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We study the depinning of the vortices induced in a Josephson network by a magnetic field
vortex crystal can be pinned when it can be made commensurate with the network potential by ro
this can occur only when the number of vortices per unit cellpyq is constructed from special values
of the integersp and q. For these cases the transition can be of roughening type; however, me
of the vortex crystal is an important competing process that changes the nature of the transitio
q , 16 (square lattice) orq , 12 (hexagonal lattice). For the other values ofp andq there can be a
spontaneous deformation of the vortex crystal to a commensurable structure if the network poten
sufficiently large. [S0031-9007(97)04082-9]

PACS numbers: 74.50.+r, 74.25.Dw, 74.60.Ge
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The low energy states of a Josephson network are w
characterized by the locations of its vortices [1]; in pa
ticular, its resistance can be regarded as a consequenc
vortex motion. This maps the Josephson network pro
lem onto a model of point vortices interacting with a two
dimensional Coulomb potentialV srd ­ 22pJ lnsryad,
whereJ is the Josephson coupling constant. The netwo
provides a periodic potential which attempts to confine t
vortices to lattice sites, and which can pin the vortex cry
tal when they are commensurate. We will assume this p
tential to have either square or hexagonal symmetry, w
lattice constanta and unit cell areaA. To have commen-
suration the number of vortices per unit cell of the netwo
must be a rational number:nA ­ pyq, wherep andq are
mutually prime. The density of vortices is set by the ap
plied field, and so the resulting system is incompressibl

Some attempts to understand the resistive transition
the Josephson network make use of the phase represe
tion. The molecular-field approximation [2] and linearize
Landau-Ginzburg theory [3] indicated a rich phase di
gram. The model has been extensively studied in Mon
Carlo simulations [4]. These works are somewhat am
biguous, because we would expect the transitions in a tw
dimensional system with a continuous symmetry to be
Kosterlitz-Thouless [5] type, which is very poorly repre
sented by mean-field theories; this would also entail co
relations that decay algebraically with distance, implyin
very large finite-size corrections to numerical simulation

The resistive transition has also been discussed in ter
of the melting of the vortex crystal [1]. The existenc
of distinct ground states having different registry o
the crystal suggests a relationship to the Potts mode
however, most finite domains will have net vorticity [6
and thus have long-range interactions which again p
the problem in the Kosterlitz-Thouless class.

The common feature of these previous approaches
that they have put the particles on a lattice and th
observed the effect of the vortex-vortex interactions. T
0031-9007y97y79(13)y2534(4)$10.00
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present approach will instead treat the periodic potent
as being a perturbation of the vortex crystal.

At zero temperature, the vortices form a crystal o
lattice vectorsh $Rj with primitive vectors of lengthb
(determined by the vortex density). Thermal fluctuation
give rise to displacements$us $Rd away from these sites
which can destroy long-range order, but orientation
order can survive up to temperatures sufficiently high th
dislocations become probable [7]. Within the harmon
approximation, the interactions are represented by
elastic energy1

2 m
P

i,j­x,y j≠uiy≠xjj
2, where m is the

shear modulus. Only one elastic constant enters, beca
the vortex liquid is incompressible; correspondingly, w
consider only displacement fields that are divergencele
The shear modulus is related to the applied field by [
m ­ pJBy4F0 (whereF0 is the flux quantum) and thus
is proportional to the density of vorticesn ­ ByF0.

The system is described by the Hamiltonian

H ­
Z

d2r
1
2 mSi,jj≠uiy≠xjj

2 2 SRV sss $R 1 $us $Rdddd .

(1)
The potential V tries to localize the vortices to the
network’s dual lattice (the centers of the plaquette
defined by the superconducting islands), and is perio
with a set of lattice vectorsh $R0j. Using the Poisson sum
rule to represent the sum overhRj puts (1) into the form

H ­
Z

d2rh 1
2 mSi,jj≠uiy≠xjj

2

2 SG,G 0nVG0 cosfs $G 2 $G0d. $r 1 $G. $us$rdgj ,
(2)

where $G and $G0 are the reciprocal lattice vectors cor
responding to the two lattices$R and $R0, and VG0 is a
Fourier component ofV s $Rd. The two setsh $Rj and h $R0j
(or h $Gj andh $G0j) refer, respectively, to vortex crystal and
to the periodic potential provided by the underlying ne
work: they are quite distinct. We will study the condition
© 1997 The American Physical Society
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under which they have elements in common, and wheth
the potential then succeeds in pinning the crystal. So
parts of this problem have been discussed previously
other contexts [9,10].

At high temperatures the vortices can move, whic
gives rise to dissipation; at low temperatures the vort
crystal can be pinned and then the network is superco
ducting. At intermediate temperatures it is possible th
the vortex crystal exists, but is not pinned; then a curre
will cause it to move, giving rise to flux flow resistance
Thus three different effects appear to be relevant to und
standing the resistive transition:

(1) The vortex crystal could be incommensurate wi
the periodic potential. This can happen even for ration
nA—in particular it occurs for the (expected) hexago
nal vortex crystal and a periodic potential of square sym
metry. In this case the network potential may induce
shear deformation of the vortex crystal, making it com
mensurable. The temperature scale for this deformat
depends on the strength of the periodic potential as w
as on the amount of distortion required, and thus can
distinct from the resistive (vortex depinning) transition
The existence of this transition to commensuration allow
us to study the cases that the vortex crystal has symme
other than hexagonal.

(2) When the vortex crystal is commensurate with th
network, the study of pinning reduces to the questio
of the relevance (in the renormalization sense) of t
network potential. The transition temperature depen
most strongly on the shear modulus of the vortex crys
and on the wavelength of the commensurate Four
component of the network potential, and only weakly o
the strength of the potential.

(3) The vortex crystal could melt, due to the unbindin
of dislocations. The melting temperature is determin
by the shear modulus of the vortex crystal and the spac
between vortices (which is the Burger’s vector of th
dislocations).

These mechanisms are all described by theories
Kosterlitz-Thouless type; their relative importance de
pends on the specific rational value ofnA. Of the three,
the induction of commensuration by a spontaneous sh
is of secondary interest, because it need not be direc
involved in the resistive transition. The periodic potenti
and the thermal excitation of dislocations play antithe
cal roles, however; the potential induces crystalline ord
while dislocations disrupt it. We will first discuss melt
ing in the absence of the periodic potential and pinning
the absence of dislocations, and subsequently discuss
competition between them.

Melting of the vortex crystal.—Dislocations are point
defects in a two-dimensional crystal. At lowest temper
tures all dislocations are bound into pairs of small sepa
tion by their strain fields. The presence of dislocation
decreases the shear modulus from its low temperat
value, however, which decreases the barrier to thermal
er
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citation of the pairs. The shear modulus drops discontin
ously to zero at the melting temperature, which is relat
to the shear modulus by the universal relation [7]

Tmelt ­ msTmeltdb2y4p . (3)

At zero temperature,ms0db2 is independent of the field
strength;m(Tmelt) is less thanm(0) by an amount that
depends on the dislocation core energy [7].

Pinning of the vortex crystal.—In renormalization lan-
guage we are asking whether any of the Fourier com
nents of the network potential is a relevant perturbatio
This problem has been discussed in the context of fil
absorbed to crystalline substrates [7]. There are two c
ditions that the potential must obey:

(i) There can be no explicitr dependence of the
argument of the cosine in Eq. (2); thus the only releva
terms are those for which$G ­ $G0.

(ii) The temperature must be sufficiently low. Th
effect of a commensurate potential is to increase the sh
modulus, which suppresses the thermal fluctuations inh $uj;
as the temperature is lowered the shear modulus jump
infinity at the pinning temperature, which is related to th
critical value of the shear modulus by

Tdepin ­ 16pmsTdepindyG2. (4)

In deriving this expression it is assumed that the lon
tudinal modes of the$u field have finite frequency in the
long-wavelength limit (corresponding to the incompres
bility of the vortex crystal) and thus are suppressed.

We will consider first the case that the network is
square lattice of spacinga, and that the reference stat
for the vortices is also a square lattice of lattice spac
b ­

p
qypa, as determined by the density. These tw

structures can share reciprocal lattice vectors for cert
choices of p and q, as will now be shown. Let the
primitive reciprocal lattice vectors for the vortex refe
ence crystal be$G1 and $G2, and let the general reciproca
lattice vector for the network be$G0 ­ 2psr , sdya. Com-
mensuration is possible if there will be integersr , s, t,
and u such that t $G1 1 u $G2 ­ 2psr , sdya. Compari-
son of the magnitudes shows that4p2sr2 1 s2dya2 ­
4p2st2 1 u2dyb2 ­ 4p2st2 1 u2dpyqa2; the minimal
solution is then described by the solutions
t2 1 u2 ­ q, r2 1 s2 ­ p. These equations have
solutions only whenp and q are members of the set [11
1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, . . . . For the allow
p’s andq’s the solution to $G ­ $G0 with smallest magni-
tude givesG2 ­ 4p2pya2, and thus

Tdepin ­ 4msTdepinda2ypp . (5)

In the limit of weak periodic potential the critical valu
m(Tdepin) is well approximated by its zero-temperatur
value [12] (proportional ton ­ pyqa2), and thus the
real prediction of Eq. (5) isTdepin ~ 1yq. Since q is
a highly discontinuous function of the vortex densit
2535
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this predicts a very erratic dependence of the resis
transition temperature on magnetic field [13].

As an example, considerna2 ­ 2y5: the square array
of vortices of spacingb ­

p
5ay

p
2 can be rotated so tha

its primitive vectors are$b1 ­ s 3
2 , 1

2 da and $b2 ­ s 1
2 , 2

3
2 da,

which is now commensurate with the network; althou
the vortices do not all lie on lines of spacinga parallel
to the (1,0) direction of the network, they do lie on line
of spacingay

p
2 in the (1,1) direction, corresponding to

common reciprocal lattice vector of magnitude2
p

2pya.
In contrast, forna2 ­ 1y3, a square array of vortices
of spacing

p
3a cannot be made commensurate with t

network at all.
The case of a hexagonal vortex ground state an

hexagonal network potential (again of spacinga—note
that this entails a honeycomb pattern of supercond
tors) is similar. The reciprocal lattice vectors$G0 have
the form $G0 ­ s2py

p
3ad s

p
3r , 2s 1 rd, where r and s

are integers. We again seek integersr , s, t, and u such
that t $G1 1 u $G2 ­ 2psr , sdya, where $G1 and $G2 are the
primitive reciprocal lattice vectors for the vortex refe
ence crystal, described byj $G1j

2 ­ j $G2j
2 ­ 2 $G1 ? $G2 ­

16p2y3b2. The minimal solution is then described b
the solutions tot2 1 tu 1 u2 ­ q, r2 1 rs 1 s2 ­ p,
which have solutions only whenp andq are members of
the set [14] 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, . . . . For
allowedp’s andq’s the solution to$G ­ $G0 with smallest
magnitude givesG2 ­ 16p2py3a2, so that

Tdepin ­ 3msTdepinda2ypp . (6)

This difference from the square lattice comes abo
because the important dimension is the height of
triangles (the distance between lines of vortices), rat
than the length of their sides.

Induction of commensuration.—The theory described
above requires that the vortex crystal and potential
commensurable. It would seem that this greatly curta
the applicability of this theory, since in the absence o
periodic potential, the vortex crystal has hexagonal sy
metry which is never commensurable with a periodic p
tential of square symmetry, and is not commensura
with a potential of hexagonal symmetry for many valu
of nA ­ pyq. The different symmetry between vorte
crystal and network potential would suggest a discontin
ous transition in all such cases. However, even when
potential fails to pin the crystal it can induce a spon
neous distortion of the vortex crystal to a geometry whi
is commensurable.

Consider the pinning of a vortex crystal by a gene
periodic potential in the presence of a shear stress
acts on the vortex crystal and can deform it away fro
hexagonal symmetry. Rather than specify the stre
however, let us specify the resulting strain and th
compute the stress from how the free energy chan
with this strain. For structures that are not too f
from hexagonal the resulting crystal is stable agai
2536
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small displacements and has a sensible elastic the
which in the harmonic approximation has the same sh
modulus as did the undeformed hexagonal crystal. For
appropriate strain the vortex crystal is commensurable
fact there are many ways to do this whenq is large), and
its pinning can be studied by a small generalization of t
theory described above. The same renormalization the
that calculates the temperature dependence of the s
modulus can also be used to determine the free ene
[15], revealing that this is lowered by the effect of th
periodic potential. The size of this decrease is determin
by the amplitude of the periodic potential and may we
compensate for the cost in elastic energy in making t
original strain, which can be small when the unit cell
large: this structure is then stable relative to the hexago
crystal. Thus for large enoughq there will always be a
continuous pinning transition.

The theory forTdepin is more complicated in this new
context, because now there is no rotational symmetry a
the lattice vectors describing the vortex crystal unit ce
are different. The shear modulus may be slightly altere
but the change will be small when the ground state
nearly hexagonal (which it always is for largeq). The
deformed vortex crystal will have a new set of reciproc
lattice vectors but the commensuration is still describ
by Eq. (2), and the relevant terms are again those
which $G ­ $G0: the essential feature will continue to b
the identification of the relevant periodicity of the networ
potential, which is unchanged. Then Eq. (4) implies th
the depinning temperature is given by equations simi
to Eqs. (5) or (6): for example, with a square symmet
network Tdepin ­ 4msTdepinda2ypk where k is again an
integer chosen from the list1, 2, 4, 5, . . . but now it is not
clear how it is determined by the magnetic field.

Here and in the case of a pinning potential of lo
symmetry there is the possibility of an unusual phase
which only one reciprocal lattice vector is relevant [16
It would be superconducting in the direction perpendicu
to the relevantG, but have finite resistance in all othe
directions.

Competition between melting and depinning.—
Combining Eqs. (3), (5), and (6), and neglectin
renormalization ofm, we find [7]

TdepinyTmelt ­ 16yq ssquare latticed , (7)

TdepinyTmelt ­ 12yq shexagonal latticed , (8)

which seems to imply that the depinning transition
Kosterlitz-Thouless (roughening) type will not be visibl
for q , 12 (which includes almost every case that ha
ever been studied), since the vortex crystal melts a
lower temperature, which depends only on the vort
density and not on the integersp or q separately. For
smallq the resistive transition connects the pinned crys
to the unpinned vortex fluid and is first order; only fo
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large enoughq is there a floating crystal phase betwee
the superconductor and the vortex liquid [4,17].

The statistical mechanics of a system having disl
cations, a periodic potential, and an elastic constant
modeled by renormalization flow equations having th
general form

dVyd, ­ 2s1 2 KdepinyKdV , (9)

dyyd, ­ 2s1 2 KyKmeltdy , (10)

dKyd, ­ aV 2 2 by2, (11)

where K ­ ma2yT is a dimensionless measure of th
shear modulus,V is the amplitude of the relevant Fourier
component of the network potential,y is the disloca-
tion fugacity, and, (the usual renormalization group
parameter) sets the length scale. In the absence of d
locations s y ­ 0d, the remaining equations describe
depinning transition associated with the fixed point o
Eq. (9), whereK has the universal valueKdepin [whose
value is implied by Eqs. (5) or (6)]; in the absence o
a periodic potentialsV ­ 0d the melting transition corre-
sponds to the fixed point of Eq. (10), whereK ­ Kmelt

[whose value is implied by Eq. (4)];a andb are model-
dependent constants. WhenKdepinyKmelt . 1, the melt-
ing temperature is above the depinning temperature; a
for Kdepin . K . Kmelt both V andy decrease exponen-
tially under renormalization, indicating the presence of
depinned vortex crystal. According to Eq. (7) this is wha
happens forq . 16 in square geometry.

In the opposite caseKdepinyKmelt , 1, the melting
temperature is below the pinning temperature, and no
in the interval Kmelt , K , Kdepin, both y and V are
increasing exponentially. The flow eventually goes t
V ­ ` (pinned) or y ­ ` (melted), depending on the
initial conditions; the pinned crystal superconductor
separated from the unpinned vortex fluid by a first-ord
phase transition.

The experimental case corresponds to a large pinni
potential and a large core energy for dislocations (and th
to a small initial value fory). Now it is possible that the
issue of the relevance of the pinning potential has alrea
been resolved (V has renormalized to zero orm has
renormalized to a large value) on a scale, for which the
dislocation fugacity is still small; only very close to the
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depinning temperature will the renormalization proceed t
sufficient length scales that the dislocations play a role
Thus in finite-sized or slightly disordered systems the
transition may closely resemble Kosterlitz-Thouless type
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