro 2+ ma[r2— 10 )
The superposition (4) is connected with complete lack o 5 7 ~iwot
of information about the instant of emission of the pair. (milry = rol?> + maolry — rol?)%/
While thus the time of emission is completely undefined, (7

2600



VOLUME 79, NUMBER 14 PHYSICAL REVIEW LETTERS 6 @TOBER 1997

Since vacuum is dispersive for matter waves, detection aeparately but monitors the arrival positions of two par-
one particle at point; at timer gives no information about ticlesin coincidence The interference pattern is station-
the instant of emission of the pair. However, for the pointary. That is, one can record coincidenceamytime; the
ro and the timer, of emission of the pair, the classical coincidence probability to find particles at fixed positions
propagation velocity of the detected particle 5&5:% does not depend on the instant of observation. Two spa-
tially distant coherent two-particles sources could be, for
gxample, a pair of small spatially distant down-conversion
crystals pumped by the same laser or a dissociating mole-
cule in a superposition of two spatially distant states.

We assume that point sourcBsand Q located on the

my ry —ro|?

This further implies the energfiw; = 55— of the
detected particle. Then, the energy conszervation conditio
hwo = hoy + o, = "iinl 4 mie-nl can pe seen
as implying a relation E)etween instandg of emission
of the pair and corresponding points of detection of

) ) L ) : ;
e Second parile fo every ven por and timer ¥ XS % 02 Pos = (F6 1) imularcousl eni
of detection of the first particle. While thus the instant P Y 9y

of emission of the second patrticle is not well defined itsﬁwo' We shall observe interference patterns formed by
P ' ne particle along the link parallel to they axis at the

Sﬁ:;jnfungggﬁ i:fstznstuigqerlp(i)nsmgn di?f\(/e?én?”l)lljr'zséimﬁtg distancex, conditional on detection of the other particle
0 pying at the same time by detectdr, fixed at positionr; on

positionr, for coincidence detection of the second particle.Iine L

st ;%r?;)rmlrﬁgﬁi’ g]rtﬁ;?gtcr;séte?st?ueng?oeﬁgjﬁg:l:n;ﬁﬁ{aw € The interference pattern, characteristic of the specific
com Iete>I/ differ%ntfor matter waves and for light [9)]/ In YGreen's function, results from the superposition of two
b M 9 y possibilities: either both particles are emitted at the source

order to illustrate this difference we now examine two-’ " . .
o U ..._point P or both particles are emitted at the source pQnt
particle interference patterns arising from the superposmoﬁ)

of stationary two-particle waves coming from two spatially y(r, r,, 1) = G15(ry, 12, 1,1p) + Gi(ri,ra.t.rg).  (8)
distant coherent point sources. This interference pattern
is conditional; that is, one does not look at either parti?Ie For light the probability for coincidence detection is [10]

|y (), 1) o 5{52(@1 =) (1 + 2+ 2a) + 8%((y1 — y2) (1 + y2 — 2a))
0

#26((n — 32) (1 + 32+ 20)5((n — 1) (31 + vz~ 2a)) cod 2 x%n)} ©)

in the Fraunhofer limit. If one photon is caught at paipt | within the Fraunhofer approximation [11].

the other photon generated simultaneously at the common Assuming for the stationary two-particle Green'’s func-
point source could at the same time of observation be founglon a product stateGya(ry, s, ,1g) = Somrr <o ™
only on two spherical shells (Fig. 1) centered at the poinfyorne [12] reported the solution
sourcesP and Q with the radii|r; — rp| and|r; — rgl,

respectively. The intersection points of the lihewith

the sphere centered at poidtare located ay, = y; and 2 a

y, = 2a — y;. Similarly, the intersection points of the () co§[(k1y1 * kay2) xo] 1D
line L with the sphere centered at poiQtare located at

y2 =y andy, = —2a — y;. It is important to noticé s js also Young’s pattern. While entangled in mo-
that interference [the third term in Eq. (9)] occurs only atyenym, Horne's particle having well-defined wave num-
points where we have no information from which SOUrCehersk, andk, are not entangled in energy. The Green's

the second photon comes, i.e., at the intersection points ‘Plﬁnction used by Home follows from our Green’s func-
two spherical shells. This occurs only atthe point= y2  tjon (5) when a filter of infinitely narrow bandwidth is

on the lineL. o , . placed before one of the detectors. Because of the en-
_ The conditional pattern exhibited by massive particlesyrgy conservation, the filtering of one of the particles
is totally different from the pattern exhibited by photons. 5155 gefines (“nonlocally”) the frequency of the second
Thus if the first massive particle is caught at the peint  5icle. Obviously, the conditional interference patterns

the other particle forms conditional fringes of Young's type oy hibited by massive particles and by photons are now
along lineL according to

[y —rol  Iry—ryl

equivalent.
2w miy; + myy, a The existengg of limiting cases,_qf complete difference
ly™ater () p,)|? o coS =0 T T e 2 between conditional patterns exhibited by matter waves
R my+my X and light (when broadband detectors are used) and com-

(10) plete equivalence between two conditional patterns (when
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FIG. 1. Scheme for observation of two-particle interference
patterns. The stationary point sourd@andQ emit coherently
two-particle waves. DetectoD, is fixed at positionr; on
line L. Detector D, is moved along the linel to detect
the distribution of the second partict®nditional on detection

of the first particle inD;. In the case of light, if no filter
is inserted beforeD, the second photon can be found only
on two spherical shells of infinitely small width. Interference
occurs only at their intersections. If a filtér of bandwidth

o is inserted in front of D; the two spherical shells of
significant conditional probability have a finite widthr =
c/o. In the intersection region conditional Young's fringes
arise. Pairs of massive particles exhibit a different kind
of Young’'s fringes in the whole Fraunhofer region already
without filtering.

a filter of infinitely narrow resolution is inserted before
one of the detectors), suggests that there are interme
diate cases. Thus, if a filter of bandwidth is placed
before one of the detectors, the space region where condi
tional probability for the second photon significantly dif-
fers from zero lies on two spherical shells of finite width
Ar = ¢/o (Fig. 1). The solution at the intersection area
of the two spherical shells contains the interference term,
resulting in a Young's pattern. For an infinitely narrow
filter o — 0 the region with Young’s fringes spreads over
the whole Fraunhofer regiodr — o, as predicted by
Eq. (11). For matter waves, with a decrease of the filter
bandwidth the Young's pattern of Eq. (10) also continu-
ously transforms into the one given by Eq. (11). The nar-
rower the bandwidth of the inserted filter, the larger the

area of resemblance becomes between the matter waves
[10]

and light.

Stationary matter wave optics and stationary light
optics are equivalent when we consider one-particle
systems in vacuum; that is, the stationary one-particle
Green’'s functions for matter waves and for light are
equivalent. In contrast, the stationary Green’s function
for energy-entangled particles is completely different for
matter waves and for light. Consequently, in general the

(time-independent) probability for coincident detection of[11]

energy-entangled particles at fixed positions in space is
different for matter waves and for light.
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