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We study the non-Arrhenius behavior of surface diffusion near the second-order phase transition
boundary of an adsorbate layer. In contrast to expectations based on macroscopic thermodynamic
effects, we show that this behavior can be related to the average microscopic jump rate, which
in turn is determined by the waiting-time distributidfi () of single-particle jumps at short times.

At long times, W(z) yields a barrier that corresponds to the rate-limiting step in diffusion. The
microscopic information iW () should be accessible by scanning tunneling microscopy measurements.
[S0031-9007(97)03556-4]

PACS numbers: 68.35.Fx, 82.20.Pm

The migration of atoms and molecules is one of thesingle-particle jump ratd’. This quantity is determined
most important processes taking place on solid surfaces. Ity the short-time behavior of the waiting-time distribu-
appears in many phenomena such as catalytic reactions atidn W (r) for single-particle jumps. Moreover, we show
surface growth that are important for practical applicationghat for long timesW (¢) yields an effective activation bar-
[1]. In most experimental and theoretical studies of therier that corresponds to the rate-limiting step in diffusion.
surface diffusion constaif, its temperature dependence is ThusW (¢) provides a connection between microscopic and
analyzed through an assumed Arrhenius form, wiieie  macroscopic aspects of diffusion. Further, it is experi-
written as a product of an entropic prefactay and aterm  mentally available through, e.g., scanning tunneling mi-
exp(—EZY /kgT) describing thermally activated jumps over croscopy (STM) measurements [9].
an energy barrieE? . Although the Arrhenius formcanbe  In this Letter, we have carried out Monte Carlo (MC)
derived from microscopic considerations in some speciasimulations for a model of oxygen on the W(110) surface
cases [2,3], a rigorous justification for its use in interacting10,11]. In this system, the substrate remains unrecon-
systems at finite coverages is not available. Furtherstructed [12], the oxygen atoms have well-defined adsorp-
even in the cases whei@ appears to have an Arrhenius tion sites [13], and desorption of oxygen occurs only at
temperature dependence over a finite temperature range, imperatures 1600 K or above [12]. Therefore, this sys-
microscopic interpretation may not always be clear. Thidem is very suitable for simulation studies using a lattice-
is because for an interacting system, there may be margas description. We use the lattice-gas model constructed
microscopic activation barriers. Thus the value of theby Sahuet al.[11] to describe the main features of the
measured effective diffusion barri&; must result from phase diagram. The Hamiltonian includes pair interactions
some complex average of all of them, and does not refeup to fifth nearest neighbors and some three-body interac-
to any microscopic process in particular [4]. tions [11], the attractive ones being dominant. We con-

In fact, the values foD, and E} can be strongly tem- centrate on results for the coverage= 0.45 over a wide
perature dependent indicating a region of non-Arrheniusemperature range. For this coverage at a low tempera-
behavior. This becomes especially pronounced near sutdre, the adlayer is in the ordered2 X 1) phase, while at
face phase transition boundaries, where rapid variations df. = 710 K it undergoes a second-order transition [11] to
D have been observed in experiments [4—6] and computex disordered phase [14]. For details of the model and MC
simulations [2,7]. Such rapid changes are often accompaimulations, see Refs. [10,15].
nied by the well-known “compensation” effect [8], where Our simulation results for the tracer and collective
an apparent increase Ef is compensated by an increase diffusion coefficientsDy and D¢ (for definitions, see,
in the prefactorD, [6]. However, in most cases the un- €.9., Ref. [4]), respectively, are given in Fig. 1. We first
derlying reasons for non-Arrhenius behavior are not undernote that their qualitative behavior is similar and that the
stood. Itis the purpose of the present Letter to study theseffective diffusion barrie} defined as
issues near a second-order phase transition in a surface ad- a(n D)
sorbate layer. We show that in contrast to the common E) = —————— ()
folklore that an anomalous temperature dependend? in o(1/ksT)
near7,. would be predominantly due to nonlocal thermo-is approximately constant at low and high temperatures
dynamic effects, it can be explained by the microscopi@away from7,.. This implies that the diffusion constants
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particle jump ratel’ has exactly the same behavior near
T. asDr andD.. These observations can be understood
A theoretically within the dynamical mean field theory [16],
which yields Dy o« I' and D¢ « éI'. We can conclude
that the strong temperature dependence of liathand
D¢ nearT, is indeed of the same dynamic origin, coming
from the average single-particle transition rate

We next focus on the effective diffusion barrief as
extracted from Eq. (1) foDr. As shown by squares in
Fig. 2, EY has a sharp peak ne@. This peak inE}
is accompanied by a strong increase in the value of the
o corresponding prefactad, shown in the inset of Fig. 2.
This is yet another example of the well-known compen-
sation effect [4,8]. Here the compensation simply results

log (£ /7)|:
logT’ :
log D

from the fact that when the temperature dependence is
non-Arrhenius, there is no unique way of separating the
prefactor and the barrier contributions. Since the tempera-
ture dependence of the diffusion constant itself rieais

O o ¢ b

log Dy

: . ) smooth and nonsingular, any dramatic change in the tem-
06 08 10 12 14 perature dependence of t_he effective_ barfigr mu;tbe
) ' ) ' ) followed by a corresponding change in the effective pre-
T./T factor Dy. We note that the same phenomenon occurs for
] , _ collective diffusion as well.
o D ity To understand the observed strong temperature vara-
of the average transition ratd" and the thermodynamic tion of E; nearT.., we need to consider the energetics of
factor ¢£. The quantitiesDr, D¢, and I' have been made

the microscopic jump processes which determine the av-
dimensionless by expressing them in unitsadf1, a*/1o, and  erage jump ratd’. At finite coverages, there is a very
1/1o, respectively, where is the lattice constant and is one  complex distributionP(E,) for the instantaneous activa-
Monte Carlo step per particle.

The value éf which is a : : :
dimensionless quantity, has been scaled by a factor of 7 to malé[(laon barriersk, [17] which an adatom needs to overcome

the graphic representation more readable while other quantitid§ & jump attempt from one configuration to another. At
are expressed directly in the units given above. The criticahigh 7', P(E,) is strongly peaked at small values Bf,
temperature of the order-disorder phase transition is denoted hyhile at low temperatures the situation is completely the
T. and a dotted line.

obey simple Arrhenius behavior. Nedr., however, 0.6 : 25
the temperature dependence of the diffusion constants is 05 F éﬁ 20p ® i
strongly non-Arrhenius. ) ‘g S I5p g

In the Green-Kubo formalism [4], the expression fnf — 04} ﬁ 100 & |
contains a thermodynamic factérinversely proportional % ' o i @ St %
to the compres_S|b|I|ty, which is govgrned by thgbal — 0.3 t.a . 8 0 08 12 16 20 .
number fluctuations of the adlayer. Itis often assumed that ’ Boo\ T/T,
a possible non-Arrhenius behavior bi- near the phase Lr:f 02 L Vol |
transition boundary is predominantly due to the critical : : °
behavior of this factor [7]. We show below that this is ¥ o &
not the case here: The non-Arrhenius behavior of both 0.1r 1
D7 and D¢ has a dynamic origin and can be traced back :
to the temperature dependence of kbeal single-particle 0.0 = ) ' )
jump ratel’. To demonstrate this, we show in Fig. 1 the 0.8 12 1.6 2.0
temperature dependence®faindI’ as well as that oDr T/T,

andDc¢. Itcan be seen from Fig. 1 that while the diffusion

constants have a turning point and sharp temperatuﬂélG. 2. Results for the effective activation barriers. The

variations close tdr,, the thermodynamic factog has squares denote results based on the Arrhenius form [see Eq. (1)]
| lativel o Kt t d d . th.for tracer diffusion, while open circles represent the data based
only a relatively weak temperaturé dependence In iy, e qi) ofW(n). Behavior of the prefactob, is illustrated

region and cannot account for the non-Arrhenius behavioi the inset. The critical temperature is denoted by a dotted
of the diffusion constants. On the other hand, the singleline.
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opposite [18]. The change in the distribution takes place
aroundT,, thus characterizing the ordering of the adlayer
as the temperature is decreased below This change in
turn results in a strong temperature dependence of the av-
erage transition rat€ around7,, as shown in Fig. 1. We
point out that the instantaneous activation barrier€an-
not explain the peak of the effective barrigf in Fig. 2,
since the largest value @&, in our model system is only
about 0.4 eV [18]. Thus, the peak does not refer to any
microscopic rate-limiting process. Instead, it arises from
an entropic contribution [19] t&' which has a strong tem-
perature dependence in the vicinity Bf.

To gain more insight into the microscopic dynamical 20 ) .
processes and the anomalous temperature dependence near -
T., we next introduce the waiting-time distributid#(z) 0 2000 4000 6000
of single-particle jumps [20]. Suppose a single particle n
(in the presence of other particles) had performed its lagtic. 3. An example of a waiting-time distributioi (») at a
transition at timer = 0. Then W(¢) is the probability temperature 0f.774 T, showing an exponential decay at long
density that the particle in question performs its nexttimes. For clarity, only some of the data points are shown
transition at timer after it remained still untit. Here the ?ﬁ'ée-a prPc?xifrl#LtZuggsEosgr?nr;gon?ggl?rlglt::gs?oe\/é?llfml)the
most practllcal deflnltl_on of “time” in the MC S'mUIat'an small-time regime to the asymptotic long-time regime [21] is
is to consider the time scale as the number of jumpngicated by an arrow.
attempts of the particle, denoted by Then the waiting-
time distribution is simplyW (n). This provides a direct
connection with the dynamic jump ralediscussed above

log W(n)

the contribution up to a crossover timg,, which sepa-
rates the short-time regime from the asymptotic exponen-

via tial decay. What remains is the long-time contribution
1 * (n)L = (n) — (n)s. As expected, from Fig. 4 we observe
(n) = T > nW(n), (2)  that the short-time regime gives the dominant contribution
n=1 toI". Further, the short-time regime ¥f(n) is strongly af-
where(n) is the average waiting time of the particle. fected by the critical fluctuations, being mainly responsible
At very long times, we exped¥ (¢) to decay agv(r) ~  for the anomalous temperature dependence of the diffusion

exp(—t/7). Here the characteristic time describes the constants nedr..
longest time scale among the various microscopic pro- 10 summarize, within the present model of W(110),
cesses, which constitutes the rate-limiting factor for mas&e non-Arrhenius behavior ne@; was found to have a
transport. This expected exponential decay at long times i@ainly dynamic origin, reflecting the dependence of the
indeed observed for our model system, as demonstrated in
Fig. 3. We can then define an effective activation barrier T T
EY via 7 by considering the jump probability = 1/7 = 4t
poexp(—Ey /kgT). As shown by circles in Fig. 2, the ac-
tivation barrierE) extracted from the asymptotic region 2.
of W(r) decreases monotonically with increasing tempera- e
ture, and agrees with the effective diffusion barrleﬁ2 O -
extracted from an Arrhenius analysis bf; far from T..
Additional studies in our model system [18] indicate that 2F 1
the value ofE) is closely related to the instantaneous ac-
tivation barrier characterizing the dominant microscopic -4 r
processes. In our model the microscopic barriers have a
maximum value of about 0.4 eV and thus the barfigr 0.8 12 1.6 2.0
does not have the sharp peak displayed by the effective T/ T
diffusion barriere?. ¢

It turns out that the temperature dependence of the baF!G. 4. Comparison of the short-time contributidm)s and
rier ER results mainly from the short-time behavior of the long-time contributiordn);. to the average waiting tim:).
W(n). This is demonstrated by dividing the sum in Eq. (Z)The_s!lght increase ofz). at small7 is due ton., whose value
) i S , ~/is difficult to determine accurately at very low temperatures.
into two parts, the first of which is the short-time contri- The quantitiesn)s, (n)., and{x) are all expressed in units of
bution (n)s = >, nW(n). This quantity accounts for one Monte Carlo step per particle.

— log<n>
=== log<n>g
""" log <n>p
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The instantaneous activation barrieiE, for a jump
attempt from a filled to a vacant site is thef, =
maxE; — E;,E; — E;,0). For further details and for the
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