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Simulation of Many-Body Fermi Systems on a Universal Quantum Computer
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We provide fast algorithms for simulating many-body Fermi systems on a universal quantum
computer. Both first and second quantized descriptions are considered, and the relative computational
complexities are determined in each case. In order to accommodate fermions using a first quantized
Hamiltonian, an efficient quantum algorithm for antisymmetrization is given. Finally, a simulation of
the Hubbard model is discussed in detail. [S0031-9007(97)04120-3]
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Since the discovery by Shor of a quantum algorithm forprepared in a state analogous to the initial state of a many-
factoring in polynomial time [1], there has been tremen-body Fermi system, how it can be programmed to simulate
dous activity in the field of quantum computation [2—24]. the system’s time evolution, and how measurements can
Recent results include the first experimental demonstrahen be made on the computer to extract relevant informa-
tions of working quantum logic gates [2—4], quantumtion. Thus this paper provides for the first time a complete
error-correcting codes [5], and many novel proposals foquantum algorithm for simulating a system of physical in-
the design of actual quantum computers [3,6—9,25]. For &erest, and describes the only known algorithm, other than
review of progress in quantum computation, see Refs. [LO§hor’s, that gains an exponential speed increase by exploit-
or [11]. Despite these advances, the technical hurdles thatg quantum computation (excepting certain artificial prob-
stand in the way of factoring a large number on a quantuntems constructed explicitly for this purpose [27-29]).
computer remain daunting [12—15]. But the problem of The quantum computer used to perform the simulation
simulation—that is, the problem of modeling the full time could rely on a variety of possible physical systems to store
evolution of an arbitrary quantum system—is less techand process quantum information: for example, photons in-
nologically demanding. While thousands of qubits andteracting via small cavity QED effects, electron spins, nu-
billions of quantum logic operations are needed to solvelear spins (NMR), or trapped ions [2,3,6,7]. The actual
classically difficult factoring problems [16], it would be implementation of the quantum computer is not relevant, as
possible to use a quantum computer with only a few tenfong as it supports universal quantum computation [8,21—
of qubits and a few thousand operations to perform simula24,30—33] (although different physical implementations
tions that would be classically intractable [17]. A quantummay be better or worse suited for different problems). We
computer of this scale appears to be a realistic possibilityconsider a simulation of particles, each of which can be

Because the size of the Hilbert space grows expoin any ofm single particle states, labeldd...,m. These
nentially with the number of particles, a full quantum states might be sites in a lattice, or atomic orbitals, or plane
simulation demands exponential resources on a classicalaves, etc. The mapping of the system onto the qubits of
computer. A system of only 100 spéw particles, for ex- the computer depends on whether we choose a first or sec-
ample, requireg'® complex numbers to merely describe ond quantized description. In many respects, the second
a general spin state. lItis clear that on a classical computeguantized form appears naturally well suited for quantum
a simulation of this system is in general intractable. Thecomputation of Fermi systems: The occupation of each
idea that a quantum computer might be more efficient thastate must be either 0 or 1, which maps directly to the state
a classical computer at simulating real quantum systemasf a quantum bit, or qubit [34]. In this case, the memory
was first proposed by Feynman [26], but he speculated thaieeded to map the state of the entingarticle system is:
the problem of Fermi statistics might prevent the desigmqubits (independent of) [35]. To treat a first quantized
of a universal quantum simulator. More recently, Lloyd Hamiltonian, we imagine a quantum word, or qu-word, as
has shown how a quantum computer is in fact an efficien& string of qubits of length logn; one qu-word represents
guantum simulator [17]; other work on simulations can beany integer in the rangé,...,m and, consequently, the
found in [18—20]. In this Letter, we deal explicitly with state of one particle. The state of the entire physical sys-
the problem of fermions, in part by describing a quantuntem being simulated can therefore be represented dpy-
algorithm for antisymmetrization which executes in poly-words, orn log, m qubits. If n < m, a first quantized
nomial time. We also describe algorithms for quantumrepresentation is more efficient. In either representation,
simulation of the Hubbard model in both first and secondf the system is in a superposition of many direct prod-
guantized formalisms. We show how the computer can bect states (as it is in general), then the quantum computer
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will be in a corresponding superposition of states in orde; = to(cj,cksr + ciycjo) Dy simply diagonalizing the
to represent the correct physical state of the system. Hamiltonian in the two qubit spack j, and advancing
The problem of fermions is handled more easily in thethe phase of the eigenstates. Assuming that the number
second quantized form. The calculation begins with allof neighbors is a constant, the loops exeadte:) times.
qubits in the|0) state. We can prepare the system inlt takes O(m) operations to count the occupancy of the
any state that can be reached from the zero state usingir&ervening states, and it follows that the entire algorithm
relatively small number of quantum logic operations (thatfor time evolving the second quantized Hubbard model
is, polynomial inm)—including those in which the:  executes ir0(m?) quantum logic operations.
particles are localized in individual lattice sites, momentum Fermi statistics are more difficult to handle in the usual
eigenstates, thermal states of noninteracting particles, afuist quantized description, because the initial state of the
states in which particles obey-particle correlations or quantum computer must be antisymmetrized. As there are
entanglements (for small). Thus Fermi statistics do not n! states in the superposition, one needs a fast quantum al-
pose any additional complications for system preparatiogorithm for generating this superposition if the approach is
in the second quantized formalism. Because the statistid® be tractable. The algorithm we describe takes an “un-
are incorporated into the raising and lowering operatorssymmetrized” state and generates an antisymmetrized su-
the additional complications occur during time evolution.perposition ofn! states inO(n%(Inm)?) time. Note that
As a concrete example, we consider the Hubbard modelyithout further restriction, antisymmetrization is an irre-
in which electrons move about a lattice of sites. Eachversible process and cannot be performed by a reversible
site may be empty, or contain one electron (of eithequantum computer: There ame input states which cor-
spin) or two electrons. Two qubits are therefore requiredespond to the same antisymmetrized state (modulo an
to represent the four possible states of each site. Theverall phase). We therefore add the requirement that the

Hamiltonian for the system is input state must be ordered; i.e., the number representing
n the state of particle is less than that of particle + 1, for
H = Voniniy + D 10CiyCjo - (1) alli <n — 1. The correspondence between an ordered
i=1 (i.j)o tuple of qu-words and an antisymmetrized superposition is

In the first term (potential energy)/, is the potential one to one. Thus, system preparation in the first quantized
strength andq;, is the number operator for fermions of formalism begins by first initializing the computer into
spin o at sitei. In the second term (kinetic energy), the an unsymmetrized state and then antisymmetrizing that
sum (i, j) indicates all (physically) neighboring pairs of state. The system can be easily prepared in any (unsym-
sites, 7y is the “hopping” strength, and;,, cj, are an- metrized) direct product state by merely placing each par-
nihilation and creation operators, respectively, for fermi-ticle in the appropriate single particléage. These single
ons at sitei and spino. The computer simulates the particle states include those which are localized in posi-
Hubbard model by performing the unitary operatign=  tion space, momentum space [obtained with a quantum
exd(—i/h) (r)H] on suitably encoded states. This canfast Fourier transform (FFT)], and thermal states. The
be accomplished by splitting the Hamiltonian into a sumsystem can also be initialized into states with arbitriary
of local termsH; and repeatedly applying the operatorsparticle correlations or entanglements by performing quan-
U; = exd(—i/h)(t/n)H;], to evolve local parts of the tum logic operations in the appropriateparticle space,
system over small time slicegn, in series. (See Ref. [17] requiring onlyO(m?*) operations in the general case, and
for a detailed discussion of this technique.) Thus it suf-often far fewer.
fices to describe algorithms which perform the time evolu- Antisymmetrization is accomplished in four main steps,
tion corresponding to each local term in the Hamiltonian.summarized below. A more detailed description will be
To effect the time evolution resulting from the poten- published elsewhere [36].
tial energy termsV = >, Von;in;;, consider each site  Step I: Initialization of the input state-We define
one at a time; for each site, if it is occupied by two three registerd, B, andC, each consisting of qu-words
electrons (of opposite spin), advance the phase of th@ log, m qubits). The qubits in register are initialized
state by[(—i/#%) (t/n)Vy]. This subroutine require@(m)  to the unsymmetrized input staf@). The algorithm is
operations. unaffected if this state is a superposition of several ordered
To calculate the effect of the hopping terds; ;,, X  n-tuples.
toci,Cjo requires a slightly more complicated algorithm. — Step Il: Generating:! states—We create the follow-
For eacho andi,; pair, count the number of occupied ing state in registeB:

states which fall betweenand; when the system is written n el 2

in second quantized form. A flag is set to the parity of 1 (Z |,~>) ® (Z |,~>) ® (Z |i>) ® -

this number, which indicates whether or not a change of n!'\4 1 1

sign is introduced when hopping between the two sites, ® (12) + 1) ® |1). )

as required by the definitions of the raising and lowering
operators. It is now easy to perform the time evolutign  This is accomplished witld (n(In m)?) steps by perform-
corresponding to the Hermitian piece of the Hamiltonianing appropriate rotations on each qubit, one at a time [37].
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Step lll:  Transform into permutations of natural be determined by inverting the Campbell-Baker-Hausdorff
numbers—The goal of this third step is to transform formula. Using this procedure&)(m?) steps are required
registerB into the state1/n!) Y 5 lo(1,...,n)), where  to perform an arbitrary one particle operatgr andO (m*)

S, is the symmetric group of permutations anobjects.  operations are required to perform an arbitrary two particle
This is an equal superposition of the states representingperator. It is therefore possible to simulate in polynomial
all the permutations of the first natural numbers. The time any system of fermions (as long as the Hamiltonian
basic idea is as follows: L[] indicate theith qu-word does not include terms which involveparticle interac-

in registerB; map B[i] into a qu-wordB’[i] by setting tions, wherek is a large number of order).

B'[1] = B[1], andB’[i] equal to theB[i]th natural number For the special case of the Hubbard model, the simplicity
which is not contained in the sé¢B’[1],...,B[i — 1]},  of the Hamiltonian allows one to perform eath in only
fori > 1. This transformation is effected with(n>Inm)  O((Inm)?) steps. To begin, consider the Hubbard model

operations. Hamiltonian in its first quantized form:
To prepare for the last step of the algorithm théuple n 1
1,2,3,...,n is then assigned to registér, leaving the H = ZT,- + ) Z Vi » (4)
i=1

computer in the state k#1

1 where(io|T|jo) = 156, and(il, il [V]il,il) = V,. As
- W) ® ( > |0(1,---,n)>> ®[l,....,n). (3) before, the potential energy terms are easier because they
: oES, are diagonal. For a given pair of particles, perform a
Step IV: Sorting and unsorting=The algorithm pro- controlled rotation if they are at the same site. In order
ceeds with a series of sorting and unsorting operations. Ao perform the time evolution resulting from the kinetic
string of “scratch” qubits is required so that the sortingenergy terms, we focus on one particle at a time. For
operations are reversible. Any sorting algorithm can besach particle, the idea is to decompose the kinetic energy
used; we suggest using a Heap sort, because it requiresrms into a sum of block diagonal matrices and then
O(nInn) operations in all cases and oniyog, n scratch  diagonalize the subblocks in each matrix in parallel [39].
qubits. The first sort orders regist8rwith a series of For simplicity of explanation, we describe here only a 1D
exchanges and scrambldsand C with the same series Hubbard model and ignore spin. In this case the kinetic
of exchanges. At this point, one has already obtained anergy part of the Hamiltonian can be written
symmetrized superposition of the input states, but it is,, _ h(1,2) + h(2.3) + h(3.4) + --- + h(m — 1.m).
entangled with many other qubits. One can antisym-
metrize by counting the number of exchanges made during ()
the sorting operation and advancing the phase of that comvhere i(i, j) is the piece of the Hamiltonian that corre-
ponent of the superposition by if this number is odd [38]. sponds to hopping between sitesand j. Writing T =
The algorithm continues by reversing the sortonregBter T, + T, we define

but leaving registerd andC unchanged. The qubits con- _ n n 4 ...
tained inB andC are then redundant: In each component T = #(1,2) + hG3,4) + h(5,6) - (63)
of the superposition, iB[i] = n, thenC[n] = i. This re- T, = h(2,3) + h(4,5) + h(6,7) + ---.  (6b)

dundancy allowsB to be set to zero reversibly. By then The gperatorg; andr; are in block diagonal form. To di-
sortingA andC together, eliminating’, and unsorting, one  agonalize each matrix (separately), perform quantum logic
obtains the desired antisymmetrized state. Note that in thgyerations on each state to transform the state number into
final unsorting operation, the algorithm relies upon the fact,q quantum numbers labeling the block and the location
that the ordering of the input stajt#) was stipulated to be \yithin the block (0 or 1). For example, to diagonalizg

the same as the ordering of the integkrs ., n in register map the statén) into |(n + 1) div 2,n mod2). Because

C (so that antisymmetrization would be reversible); if thisT1 is block diagonal—and because all states within the
were not the case, the algorithm would fail. The entiresgme plock have their first quantum number in common—
process is completed i@(n*(Inm)?) operations. the action of7; takes place entirely within the space of

Because the input state is now antisymmetrized, timene second quantum number. In this one qubit space it is
evolution is in principle straightforward. Using the same

technique as before, the Hamiltonian is split into a sum ofiMply the mat”XtO((l) (1))- Thus all the blocks can be
terms H; and the corresponding time evolution operatorsdiagonalized in parallel by diagonalizing this trivialx 2

U; = exd(—i/h) (t/n)H;] are applied to the state in se- matrix in the one qubit space of the second quantum num-
ries. (The antisymmetry of the state will not be affected byber. Each state in the superposition is then advanced by
truncation errors that occur during this process; althouglthe appropriate phase, and all the previous steps are re-
each individualU; does not preserve antisymmetry, their versed. This algorithm requires onty((In 7,2)?) quantum
products do exactly. For a more detailed discussion ofogic operations.

errors that occur during time evolution, see [17].) Each Finally, we consider what information can be extracted
U; can be performed by an appropriate series of quanturffom a quantum many-body simulation. It is obviously
logic operations; the actual sequence of gates required campossible to obtain the entire wave function: Rather,
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