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We develop a new real-space method which allows one to evaluate the Kubo-Greenwood formula
for dc conductivity of independent electrons in a static potential. We apply it to a numerical
study of propagation modes in three dimensional quasiperiodic systems. These modes are striking
different from those of periodic ones with regard to the effect of disorder. In particular, for Fermi
energies in pseudogaps the conductivity can be stable or can even increase when disorder increas
[S0031-9007(97)04045-3]
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Recently, studies on transport in general topologica
disordered media have emphasized the importance of
derstanding how localization of states and anomalo
quantum transport are related [1]. For example, in d
ordered systems, close to a metal-insulator transition
or close to mobility edges), localization aspects of wa
functions can be described by multifractal analysis [2] an
related to critical exponents of conductivity [3]. Anothe
example is the problem of localization and transport pro
erties in quasiperiodic systems. This has attracted a gro
ing attention since the discovery of quasicrystals in 19
[4]. Historically, Kohmotoet al. [5] were the first to pro-
pose that, at least in 1D systems,quasiperiodicity induced
long range correlations giving rise to an intermediat
state of localization,namely, “critical states” associated to
singular continuousspectra. Numerical studies of quan
tum dynamics of wave packets [6] and Landauer res
tances [7] manifested peculiar features such as boun
resistancerN # r0Na , for energiesE in the spectrum of
the Hamiltonian, witha encoding the memory of these
“quasiperiodic correlations.” More recently, correlation
between quantum dynamics and localization properties
Fibonacci chains have been rigorously analyzed by mea
of renormalization group treatments [8] and through ne
numerical methods (iterated function systems [9]).

Experimentally quasicrystalline phases have uniq
electronic properties. They are characterized by a lo
conductivity, which increases when temperature or diso
der increases, and a proximity to a metal-insulator tra
sition [10]. Since real systems always contain som
defects either static, due to chemical or structural disord
or dynamic, due to phonons, it is of great interest to kno
how conductivity is affected by disorder in a quasiperiod
system.

In this context, band structure calculations of period
approximants have been performed. They predict fl
bands which are associated to very low Fermi velo
ity. These flat bands are associated to states that h
a multifractal character [11,12]. Estimates of the co
ductivity within the Bloch-Boltzmann theory (and the
relaxation time approximation) lead also to small condu
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tivities. However, the application of the Bloch-Boltzmann
theory to these systems has been criticized [11,13]. I
deed, the propagation of electrons in the perfect quasipe
odic structure is neither ballistic as in the case of period
systems nor diffusive as in the case of disordered system
One expects, rather, scaling laws of the formLstd ­ Atb

for the extensionLstd of a wave packet, whereb depends
on the energy and on the Hamiltonian parameters. Th
in a first approximation the diffusivity will be given by
D ­ Lstd2y3t ­ Bt2b21 wheret is the finite lifetime in-
duced by disorder. In the context of a model this has be
confirmed by the mathematical work of Bellissard and co
workers [14]. Since states tend to be localized, it has al
been proposed that the mechanism of conductivity can
a hopping mechanism. In that case, according to the
guments [11,13], inelastic or even elastic scattering cou
lead to an increase of the conductivity.

In order to go beyond the Bloch-Boltzmann descriptio
and be able to test the various schemes that have b
proposed, there is a natural starting point given by th
linear response theory. This treatment does not ma
any assumption on the transport mechanism. In th
Letter we present the first study, to our knowledge, o
Kubo-Greenwood conductivity for independent electron
in static quasiperiodic potential atT ­ 0 K. Using a new
real-space method, it will be shown that the electron
conduction in quasiperiodic systems differs strikingl
from the prediction of a Bloch-Boltzmann approach. In
particular, if Vdis measures the amplitude of the stati
disordered potential we will show that the conductivity
does not vary likes ­ s0yV 2

dis (wheres0 is independent
of disorder) in the weak scattering limit. Furthermore, th
variation of conductivity with disorder is rather complex
and in particular it depends strongly on the position of th
Fermi energy with respect to pseudogaps.

For independent electrons in a given static potentialT ­
0 K, the starting point of the method will be the following
form of Kubo-Greenwood (E is the Fermi energy):

sdcsEd ­
2h̄e2p

V
TrfV̂xdsE 2 H dV̂xdsE 2 H dg .
© 1997 The American Physical Society
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V̂x is a component of the velocity operator alon
directionx. dsE 2 H d is the projector on eigenstatesH
of energyE. V is the volume of the system. The factor 2
comes from the spin degeneracy. In this work, the eva
ation of the Kubo-Greenwood formula is made throug
a new real-space method. In a previous work [15] w
developed a method for calculating dc and ac conductiv
using the formalism of orthogonal polynomials. Here
based on the same formalism, we develop a meth
which gives access only to dc conductivity. In counterpa
this allows an important gain in precision and numeric
stability. For convenience, after some simple algebra o
can rewritesdcsEd as

sdcsEd ­ lim
t!`

FsE, td ,

FsE, td ­
2h̄e2p

V
Tr

Ω
1
t

fX̂std 2 X̂g

3 dsE 2 H d fX̂std 2 X̂g
æ

.

HereX̂std ­ eiH ty h̄X̂e2iH ty h̄ whereX̂ is the component
along directionx of the position operator. At this stage
we define for each orbitaljjl:

jFjstdl ­ X̂e2iH ty h̄jjl ,

jFjstdl ­
jFjstdl

k jFjstdlk
.

Here jF̃jstdl is a normalized state. The calculation o
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conductivity can be reduced to

2h̄e2p

V

X
j

Djstd kF̃jstdjdsE 2 H djF̃jstdl .

For each initial state atjjl ­ jCst ­ 0dl, we can take
the origin atj. This means thatk jjX̂jjl ­ 0. ThenDjstd
is given by

Djstd ­
kCjstdjX̂2jCjstdl

t
.

The conductivity can thus be calculated fromDjstd and
the spectral quantity related tojF̃jstdl. The spectral quan-
tity is calculated by the recursion method [16]. The orig
nal part of our method is the evaluation ofjCjstdl. Our
method, to solve the Schrödinger equation, avoids the
of Runge-Kutta resolution algorithms, or numerical proc
dures of diagonalization. It is based on the developme
of dsE 2 H d already used in [15], which implies also a
development of the unitary operatore2iH ty h̄ on a basis of
orthogonal polynomials. Hereafter, we will take Cheb
shev polynomials of the first kind associated to the weig
rsEd ­ 1yfp

p
4b2

` 2 sE 2 a`d2g and defined via the re-
cursive relations

Q0sEd ­ 1, Q1sEd ­
E 2 a`

2b`

,

Qn11sEd ­

µ
E 2 a`

b`

∂
QnsEd 2 Qn21sEd ,

where a` and b` are chosen as band parameters
accordance with the ones of the true density of states (
a first recursion process). Then the vector under stu
reads
e2siH ty h̄djjl ­
X
n

hn

µZ
dErsEdQnsEde2siEty h̄d

∂
QnsH djjl

­
X
n

hninJn

µ
22b`t

h̄

∂
es2ia`ty h̄dQnsH djjl .
f

d

e
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n
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h0 ­ 1 and for othern hn ­
1
2 . As usual with or-

thogonal polynomials theQnsH djjl are evaluated via
the recurrence property [16]. Amplitudes ofe2siH ty h̄djjl
on this basis have a rather simple form connected
Bessel functions. The consequent interest is to get n
asymptotic behaviors for these coefficients which co
verge very quickly asn ! `, given that limn!` Jnszd ,
s1y

p
2pnd sezy2ndn. It is this development that makes

the calculation quick and precise.
For each j the calculation is performed on a cube

centered on the sitej, which length is 100 sites (the cube
contains about 106 sites). Also, for practical calculations,
the sum is performed over,100 sites of origin. We find
that this is sufficient for our purpose. We have performe
numerous tests (more details can be found elsewh
[17]) to ensure that the convergence is achieved. W
estimate that the conductivity is calculated with an energ
resolution of a few percent of the bandwidth, whic
is enough for our purpose. As for the calculation o
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d
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h
f

conductivity, the total computing time is of the order o
100 h on a HP735 for each conductivity curvesdcsEd
(see below).

We performed calculations of quantum diffusion an
Kubo-Greenwood conductivity atT ­ 0 K. We consider
an s-band tight-binding model on a simple cubic lattic
with nearest-neighbor hopping which has already be
studied by several authors [18,19]. The hopping integra
the energy unitst ­ 1d and the on-site energies are give
by ´j ­ ´xj 1 ´yj 1 ´zj 1 ´dis with ´dis ­ random
number [ f2sVdisy2d, 1sVdisy2dg and ´ja

­ 6Vqp
constraints to quasiperiodic correlations (Fibonacci s
quence). This model allows a direct comparison betwee
quasiperiodic system and a periodic one since forVqp ­ 0
one recovers the classical Anderson model with diagon
disorder. We note also that forVdis ­ 0 the Hamiltonian
is separable. An eigenstateCsx, y, zd can be written as the
product of eigenstates of the chains along each direct
Csx, y, zd ­ C1sxd 3 C2s yd 3 C3szd, the energy being
2519
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the sum of the three energiesE ­ E1 1 E2 1 E3. This
means also that for a state that is initially localized on a s
j one hasCjsx, y, z, td ­ C1sx, td 3 C2s y, td 3 C3sz, td
with C1sx, t ­ 0d ­ dsx 2 xjd and similarly for y and
z. Obviously, the Hamiltonian is no more separable whe
Vdis is nonzero.

We study the quantum diffusion throughDjstd. For
Vdis ­ 0 the above relation shows thatDjstd is the same
as for a one dimensional model [8]. In this study we focu
on the effect of disorder. Our results (see Fig. 1), clea
show that conduction modes undergo a transition fro
nonballistic to diffusive regime [i.e.,Djstd is independent
of t at larget]. When the disorder increases, the transitio
to the diffusive regime occurs at shorter times, and t
asymptotic value ofDjstd tends to decrease. We not
also that the fluctuations ofDjstd are less important when
the disorder increases.

We studied also the conductivitysdcsEd and its vari-
ation with the strength of disorder. In a metal one e
pects a law of the forms ­ s0yV 2

dis (s0 is independent
of disorder). Indeed, this is what we find forVqp ­ 0.
For sufficiently small values of disorder, our numerica
results are in good agreement with the prediction of t
Bloch-Boltzmann approximation [17]. However, the en
hancement of disorder in a quasiperiodic system leads

FIG. 1. Djstd represented for several initial sitesj andVqp ­
0.9. Time is in units of 2h̄yW where W is the band-
width. Lengths are in units of the nearest-neighbor distan
(a) Vdis ­ 2; (b) Vdis ­ 2

p
2. The thick line is an aid to visu-

alize one of the curves.
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a different law. For instance, in Fig. 2 the conductivity
decreases when the disorder increases but does not foll
the law s ­ s0yV 2

dis (note that the density of states is
nearly independent of disorder in this parameter range
Instead, we get approximately for each energyE a law of
the forms ­ s0yV a

dis. Our results do not strictly follow
a power law, probably because such laws apply only
the limit of infinitely small disorder, and also due to the
finite accuracy of our method. Depending on the energ
E we finda ­ 0.4 0.8 in our calculation.

In Fig. 3, we show the conductivity for a quasiperiodic
modulationVqp ­ 1.1. A striking result is that there are
particular zones, identified by pseudogaps, which see
quite insensitive to a tremendous increase of disorder
factor of 16 forV 2

dis). The conductivity varies monotoni-
cally for intermediate values of disorder not shown here
The inset in Fig. 3 shows the average density of state
The density of states increases slightly with disorder in th
pseudogaps. This increase compensates for the decre
of diffusivity leading to a nearly constant conductivity. In
regions of high density of states, which correspond also
higher conductivity, both density and diffusivity decrease

In Fig. 4 we showsdcsEd for Vqp ­ 2.5 and different
values ofVdis (again the conductivity varies monotonically
for intermediate values of disorder not shown here). Th
variation of conductivity with energy is rather complex
We note, however, that the conductivity increases wit
Vdis for some energies that correspond to pseudogaps.
contrast to the previous cases there is an important chan
of the density of states. It increases where the conductiv
increases. It means that the electronic structure is deep
modified by the disorder. Thus we prove that the localiza
tion induced by a quasiperiodic potential can be destroye
by a disordered potential.

A direct comparison with experimental results on
quasicrystals is difficult, since our model does no

FIG. 2. Conductivity sdcsEd for Vqp ­ 0.7 [average value
over sites “j ” of lim t!` DjstdNjsEd whereNjsEd is the spectral
weight on the statejF̃jstdl]. The energy unit is the hopping
integral t. Inset: Average density of states. (a)Vdis ­ 2;
(b) Vdis ­ 2

p
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FIG. 3. Conductivity sdcsEd for Vqp ­ 1.1 as a function
of the Fermi energyE for different values of the disorder
parameter. Inset: Average density of states. (a)Vdis ­ 1y

p
2 ;

(b) Vdis ­ 2
p

2.

provide a realistic description of the electronic structur
and of the local atomic order. However, quite remarkabl
when the Fermi energy lies in a pseudogap, which is t
case experimentally, the behavior of the conductivity
reminiscent of the experimental observation that the co
ductivity increases with disorder or with temperature [10

In conclusion, the contribution of this paper is twofold
First, our method opens new ways of investigating tran
port properties. Second, we demonstrate the complex
of electronic transport in quasiperiodic systems, in th
context of anomalous localization. For sufficiently sma
disorder the variation of conductivity follows qualitatively
scaling laws. At strong disorder the conductivity can b
stable or can even increase upon enhancement of disor
especially for Fermi energies in a pseudogap.

FIG. 4. Conductivity sdcsEd for Vqp ­ 2.5 as a function
of the Fermi energyE for different values of the disorder
parameter. Inset: Average density of states. (a)Vdis ­ 2;
(b) Vdis ­ 4
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