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Nature of Resistive Transitions in Josephson Networks in a Magnetic Field
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We study the depinning of the vortices induced in a Josephson network by a magnetic field. A
vortex crystal can be pinned when it can be made commensurate with the network potential by rotation;
this can occur only when the number of vortices per unit pgfl is constructed from special values
of the integersp andq. For these cases the transition can be of roughening type; however, melting
of the vortex crystal is an important competing process that changes the nature of the transition for
g < 16 (square lattice) og < 12 (hexagonal lattice). For the other valuespéndq there can be a
spontaneous deformation of the vortex crystal to a commensurable structure if the network potential is
sufficiently large. [S0031-9007(97)04082-9]

PACS numbers: 74.50.+r, 74.25.Dw, 74.60.Ge

The low energy states of a Josephson network are wefiresent approach will instead treat the periodic potential
characterized by the locations of its vortices [1]; in par-as being a perturbation of the vortex crystal.
ticular, its resistance can be regarded as a consequence ofAt zero temperature, the vortices form a crystal of
vortex motion. This maps the Josephson network problattice vectors{R} with primitive vectors of lengthb
lem onto a model of point vortices interacting with a two- (determined by the vortex density). Thermal fluctuations
dimensional Coulomb potential (r) = —2#J In(r/a),  give rise to displacementg(R) away from these sites
whereJ is the Josephson coupling constant. The networkvhich can destroy long-range order, but orientational
provides a periodic potential which attempts to confine theyrder can survive up to temperatures sufficiently high that
vortices to lattice sites, and which can pin the vortex crysdislocations become probable [7]. Within the harmonic
tal when they are commensurate. We will assume this poapproximation, the interactions are represented by the
tential to have either square or hexagonal symmetry, witk|astic energy%,uzi imxy lou;/0x;1>, where u is the
lattice constana and unit cell areal. To have commen- shear modulus. Only one elastic constant enters, because
suration the number of vortices per unit cell of the networkthe vortex liquid is incompressible; correspondingly, we
must be a rational numberA = p/q, wherepandgare  consider only displacement fields that are divergenceless.
mutually prime. The density of vortices is set by the ap-The shear modulus is related to the applied field by [8]

plied field, and so the resulting system is incompressible.,, = 7JB/4d, (whered, is the flux quantum) and thus
Some attempts to understand the resistive transition i proportional to the density of vortices= B/®,.
the Josephson network make use of the phase representaThe system is described by the Hamiltonian
tion. The molecular-field approximation [2] and linearized - 5 s s
Landau-Ginzburg theory [3] indicated a rich phase dia- H = [ d rypZijlou;/ox;|” — ZrV(R + u(R)).
gram. The model has been extensively studied in Monte
Carlo simulations [4]. These works are somewhat am- ) ) ] ] 1)
biguous, because we would expect the transitions in a twolN€ Ppotential V' tries to localize the vortices to the
dimensional system with a continuous symmetry to be off€twork's dual lattice (the centers of the plaquettes
Kosterlitz-Thouless [5] type, which is very poorly repre- d(_eflned by the s.uperconduﬁctmg |§Iands), an_d is periodic
sented by mean-field theories; this would also entail corWith a set of lattice vectorr’}. Using the Poisson sum
relations that decay algebraically with distance, implyingfule to represent the sum ovig} puts (1) into the form
very large finite-size corrections to numerical simulations. ,, _ 2 g1 2
The resistive transition has also been discussed in term& ] driznzijPui/ox;l
of the melting of the vortex crystal [1]. The existence _ D AN o e
of distinct ground states having different registry of 26.amVa co3(G = G + G,
the crystal suggests a relationship to the Potts models; - - ) ) (2)
however, most finite domains will have net vorticity [6] Where G and G’ are the reciprocal lattice vectors cor-
and thus have long-range interactions which again putgesponding to the two latticeR and k', and V¢ is a
the problem in the Kosterlitz-Thouless class. Fourier component o (R). The two set§R} and{R'}
The common feature of these previous approaches @r {G} and{G'}) refer, respectively, to vortex crystal and
that they have put the particles on a lattice and therno the periodic potential provided by the underlying net-
observed the effect of the vortex-vortex interactions. Theawvork: they are quite distinct. We will study the conditions
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under which they have elements in common, and whethegitation of the pairs. The shear modulus drops discontinu-
the potential then succeeds in pinning the crystal. Someusly to zero at the melting temperature, which is related
parts of this problem have been discussed previously ito the shear modulus by the universal relation [7]
other contexts [9,10]. )

At high temperatures the vortices can move, which Tt = p(Tmer)b” /47 . (3)

gives rise to dissipation; at low temperatures the vortext zero temperaturep(0)b2 is independent of the field

crys'gal can b_e plnneq and then the net\_/vqu is superconstrength; u(Time1) is less thanw(0) by an amount that

ducting. At intermediate temperatures it is possible thafiepends on the dislocation core energy [7].

the vortex crystal exists, but is not pinned; then a current pjnning of the vortex crystak-In renormalization lan-

will cause it to move, giving rise to flux flow resistance. guage we are asking whether any of the Fourier compo-

Thus three different effects appear to be relevant to undehents of the network potential is a relevant perturbation.

standing the resistive transition: _This problem has been discussed in the context of films
(1) The vortex crystal could be incommensurate withahsorbed to crystalline substrates [7]. There are two con-

the periodic potential. This can happen even for rationajjitions that the potential must obey:

nA—in particular it occurs for the (expected) hexago- (i) There can be no explicir dependence of the

nal vortex crystal and a periodic potential of square symargument of the cosine in Eq. (2); thus the only relevant

metry. In this case the network potential may induce germs are those for which = G'.

shear deformation of the vortex crystal, mgklng it COM- (i) The temperature must be sufficiently low. The

mensurable. The temperature scale for this deformatiogffect of a commensurate potential is to increase the shear

depends on the strength of the periodic potential as welhoqulus, which suppresses the thermal fluctuatiodis}in

as on the amount of distortion required, and thus can bgg the temperature is lowered the shear modulus jumps to

distinct from the resistive (vortex depinning) transition. jxfinity at the pinning temperature, which is related to the
The existence of this transition to commensuration allow$itical value of the shear modulus by

us to study the cases that the vortex crystal has symmetry )
other than hexagonal. Taepin = 167 (Taepin) /G~ (4)

(2) When the vortex crystal is commensurate with theln deriving this expression it is assumed that the longi-

network, the study of pinning reduces to the queS‘tloqudinal modes of the: field have finite frequency in the

of the relevange (in the renqr'mallzatlon sense) of th ong-wavelength limit (corresponding to the incompressi-
network potential. The transition temperature depends. .
ility of the vortex crystal) and thus are suppressed.

most strongly on the shear modulus of the vortex crysta We will consider first the case that the network is a
and on the wavelength of the commensurate Fouriey

component of the network potential. and only weakly on>duare lattice of spacing, and that the reference state
P Kp ’ y Y ON%or the vortices is also a square lattice of lattice spacing
the strength of the potential.

(3) The vortex crystal could melt, due to the unbinding?, = V4/pa, as determined by the density. These two

of dislocations, The melting temperature is determinegiructures can share reciprocal lattice vectors for certain

by the shear modulus of the vortex crystal and the spacingh.o'(.:?s ofp'and 9 as will now be shown. Let the
between vortices (which is the Burgers vector of the rimitive reciprocal lattice vectors for the vorte>_< refer-
dislocations). ence crystal b&, andG», and let the general reciprocal

These mechanisms are all described by theories d@ttice vector for the network be’ = 27 (r,s)/a. Com-
Kosterlitz-Thouless type; their relative importance de-Mensuration is possible if there will be integerss, z,
pends on the specific rational valuerofd. Of the three, and u such that:G, + uG, = 27 (r,s)/a. Compari-
the induction of commensuration by a spontaneous she&°n of the magnitudes shows théar’(r? + s%)/a® =
is of secondary interest, because it need not be directty7>(¢* + u®)/b*> = 4mw*(* + u*)p/qa*; the minimal
involved in the resistive transition. The periodic potentialSolution is then described by the solutions to
and the thermal excitation of dislocations play antitheti-* + _M2 =gq,r* + s> =p. These equations have
cal roles, however; the potential induces crystalline ordefolutions only wherp and g are members of the set [11]
while dislocations disrupt it. We will first discuss melt- 1,2,4,5,8,9,10,13,16,17,18,20,.... For the allowed
ing in the absence of the periodic potential and pinning if?'s andd’s the solution toG = G’ with smallest magni-
the absence of dislocations, and subsequently discuss thede givesG* = 47?p/a?, and thus
competition between them. o 2

Melting of the vortex crystak—Dislocations are point Taepin = 4p(Taepin)a”/mp . ®)
defects in a two-dimensional crystal. At lowest temperadin the limit of weak periodic potential the critical value
tures all dislocations are bound into pairs of small separag.(T4.pin) is Well approximated by its zero-temperature
tion by their strain fields. The presence of dislocationsvalue [12] (proportional ton = p/qa?), and thus the
decreases the shear modulus from its low temperatun@al prediction of Eq. (5) iSTgepin > 1/g. Sinceq is
value, however, which decreases the barrier to thermal exa highly discontinuous function of the vortex density,
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this predicts a very erratic dependence of the resistivemall displacements and has a sensible elastic theory,
transition temperature on magnetic field [13]. which in the harmonic approximation has the same shear
As an example, considera® = 2/5: the square array modulus as did the undeformed hexagonal crystal. For an
of vortices of spacing = /5 a/\/_ can be rotated so that appropriate strain the vortex crystal is commensurable (in
its pr|m|t|ve vectors aréd; — (2 2)a andb, = (2, %)a, fact there are many ways to do this wheris large), and
which is now commensurate with the network; althoughits pinning can be studied by a small generalization of the
the vortices do not all lie on lines of spacirgparallel theory described above. The same renormalization theory
to the (1,0) direction of the network, they do lie on linesthat calculates the temperature dependence of the shear
of spacinga/+/2 in the (1,1) direction, corresponding to a modulus can also be used to determine the free energy
common reciprocal lattice vector of magnitudl¢27/a. [15], revealing that this is lowered by the effect of the
In contrast, forna®> = 1/3, a square array of vortices periodic potential. The size of this decrease is determined
of spacing+/3a cannot be made commensurate with theby the amplitude of the periodic potential and may well
network at all. compensate for the cost in elastic energy in making the
The case of a hexagonal vortex ground state and ariginal strain, which can be small when the unit cell is
hexagonal network potential (again of spacimg-note large: this structure is then stable relative to the hexagonal
that this entails a honeycomb pattern of superconducsrystal. Thus for large enougt there will always be a
tors) is similar. The reciprocal lattice vecto& have continuous pinning transition.
the form G' = (27 //3a) (\/3r,2s + r), wherer and s The theory forTepin is more compliqated in this new
are integers. We again seek integers, ¢, andu such ~ context, because now th_er_e is no rotational symmetry and
thattG, + uG, = 2(r,s)/a, whereG, and G, are the (he lattice vectors describing the vortex crystal unit cell

primitive reciprocal lattice vectors for the vortex refer- are different. The shear modulus may be slightly altered,
ence crystal, described Hfhlz —1Gol? = 2G, - Gy = but the change will be small when the ground state is
1672/3b2. The minimal solution is then described py Nearly hexagonal (which it always is for largp. The

the solutions tor® + ru + u> = g, r> + rs + s> = p deformed vortex crystal will have a new set of reciprocal
which have solutions only whep a’ndq are members ’of lattice vectors but the commensuration is still described
the set [14] 1,3,4,7,9,12,13,16,19,21,25,.... For tth y Eq. (2) and the relevant terms are again those for

allowedp’s andg’s the solution toG = G’ with smallest which G = G': the essential feature will continue to be
magnitude give&? = 1672p /342, so that the identification of the relevant periodicity of the network

5 potential, which is unchanged. Then Eq. (4) implies that
Taepin = 3p(Tacpin)a”/mp . ®)  the depinning temperature is given by equations similar
This difference from the square lattice comes abouto Egs. (5) or (6): for example, with a square symmetry
because the important dimension is the height of théetwork Tuepin = 41 (Tuepin)a’/mk Wherek is again an
triangles (the distance between lines of vortices), ratheinteger chosen from the lidt 2,4, 5, ... but now it is not
than the length of their sides. clear how it is determined by the magnetic field.

Induction of commensuration-The theory described Here and in the case of a pinning potential of low
above requires that the vortex crystal and potential argymmetry there is the possibility of an unusual phase in
commensurable. It would seem that this greatly curtailsvhich only one reciprocal lattice vector is relevant [16].
the applicability of this theory, since in the absence of at would be superconducting in the direction perpendicular
periodic potential, the vortex crystal has hexagonal symto the relevantG, but have finite resistance in all other
metry which is never commensurable with a periodic podirections.
tential of square symmetry, and is not commensurable Competition between melting and depinning.
with a potential of hexagonal symmetry for many valuesCombining Egs. (3), (5), and (6), and neglecting
of nAA = p/q. The different symmetry between vortex renormalization ofu, we find [7]
crystal and network potential would suggest a discontinu-

ous transition in all such cases. However, even when the Taepin/Tmere = 16/q  (square lattice,  (7)
potential fails to pin the crystal it can induce a sponta-
neous distortion of the vortex crystal to a geometry which Taepin/Tmer. = 12/4 (hexagonal lattice,  (8)

is commensurable.

Consider the pinning of a vortex crystal by a generalwhich seems to imply that the depinning transition of
periodic potential in the presence of a shear stress th#tosterlitz-Thouless (roughening) type will not be visible
acts on the vortex crystal and can deform it away fromfor ¢ < 12 (which includes almost every case that has
hexagonal symmetry. Rather than specify the stres®ver been studied), since the vortex crystal melts at a
however, let us specify the resulting strain and therower temperature, which depends only on the vortex
compute the stress from how the free energy changegensity and not on the integepsor q separately. For
with this strain. For structures that are not too farsmallq the resistive transition connects the pinned crystal
from hexagonal the resulting crystal is stable againsto the unpinned vortex fluid and is first order; only for
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large enoughy is there a floating crystal phase betweendepinning temperature will the renormalization proceed to
the superconductor and the vortex liquid [4,17]. sufficient length scales that the dislocations play a role.

The statistical mechanics of a system having dislo-Thus in finite-sized or slightly disordered systems the
cations, a periodic potential, and an elastic constant ifransition may closely resemble Kosterlitz-Thouless type.
modeled by renormalization flow equations having the E.B.K. was supported by NSF Grants No. DMR-
general form 9412561 and No. DMR-9531430.
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In the opposite cas&epin/Kmere < 1, the melting route to this relation was quite different and depended on a
temperature is below the pinning temperature, and NOW  prediction for the critical current that has been challenged
in the interval Kpeir < K < Kgepin, both'y and V are [T.C. Halsey, Phys. Rev. Lett55 1018 (1985); J.P.
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The.experlmental case correspond.S to a'large pinnin 6] This is the “floating smectic” phase described by Ostlund

potential and a large core energy for dislocations (and thu

" s ) (Ref. [10]).
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issue of the relevance of the pinning potential has already * (ref. [10]), by S. Hattel and J. Wheatley [Phys. Rev. B

been resplved\( has renormalized to zero ot has 5, 16590 (1994)], and by Franz and Teitel (Ref. [4]);
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dislocation fugacity is still small; only very close to the nA =1/q.
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