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Simulation of Many-Body Fermi Systems on a Universal Quantum Computer
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We provide fast algorithms for simulating many-body Fermi systems on a universal quantum
computer. Both first and second quantized descriptions are considered, and the relative computation
complexities are determined in each case. In order to accommodate fermions using a first quantize
Hamiltonian, an efficient quantum algorithm for antisymmetrization is given. Finally, a simulation of
the Hubbard model is discussed in detail. [S0031-9007(97)04120-3]
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Since the discovery by Shor of a quantum algorithm fo
factoring in polynomial time [1], there has been tremen
dous activity in the field of quantum computation [2–24]
Recent results include the first experimental demonstr
tions of working quantum logic gates [2–4], quantum
error-correcting codes [5], and many novel proposals f
the design of actual quantum computers [3,6–9,25]. Fo
review of progress in quantum computation, see Refs. [1
or [11]. Despite these advances, the technical hurdles t
stand in the way of factoring a large number on a quantu
computer remain daunting [12–15]. But the problem o
simulation—that is, the problem of modeling the full time
evolution of an arbitrary quantum system—is less tec
nologically demanding. While thousands of qubits an
billions of quantum logic operations are needed to solv
classically difficult factoring problems [16], it would be
possible to use a quantum computer with only a few te
of qubits and a few thousand operations to perform simul
tions that would be classically intractable [17]. A quantum
computer of this scale appears to be a realistic possibili

Because the size of the Hilbert space grows exp
nentially with the number of particles, a full quantum
simulation demands exponential resources on a classi
computer. A system of only 100 spin12 particles, for ex-
ample, requires2100 complex numbers to merely describe
a general spin state. It is clear that on a classical comput
a simulation of this system is in general intractable. Th
idea that a quantum computer might be more efficient th
a classical computer at simulating real quantum system
was first proposed by Feynman [26], but he speculated th
the problem of Fermi statistics might prevent the desig
of a universal quantum simulator. More recently, Lloyd
has shown how a quantum computer is in fact an efficie
quantum simulator [17]; other work on simulations can b
found in [18–20]. In this Letter, we deal explicitly with
the problem of fermions, in part by describing a quantum
algorithm for antisymmetrization which executes in poly
nomial time. We also describe algorithms for quantum
simulation of the Hubbard model in both first and secon
quantized formalisms. We show how the computer can
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prepared in a state analogous to the initial state of a man
body Fermi system, how it can be programmed to simula
the system’s time evolution, and how measurements c
then be made on the computer to extract relevant inform
tion. Thus this paper provides for the first time a comple
quantum algorithm for simulating a system of physical in
terest, and describes the only known algorithm, other th
Shor’s, that gains an exponential speed increase by explo
ing quantum computation (excepting certain artificial prob
lems constructed explicitly for this purpose [27–29]).

The quantum computer used to perform the simulatio
could rely on a variety of possible physical systems to sto
and process quantum information: for example, photons i
teracting via small cavity QED effects, electron spins, nu
clear spins (NMR), or trapped ions [2,3,6,7]. The actua
implementation of the quantum computer is not relevant,
long as it supports universal quantum computation [8,21
24,30–33] (although different physical implementation
may be better or worse suited for different problems). W
consider a simulation ofn particles, each of which can be
in any ofm single particle states, labeled1, . . . , m. These
states might be sites in a lattice, or atomic orbitals, or pla
waves, etc. The mapping of the system onto the qubits
the computer depends on whether we choose a first or s
ond quantized description. In many respects, the seco
quantized form appears naturally well suited for quantu
computation of Fermi systems: The occupation of eac
state must be either 0 or 1, which maps directly to the sta
of a quantum bit, or qubit [34]. In this case, the memor
needed to map the state of the entiren particle system ism
qubits (independent ofn) [35]. To treat a first quantized
Hamiltonian, we imagine a quantum word, or qu-word, a
a string of qubits of length log2 m; one qu-word represents
any integer in the range1, . . . , m and, consequently, the
state of one particle. The state of the entire physical sy
tem being simulated can therefore be represented byn qu-
words, orn log2 m qubits. If n ø m, a first quantized
representation is more efficient. In either representatio
if the system is in a superposition of many direct prod
uct states (as it is in general), then the quantum compu
© 1997 The American Physical Society
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will be in a corresponding superposition of states in ord
to represent the correct physical state of the system.

The problem of fermions is handled more easily in th
second quantized form. The calculation begins with a
qubits in thej0l state. We can prepare the system i
any state that can be reached from the zero state usin
relatively small number of quantum logic operations (tha
is, polynomial in m)—including those in which then
particles are localized in individual lattice sites, momentu
eigenstates, thermal states of noninteracting particles, a
states in which particles obeyk-particle correlations or
entanglements (for smallk). Thus Fermi statistics do not
pose any additional complications for system preparati
in the second quantized formalism. Because the statist
are incorporated into the raising and lowering operato
the additional complications occur during time evolution
As a concrete example, we consider the Hubbard mod
in which electrons move about a lattice of sites. Eac
site may be empty, or contain one electron (of eith
spin) or two electrons. Two qubits are therefore require
to represent the four possible states of each site. T
Hamiltonian for the system is

H ­
mX

i­1

V0ni"ni# 1
X

ki,jls
t0cp

iscjs . (1)

In the first term (potential energy),V0 is the potential
strength andnis is the number operator for fermions of
spin s at sitei. In the second term (kinetic energy), the
sum ki, jl indicates all (physically) neighboring pairs of
sites, t0 is the “hopping” strength, andcis , cp

is are an-
nihilation and creation operators, respectively, for ferm
ons at sitei and spins. The computer simulates the
Hubbard model by performing the unitary operationU ­
expfs2iy"d stdHg on suitably encoded states. This ca
be accomplished by splitting the Hamiltonian into a sum
of local termsHi and repeatedly applying the operator
Ui ­ expfs2iy"d styndHig, to evolve local parts of the
system over small time slicestyn, in series. (See Ref. [17]
for a detailed discussion of this technique.) Thus it su
fices to describe algorithms which perform the time evolu
tion corresponding to each local term in the Hamiltonia
To effect the time evolution resulting from the poten
tial energy termsV ­

Pm
i­1 V0ni"ni#, consider each site

one at a time; for each site, if it is occupied by two
electrons (of opposite spin), advance the phase of t
state byfs2iy"d styndV0g. This subroutine requiresOsmd
operations.

To calculate the effect of the hopping terms
P

ki,jls 3

t0cp
iscjs requires a slightly more complicated algorithm

For eachs and i, j pair, count the number of occupied
states which fall betweeni andj when the system is written
in second quantized form. A flag is set to the parity o
this number, which indicates whether or not a change
sign is introduced when hopping between the two site
as required by the definitions of the raising and lowerin
operators. It is now easy to perform the time evolutionUi

corresponding to the Hermitian piece of the Hamiltonia
er

e
ll
n
g a
t

m
nd

on
ics
rs,
.
el,
h

er
d
he

i-

n

s

f-
-

n.
-

he

.

f
of
s,
g

n

Ti ­ t0scp
jscks 1 cp

kscjsd by simply diagonalizing the
Hamiltonian in the two qubit spacei, j, and advancing
the phase of the eigenstates. Assuming that the num
of neighbors is a constant, the loops executeOsmd times.
It takes Osmd operations to count the occupancy of th
intervening states, and it follows that the entire algorithm
for time evolving the second quantized Hubbard mod
executes inOsm2d quantum logic operations.

Fermi statistics are more difficult to handle in the usua
first quantized description, because the initial state of th
quantum computer must be antisymmetrized. As there a
n! states in the superposition, one needs a fast quantum
gorithm for generating this superposition if the approach
to be tractable. The algorithm we describe takes an “u
symmetrized” state and generates an antisymmetrized
perposition ofn! states inOsssn2sln md2ddd time. Note that
without further restriction, antisymmetrization is an irre
versible process and cannot be performed by a reversi
quantum computer: There aren! input states which cor-
respond to the same antisymmetrized state (modulo
overall phase). We therefore add the requirement that t
input state must be ordered; i.e., the number represent
the state of particlei is less than that of particlei 1 1, for
all i , n 2 1. The correspondence between an orderedn-
tuple of qu-words and an antisymmetrized superposition
one to one. Thus, system preparation in the first quantiz
formalism begins by first initializing the computer into
an unsymmetrized state and then antisymmetrizing th
state. The system can be easily prepared in any (unsy
metrized) direct product state by merely placing each pa
ticle in the appropriate single particle state. These single
particle states include those which are localized in pos
tion space, momentum space [obtained with a quantu
fast Fourier transform (FFT)], and thermal states. Th
system can also be initialized into states with arbitraryk-
particle correlations or entanglements by performing qua
tum logic operations in the appropriatek-particle space,
requiring onlyOsm2kd operations in the general case, an
often far fewer.

Antisymmetrization is accomplished in four main steps
summarized below. A more detailed description will b
published elsewhere [36].

Step I: Initialization of the input state.—We define
three registersA, B, andC, each consisting ofn qu-words
(n log2 m qubits). The qubits in registerA are initialized
to the unsymmetrized input statejCl. The algorithm is
unaffected if this state is a superposition of several order
n-tuples.

Step II: Generatingn! states.—We create the follow-
ing state in registerB:

1
n!

√
nX
1

jil

!
≠

√
n21X

1

jil

!
≠

√
n22X

1

jil

!
≠ · · ·

≠ sj2l 1 j1ld ≠ j1l . (2)

This is accomplished withOsssnsln md2ddd steps by perform-
ing appropriate rotations on each qubit, one at a time [37
2587
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Step III: Transform into permutations of natura
numbers.—The goal of this third step is to transform
registerB into the states1yn!d

P
s[Sn

jss1, . . . , ndl, where
Sn is the symmetric group of permutations onn objects.
This is an equal superposition of the states represent
all the permutations of the firstn natural numbers. The
basic idea is as follows: LetBfig indicate theith qu-word
in registerB; map Bfig into a qu-wordB0fig by setting
B0f1g ­ Bf1g, andB0fig equal to theBfigth natural number
which is not contained in the sethB0f1g, . . . , B0fi 2 1gj,
for i . 1. This transformation is effected withOsn2 ln md
operations.

To prepare for the last step of the algorithm then-tuple
1, 2, 3, . . . , n is then assigned to registerC, leaving the
computer in the state

1
n!

jCl ≠

√ X
s[Sn

jss1, . . . , ndl

!
≠ j1, . . . , nl . (3)

Step IV: Sorting and unsorting.—The algorithm pro-
ceeds with a series of sorting and unsorting operations.
string of “scratch” qubits is required so that the sortin
operations are reversible. Any sorting algorithm can b
used; we suggest using a Heap sort, because it requ
Osn ln nd operations in all cases and onlyn log2 n scratch
qubits. The first sort orders registerB with a series of
exchanges and scramblesA and C with the same series
of exchanges. At this point, one has already obtained
symmetrized superposition of the input states, but it
entangled with many other qubits. One can antisym
metrize by counting the number of exchanges made dur
the sorting operation and advancing the phase of that co
ponent of the superposition byp if this number is odd [38].
The algorithm continues by reversing the sort on registerB,
but leaving registersA andC unchanged. The qubits con
tained inB andC are then redundant: In each compone
of the superposition, ifBfig ­ n, thenCfng ­ i. This re-
dundancy allowsB to be set to zero reversibly. By then
sortingA andC together, eliminatingC, and unsorting, one
obtains the desired antisymmetrized state. Note that in
final unsorting operation, the algorithm relies upon the fa
that the ordering of the input statejCl was stipulated to be
the same as the ordering of the integers1, . . . , n in register
C (so that antisymmetrization would be reversible); if th
were not the case, the algorithm would fail. The enti
process is completed inOsssn2sln md2ddd operations.

Because the input state is now antisymmetrized, tim
evolution is in principle straightforward. Using the sam
technique as before, the Hamiltonian is split into a sum
termsHi and the corresponding time evolution operato
Ui ­ expfs2iy"d styndHig are applied to the state in se
ries. (The antisymmetry of the state will not be affected b
truncation errors that occur during this process; althou
each individualUi does not preserve antisymmetry, the
products do exactly. For a more detailed discussion
errors that occur during time evolution, see [17].) Eac
Ui can be performed by an appropriate series of quant
logic operations; the actual sequence of gates required
2588
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be determined by inverting the Campbell-Baker-Hausdor
formula. Using this procedure,Osm2d steps are required
to perform an arbitrary one particle operatorUi , andOsm4d
operations are required to perform an arbitrary two partic
operator. It is therefore possible to simulate in polynomia
time any system of fermions (as long as the Hamiltonia
does not include terms which involvek-particle interac-
tions, wherek is a large number of ordern).

For the special case of the Hubbard model, the simplici
of the Hamiltonian allows one to perform eachUi in only
Ossssln md2ddd steps. To begin, consider the Hubbard mod
Hamiltonian in its first quantized form:

H ­
nX

i­1

Ti 1
1
2

X
kfi1

Vkl , (4)

wherekisjT jjsl ­ t0dki,jl andki", i# jV ji", i#l ­ V0. As
before, the potential energy terms are easier because t
are diagonal. For a given pair of particles, perform
controlled rotation if they are at the same site. In orde
to perform the time evolution resulting from the kinetic
energy terms, we focus on one particle at a time. F
each particle, the idea is to decompose the kinetic ener
terms into a sum of block diagonal matrices and the
diagonalize the subblocks in each matrix in parallel [39
For simplicity of explanation, we describe here only a 1D
Hubbard model and ignore spin. In this case the kinet
energy part of the Hamiltonian can be written

T ­ hs1, 2d 1 hs2, 3d 1 hs3, 4d 1 · · · 1 hsm 2 1, md ,
(5)

wherehsi, jd is the piece of the Hamiltonian that corre-
sponds to hopping between sitesi and j. Writing T ­
T1 1 T2, we define

T1 ­ hs1, 2d 1 hs3, 4d 1 hs5, 6d 1 · · · , (6a)

T2 ­ hs2, 3d 1 hs4, 5d 1 hs6, 7d 1 · · · . (6b)

The operatorsT1 andT2 are in block diagonal form. To di-
agonalize each matrix (separately), perform quantum log
operations on each state to transform the state number i
two quantum numbers labeling the block and the locatio
within the block (0 or 1). For example, to diagonalizeT1,
map the statejnl into jsn 1 1d div 2, n mod2l. Because
T1 is block diagonal—and because all states within th
same block have their first quantum number in common—
the action ofT1 takes place entirely within the space o
the second quantum number. In this one qubit space it

simply the matrixt0s 0 1
1 0 d. Thus all the blocks can be

diagonalized in parallel by diagonalizing this trivial2 3 2
matrix in the one qubit space of the second quantum nu
ber. Each state in the superposition is then advanced
the appropriate phase, and all the previous steps are
versed. This algorithm requires onlyOssssln md2ddd quantum
logic operations.

Finally, we consider what information can be extracte
from a quantum many-body simulation. It is obviously
impossible to obtain the entire wave function: Rathe
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the “answer” is obtained by performing a series of me
surements on the qubits, one at a time. Each such m
surement will yield eitherj0l or j1l. It is thus possible
to measure any physical quantity that can be expresse
terms of such local variables. To obtain useful inform
tion about the physics of the simulated system, one m
initialize the quantum computer, simulate time evolutio
make a measurement, and then repeat this process a s
cient number of times to acquire a statistically significa
result. For example, the electronic charge density distrib
tion can be obtained in the second quantized representa
by performing measurements at each site to determine
probability of occupancy. The number of such measur
ments required to obtain some desired accuracy´ varies as
´22 (i.e., the accuracy grows as a polynomial function
the number of trials). In the first quantized representatio
the same result is obtained by measuring the location o
given particle and generating a histogram of locations fro
repeated trials. It is straightforward to obtain two-partic
correlation functions and evenk-particle correlations us-
ing a similar approach (requiring roughlyOs´22dkd trials,
where d is the density of points in the histogram an
´ is the desired accuracy). The momentum distributio
function can be obtained by performing a quantum FF
before sampling the wave function. From the one- a
two-particle densities and momentum distribution, one c
obtain the expected energy. A variety of techniques can
used to obtain other information: For example, one c
obtain scattering amplitudes by simulating the motion
an electron through a charged medium and measuring
probability of its emerging with different momenta. Or
one can perform a quantum simulated annealing by tim
evolving the system in contact with a simulated heat ba
and then using the previous techniques to obtain inform
tion about the system’s ground state.

In summary, we have shown how a universal quantu
computer can be used to efficiently simulate systems co
sisting of many fermions. Depending on the particul
problem, it may be preferable to employ first or secon
quantized notation (n log2 m vs m qubits). A general al-
gorithm for creating an antisymmetrized superposition
states has been described. We have also demonstrate
gorithms which will simulate the Hubbard model, requirin
Osssn2sln md2ddd quantum logic operations in first quantize
form, andOsm2d operations in second.
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