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Conductivity of Quasiperiodic Systems: A Numerical Study
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We develop a new real-space method which allows one to evaluate the Kubo-Greenwood formula
for dc conductivity of independent electrons in a static potential. We apply it to a numerical
study of propagation modes in three dimensional quasiperiodic systems. These modes are strikingly
different from those of periodic ones with regard to the effect of disorder. In particular, for Fermi
energies in pseudogaps the conductivity can be stable or can even increase when disorder increases.
[S0031-9007(97)04045-3]
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Recently, studies on transport in general topologicallytivities. However, the application of the Bloch-Boltzmann
disordered media have emphasized the importance of utleory to these systems has been criticized [11,13]. In-
derstanding how localization of states and anomalougeed, the propagation of electrons in the perfect quasiperi-
quantum transport are related [1]. For example, in disodic structure is neither ballistic as in the case of periodic
ordered systems, close to a metal-insulator transition (atystems nor diffusive as in the case of disordered systems.
or close to mobility edges), localization aspects of waveOne expects, rather, scaling laws of the fakin) = At#
functions can be described by multifractal analysis [2] andor the extensiori.(r) of a wave packet, wherg depends
related to critical exponents of conductivity [3]. Another on the energy and on the Hamiltonian parameters. Thus
example is the problem of localization and transport propin a first approximation the diffusivity will be given by
erties in quasiperiodic systems. This has attracted a grow> = L(7)?/37 = B7?#~! wherer is the finite lifetime in-
ing attention since the discovery of quasicrystals in 1984luced by disorder. In the context of a model this has been
[4]. Historically, Kohmotoet al. [5] were the first to pro- confirmed by the mathematical work of Bellissard and co-
pose that, at least in 1D systengsiasiperiodicity induced workers [14]. Since states tend to be localized, it has also
long range correlations giving rise to an intermediate been proposed that the mechanism of conductivity can be
state of localizationpamely, “critical states” associated to a hopping mechanism. In that case, according to the ar-
singular continuouspectra. Numerical studies of quan- guments [11,13], inelastic or even elastic scattering could
tum dynamics of wave packets [6] and Landauer resislead to an increase of the conductivity.
tances [7] manifested peculiar features such as boundedIn order to go beyond the Bloch-Boltzmann description
resistancepy = poN¢, for energies in the spectrum of and be able to test the various schemes that have been
the Hamiltonian, witha encoding the memory of these proposed, there is a natural starting point given by the
“quasiperiodic correlations.” More recently, correlationslinear response theory. This treatment does not make
between quantum dynamics and localization properties iany assumption on the transport mechanism. In this
Fibonacci chains have been rigorously analyzed by mearisetter we present the first study, to our knowledge, of
of renormalization group treatments [8] and through newKubo-Greenwood conductivity for independent electrons
numerical methods (iterated function systems [9]). in static quasiperiodic potential &t = 0 K. Using a new

Experimentally quasicrystalline phases have uniqueeal-space method, it will be shown that the electronic
electronic properties. They are characterized by a loveonduction in quasiperiodic systems differs strikingly
conductivity, which increases when temperature or disorfrom the prediction of a Bloch-Boltzmann approach. In
der increases, and a proximity to a metal-insulator tranparticular, if V4, measures the amplitude of the static
sition [10]. Since real systems always contain somealisordered potential we will show that the conductivity
defects either static, due to chemical or structural disordedoes not vary liker = o/V3, (Whereoy is independent
or dynamic, due to phonons, it is of great interest to knowof disorder) in the weak scattering limit. Furthermore, the
how conductivity is affected by disorder in a quasiperiodicvariation of conductivity with disorder is rather complex,
system. and in particular it depends strongly on the position of the

In this context, band structure calculations of periodicFermi energy with respect to pseudogaps.
approximants have been performed. They predict flat Forindependent electrons in a given static poteftiat
bands which are associated to very low Fermi veloc{ K, the starting point of the method will be the following
ity. These flat bands are associated to states that haverm of Kubo-GreenwoodE is the Fermi energy):

a multifractal character [11,12]. Estimates of the con- )
duct|V|t_y W!thln the B_Ioch_-BoItzmann theory (and the o4e(E) = 2he WTr[VXS(E — H.8(E — H)].
relaxation time approximation) lead also to small conduc- Q
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V. is a component of the velocity operator alongconductivity can be reduced to

directionx. 8(E — J) is the projector on eigenstatels 2helm 3 y
of energyE. () is the volume of the system. The factor 2 a0 Z Di(t){P;()|S(E — FH)|D;(1)).
comes from the spin degeneracy. In this work, the evalu- J

ation of the Kubo-Greenwood formula is made through For each initial state dt) = |¥(r = 0)), we can take

a new real-space method. In a previous work [15] wethe origin af. This means thatj|X|j) = 0. ThenD; ()
developed a method for calculating dc and ac conductivitys given by

using the formalism of orthogonal polynomials. Here, W ()R (1))
based on the same formalism, we develop a method Dj(t) = J J )
which gives access only to dc conductivity. In counterpart 4

this allows an important gain in precision and numerical 1€ conductivity can thus be calculated frdm) (1) and
stability. For convenience, after some simple algebra on#e spectral quantity related |#;(z)). The spectral quan-

can rewriteo . (E) as tity is calculated by the recursion method [16]. The origi-
nal part of our method is the evaluation |o ;(z)). Our
e (E) = lim F(E,1), method, to solve the Schrédinger equation, avoids the use
—>

of Runge-Kutta resolution algorithms, or numerical proce-
dures of diagonalization. It is based on the development

2
F(E, 1) = 2he”m Tr{l [X(1) — R] of 8(E — H ) already used in [15], which implies also a
Q t development of the unitary operatori?'*/ on a basis of
B PN orthogonal polynomials. Hereafter, we will take Cheby-
X 8(E — H)X() X]} ' shev polynomials of the first kind associated to the weight

R . n . E) = 1/[m/4b% — (E — a-)?*] and defined via the re-
HereX (1) = e /1%e~i%1/h whereX is the component glgrs)ive re/lgtiz)/ns ( ”]

along directionx of the position operator. At this stage,

we define for each orbitd}): 00(E) = 1 0,(E) = E— 4
’ 2bs
(1)) = Re ™ 07Mjy, E - a.
! Qn+l(E) = < b - >Qn(E) - Qn*l(E)»
Di(¢ *
|D;(1)) = ”llq)’% where a.. and b.. are chosen as band parameters in
J

accordance with the ones of the true density of states (via

Here @i(t» is a normalized state. The calculation ?fa fi(rjst recursion process). Then the vector under study
: reads

e (HMyjy = Zhn( [ dEp(E)Q,(E)e™ "/ ’”)Qn(shr 1))

= Smits( )00, 30)).

ho = 1 and for othern h, = % As usual with or- ! conductivity, the total computing time is of the order of
thogonal polynomials the,(H)|j) are evaluated via 100 h on a HP735 for each conductivity curvg.(E)
the recurrence property [16]. Amplitudes @f# /D]y (see below).
on this basis have a rather simple form connected to We performed calculations of quantum diffusion and
Bessel functions. The consequent interest is to get nicKubo-Greenwood conductivity d&t = 0 K. We consider
asymptotic behaviors for these coefficients which conan s-band tight-binding model on a simple cubic lattice

verge very quickly ass — oo, given that lim—_.J,(z) ~  Wwith nearest-neighbor hopping which has already been
(1/s/27n) (ez/2n)". 1t is this development that makes studied by several authors [18,19]. The hopping integral is
the calculation quick and precise. the energy unitr = 1) and the on-site energies are given

For eachj the calculation is performed on a cube,by &; = &, + &, + &; + eq4is With &4;; = random
centered on the sitg which length is 100 sites (the cube number € [—(Vgis/2), +(Vais/2)] and gj, = *V,
contains about 10sites). Also, for practical calculations, constraints to quasiperiodic correlations (Fibonacci se-
the sum is performed over 100 sites of origin. We find quence). This model allows a direct comparison between a
that this is sufficient for our purpose. We have performedjuasiperiodic system and a periodic one sincé/fgr= 0
numerous tests (more details can be found elsewhem@ne recovers the classical Anderson model with diagonal
[17]) to ensure that the convergence is achieved. Welisorder. We note also that féf;; = 0 the Hamiltonian
estimate that the conductivity is calculated with an energys separable. An eigenstai&(x, y, z) can be written as the
resolution of a few percent of the bandwidth, whichproduct of eigenstates of the chains along each direction
is enough for our purpose. As for the calculation of W(x,y,z) = ¥i(x) X W¥,(y) X Ws(z), the energy being
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the sum of the three energiés= E; + E, + E;. This a different law. For instance, in Fig. 2 the conductivity
means also that for a state that is initially localized on a sit@lecreases when the disorder increases but does not follow
jone hasV;(x,y,z,t) = Vi(x,1) X Wy(y,1) X V3(z,7) the lawo = 00/ Vs (note that the density of states is
with ‘I’l(x,t = 0) = 6(x — x;) and similarly fory and nearly independent of disorder in this parameter range).
z Obviously, the Hamiltonian is no more separable wherinstead, we get approximately for each enefyg law of
Viis IS nonzero. the formo = oo/Vgs. Our results do not strictly follow

We study the quantum diffusion through](t) For a power law, probably because such laws apply only to
Vais = 0 the above relation shows th&;(z) is the same the limit of infinitely small disorder, and also due to the
as for a one dimensional model [8]. In th|s study we focudfinite accuracy of our method. Depending on the energy
on the effect of disorder. Our results (see Fig. 1), clearlyE we find @ = 0.4-0.8 in our calculation.
show that conduction modes undergo a transition from In Fig. 3, we show the conductivity for a quasiperiodic
nonballistic to diffusive regime [i.eD;(¢) is independent modulationV,, = 1.1. A striking result is that there are
of t at larget]. When the disorder increases, the transitionparticular zones, identified by pseudogaps, which seem
to the diffusive regime occurs at shorter times, and thejuite insensitive to a tremendous increase of disorder (a
asymptotic value ofD;(r) tends to decrease. We note factor of 16 forvg,). The conductivity varies monotoni-
also that the fluctuatlons @d;(r) are less important when cally for intermediate values of disorder not shown here.
the disorder increases. The inset in Fig. 3 shows the average density of states.

We studied also the conductivityy.(E) and its vari- The density of states increases slightly with disorder in the
ation with the strength of disorder. In a metal one ex-pseudogaps. This increase compensates for the decrease
pects a law of the fornw = o/V3, (o0 is independent of diffusivity leading to a nearly constant conductivity. |
of disorder). Indeed, this is what we find fof,, = 0.  regions of high density of states, which correspond also to
For sufficiently small values of disorder, our numericalhigher conductivity, both density and diffusivity decrease.
results are in good agreement with the prediction of the In Fig. 4 we showo.(E) for Vg, = 2.5 and different
Bloch-Boltzmann approximation [17]. However, the en-values ofV4;, (again the conductivity varies monotonically
hancement of disorder in a quasiperiodic system leads tior intermediate values of disorder not shown here). The
variation of conductivity with energy is rather complex.
We note, however, that the conductivity increases with
Vais for some energies that correspond to pseudogaps. In
contrast to the previous cases there is an important change
of the density of states. Itincreases where the conductivity
increases. It means that the electronic structure is deeply
modified by the disorder. Thus we prove that the localiza-
tion induced by a quasiperiodic potential can be destroyed
by a disordered potential.

A direct comparison with experimental results on
quasicrystals is difficult, since our model does not
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FIG. 1. D;(r) represented for several initial sitand V, FIG. 2. Conductivity o4 (E) for Vg, = 0.7 [average value
0.9. Time is in units of 2h/W where W is the band- over sites | of lim .. D;(¢)N,(E) whereN;(E) is the spectral
width. Lengths are in units of the nearest-neighbor distanceweight on the stat¢<b (#))]. The energy unit is the hopplng
(@) Vais = 2; (b) Vgis = 24/2. The thick line is an aid to visu- integral t. Inset: Average density of states. (&), = 2;
alize one of the curves. (b) Vs = 24/2.
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FIG. 3. Conductivity o4.(E) for V4, = 1.1 as a function

of the Fermi energyE for different values of the disorder

parameter. Inset: Average density of states. Vig) = 1/+/2;
(b) Vais = 2v/2.

This work was partially supported by NATO Grant

No.

(1]
(2]

[3] A. Mirlin,

[4]
[5]

[6]
[7]

provide a realistic description of the electronic structure
and of the local atomic order. However, quite remarkably,

when the Fermi energy lies in a pseudogap, which is the

case experimentally, the behavior of the conductivity is

reminiscent of the experimental observation that the con-

ductivity increases with disorder or with temperature [10].[10]
In conclusion, the contribution of this paper is twofold.

(8]
9]

First, our method opens new ways of investigating trans-
port properties. Second, we demonstrate the complexity
of electronic transport in quasiperiodic systems, in the

context of anomalous localization. For sufficiently small
disorder the variation of conductivity follows qualitatively [11]

scaling laws. At strong disorder the conductivity can be
stable or can even increase upon enhancement of disorder,

especially for Fermi energies in a pseudogap.

0.06
GDC
TDoS
0.04 1
002 - 0 3
0.00 e
-10 S g 0 5

FIG. 4. Conductivity o4.(E) for V,, = 2.5 as a function

of the Fermi energyE for different values of the disorder

parameter. Inset:
(b) Vdis = 4\/§

Average density of states. Ya) = 2;

CRG 941028, which is gratefully acknowledged.

B. Simon, Ann. Math.141, 131-145 (1995).

H. Hentschel and I. Procaccia, Physica (Amsterd@&m)
435 (1983).

“Quantum Problems in Condensed Matter
Physics” (to be published); T. Brandes, B. Huckestein,
and L. Schweitzer, Ann. Phys. (Leipzi§) 633 (1996).

D. Schechtman, I. Blech, D. Gratias, and J.W. Cahn,
Phys. Rev. Lett53, 1951 (1984).

M. Kohmoto, L.P. Kadanoff, and Ch. Tang, Phys. Rev.
Lett. 50, 1870 (1983); S. Ostlund, R. Pandit, D. Rand,
H. J. Schellnhuber, and E. B. Siggihid. 50, 1873 (1983).

H. Hiramoto and S. Abe, J. Phys. Soc. Jp#, 230 (1988).

B. Sutherland and M. Kohmoto, Phys. Rev.3B, 5877—
5886 (1987); M. Goda and H. Kubo, J. Phys. Soc. Ja.
2109-2118 (1989); H. Kubo and M. Goda, J. Phys. Soc.
Jpn. 60, 2729-2739 (1991); B. lochum and D. Testard,
J. Stat. Phys65, 715 (1991); B. lochum, L. Raymond, and
D. Testard, Physica (Amsterdarh3A, 353—368 (1992).

F. Piéchon, Phys. Rev. Left6, 4372 (1996).

I. Guarneri and G. Mantica, Phys. Rev. Le®3, 3379
(1994).

C. Berger, in Lectures on Quasicrystalsedited by

F. Hippert and D. Gratias (Les éditions de physique,
Les Ulis, 1994); J. Pooret al., in Proceedings of the
5th International Conference on Quasicrystatslited by

C. Janot and R. Mosseri (World Scientific, Singapore,
1995), p. 408.

T. Fujiwara, S. Yamamoto, and G. Trambly de Lais-
sardiére, Phys. Rev. Let?1, 4166 (1993); T. Fujiwara,
T. Mitsui, and S. Yamamoto, Phys. Rev. 8, R2910
(1996); S. Yamamoto and T. Fujiwara, Phys. RevbB
8841 (1995); C. Janot, Phys. Rev. B3, 181 (1996);
B. Passaro, C. Sire, and V.G. Benza, Phys. Rev6B
13751 (1992); see also Ref. [18].

[12] T. Janssen and M. Quilichini, ibectures on Quasicrystals

(Ref. [10]).

[13] D. Mayou et al.,, Phys. Rev. Lett.70, 3915 (1993);

E. Belin and D. Mayou, Phys. Scf49, 356 (1993).

[14] J. Bellissard, A. van Elst, and H. Schulz-Baldes, J. Math.

Phys.35, 5373 (1994); J. Bellissard and H. Schulz-Baldes,
in Proceedings of the 5th International Conference on
Quasicrystalsedited by C. Janot and R. Mosseri (World

Scientific, Singapore, 1995), p. 439; H. Schulz-Baldes,
Phys. Rev. Lett78, 2176 (1997).

[15] D. Mayou, Europhys Lett6, 549—-554 (1988); D. Mayou

and S. Khanna, J. Phys. | (Franég)1199-1211 (1995).

[16] R. Haydock, inSolid State Physicsedited by F. Seitz,

D. Turnbull, and H. Ehrenreich (Academic, New York,
1980), Vol. 35.

[17] S. Roche and D. Mayou (to be published).
[18] C. Sire, inLectures on Quasicrystal&Ref. [10]).
[19] J.X. Zhong and R. Mosseri, J. Phys.7C8383 (1995).

2521



