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Phase Diagram of Coupled Glassy Systems: A Mean-Field Study
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In the example of the spherical-spin model, we study the phase diagram of glassy systems in the
presence of an attractive coupling with a quenched configuration. We find competition among two
phases, separated by a coexistence line terminating in a critical point, as in ordinary first-order phase
transitions. We argue that these results are not an artifact of the mean-field approximation, and may be
observed in numerical simulations of realistic glassy models. [S0031-9007(97)04049-0]

PACS numbers: 64.70.Pf

The transition from liquid to glasses presents in manythe framework of the mean-field approximation. We will
materials highly universal features. These may be qualisee that, as in ordinary first-order phase transition, a kind
tatively understood in the framework of the Gibbs-of Maxwell construction allows us to extract qualitative
DiMarzio scenario and its generalizations [1]. Roughlyfeatures of the phase diagram of real systems.
speaking, the picture is the following. Still in the liquid Let us describe the construction in the case of a
phase, when the temperature is smaller than a crossoveystem composed by only one type of particles with
value ([;), the system may be trapped for a long time incoordinatesy;, for i = 1, N; the generalization to many
one of the exponentially large number of local minima ofkind of particles is trivial. We consider two replicas of
the free energy. In this region the large time dynamicdhe same system, with coordinatesand y, respectively,
becomes extremely slow because it is dominated byn an asymmetric relation. The replica is a typical
transitions among different local minima. The numberconfiguration distributed according to the Boltzmann-
(N) of these local minima is related to the complexity Gibbs law with the original Hamiltonian of the system
(or configurational entropyX(7) by the formulaN" =  [i.e., H(y)] at a temperaturd”’, and does not feel any
exdN2(T)], N being the number of particles. The total influence from the replica. The replicax, instead, feels
entropy S is the sum of two contributions: the entropy the influence of the replica, and for a fixed value of,
of each minimum and the complexity. The complexity isthermalizes at a temperatufewith a Hamiltonian
supposed to vanish linearly at a lower temperature (i.e., at
a temperaturd’. < Ty,), where the height of the typical He(x|y) = H(x) — € Z wilxi = yi). 1)
barriers becomes infinite. The correlation time diverges , o Lk=1N
atT., and one can argue in favor of a Vogel-Fulcher law, [N€ functionw is different from zero only at short

This scenario is exactly implemented in a large clasgiStance; an example is(x) = 1if |x| < a andw(x) =
infinite range models, with the only difference that the¥ If x| < 1. An interesting behavior is present when the
lifetimes of local equilibrium states (and the Correspono|_value ofa is smaller 'than'the typical interatomic .dlstance
ing free-energy barriers) diverge when the volume of the(e;q" a =03 atomic distances). The quantity =
system goes to infinity [2,3]. In fact, the correlation time k=1 wx; — y;) measures then the similarity of
diverges atT,;, as can be seen in the mode coupling apN€ Wo configurations, and would be close to one when
proximation which is exact for these models. On thell® o replicas stay in similar configurations. For
contrary, in short range systenfg signals a change in positive couplinge the x variables feel a potential which

behavior, but we cannot assign to it any sharply definedushes them near to tlj»ev_ariables. We can define a free
value. energy for thex variables in the presence of the quenched

In this Letter we will show that if we generalize the Y Variables as
models by introducing two coupled replicas of the same — (NB) 1 fd —BH 2
system [4-8], we find thaT,; corresponds to the edge (T.e,y)=(Ng)In Yexi-BHxIN). (@)
of a metastable region. In the same way the complexity quantity that should be self-averaging with respect to the
is related to the difference of a free-energy in thedistribution of they and can therefore be computed as

stable and in the metastable phase. Now, in short range ey
models the properties of a metastable phase can only be Fy(T,T',€) = Jdyexd—p H(y/)]F(T’ €.y) )]
approximately computed because of tiidte mean life Jdy exd—p'H(y)]

of metastable states, and in the mean-field approximatiomhe temperaturel’ of the reference configuration
metastable states haveiafinite mean life. Itis now clear can be equal or different from that of the configura-
that the complexity and@; can be sharply defined only in tion (7).
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Let us consider what happens for small positevén  believe that many of the issues that we are discussing in
the regionT, < T < T, in the simpler case where the this Letter, and in particular the qualitative features of the
two temperatures are equal. At= 0 the probability that phase diagrams in th€ — e plane, are quite universal
the replicax would stay in a same local minimum of the and reflect very general properties of the phase space.
replicay is exponentially small. While, whea > 0, the  We conjecture that the phase diagram for real glasses is
case in which the replica stay near to the replica  similar to that of the generalized spin glasses if we only
is energetically favored. The system can therefore stagonsider the order of the phase transition and the topology
in two different phases: (1) Replica different fromy  of the various transition lines in tHe — € plane. Indeed,

(g very small) and its free energ¥(T,e) = F(T,0). this happens for some of the most significative qualitative
(2) Replicax near toy (hereg = 1). The free energy prediction for the off-equilibrium dynamics of thg-spin

is given byF(T,€) = F(T,0) — eq + TX(T). model that have been observed in simulations of more re-
It is now clear that in this picture there is a first-order alistic glass models (i.e., soft binary mixtures) [11].
phase transition a& =~ T3(T) with a discontinuity in The model is defined in terms df real dynamical

the internal energy given by. Moreover, ate = 0 the  variables (spinsy; (i = 1,...,N), subjected to the con-
difference in free energy among the two phases is exactlytrainth':1 $? = N and interacting via the Hamiltonian
given by TE(T): The thermodynamic pr_opgrties ir_1 the H), = _Zz‘l’z~~<i Ji i Si -+ S; with independent cen-
T-€ plane (for different values df’) are quite interesting. L " ) 5
The previous argument tell us something only in thet€réd Gaussian couplingg, ;, with variance/; ;, =
region of smalle, the fate of the first-order transition for »!/(2N?~'). The model has been studied extensively
large € is a very interesting question. In principle such aduring the last few years, and furnishes, for> 2, a
computation could be done in structural glasses by usir;gOOd toy model of fragile glasses in mean field. It has
the replicated hypernetted chain approach of [9]; howevePeen often observed [2] that the Langevin relaxation of
the computations would be rather involved. Here as a firsis model leads to equations homologous to those of
investigation we limit ourselves to study what happensschematic mode coupling theory [12]. In spin models the
in a generalized spin glass model, the spherjealpin natural way to couple two replicas consists in adding to
models with long range forces [10]. the Hamiltonian a term-€¢ Y, S;S.. Here we can define

It is clear that this generalized spin glass is microscopg = N~!>,_, y S;Si. The overlapg is equal to one if
ically very different from a structural glass; however, wethe configurations of the two systems coincide. The two
replicas potential is

JdS"exd —pB'H,(S")]

N
F(T,e,8") = (NB) I ds —BH,(S) + eS|
(7.8 = )] [ asex(~pry(s) + pe lkk)}

k=

FQ(T,T’, €) = <de/exF[—5/HJ(S’)]F(T, 6,S’)>’

where the() denotes the average over ths. ! ondary minimum develops &t;, the temperature of dy-
In the following we will study the phase diagram of namical transition [2], signaling the presence of long-life
the model in thee-T plane in two situations: (aJ/ =  metastable states. The minimum of the potential has re-

T, corresponding to restricting the partition sum to theceived a dynamical interpretation [8,13] as corresponding
vicinity of a particular equilibrium state at each tempera-to the states reached at long times by the evolution at
ture; (b) T’ fixed, corresponding to probe the evolution temperaturel’ starting at time zero from an equilibrium
of the free-energy landscape in the vicinity of a fixedconfiguration at temperaturg’. The height of the sec-
configuration of equilibrium af’ when T is changed. ondary minimum reaches the one of the primary minimum
The Legendre transform of(T,T',€), V(q,T,T') = atT = T, and coexistence in zero coupling takes place.
min. F(T,T’,€) + €q, which corresponds physically to This is the usual statical transition point in zero coupling,
constraining the value of the overlap &g was studied and it is not accompanied by the release of latent heat.
in detail in [8] with the aid of the replica method. The In Fig. 1 we show the shape of the potential in the vari-
interested reader can find there details about the generailis regions. (The attentive reader would have noticed
method and the analytic expression for that with respect to the curves presented in [8] only one
The shape of the functiol turned out to be charac- secondary minimum is present at low temperature. The
teristic of a mean-field system undergoing a first-orderesults we present here are corrected, taking into account
phase transition. At high enough temperatiteis an  replica symmetry breaking effects, the meaning of which
increasing and convex function gf with a single mini-  has been discussed in [14].)
mum for g = 0. Decreasing the temperature to a value Although the behavior of the potential function is an-
Ty, the potential loses the convexity property and a phasalogous to the one found in ordinary systems undergoing
transition can be induced by a finite coupling. A sec-a first-order phase transition, the interpretation is here
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FIG. 1. The potential as a function aof for p =4, T' = . .

21.T,/(T, + T;) = 0.523, and various values of, in order FI/G. 2. Phase diagram in the-T. plane for p =4 and

of decreasing temperatures from top to bottom (iB.~ L' =T. The upper curve is the spinodal of the lguphase,

0.7,0.6.,0.56,0.523). For p = 4 one hasT, — 0.503 and the lower one the spinodal of the highstate, and the middle

T, = 0.544. curve the coexistence line. The coexistence line touches the
axese = 0 at T = T,, while the spinodal of the high phase
touches it atl’ = T,;. For T < T, the spinodal of the low
phase remains finite and touches the= 0 axes at finitee.

radically different. While in ordinary cases different

minima represent qualitatively different thermodynamical

states, this is not the case in the potential discusseiie latent heatQ = E, — E- — e(q+ — g-), where
here. In our problem the local minimum appears whenE+ (¢+) and E- (g-) are the averagéi; (overlaps),
ergodicity is broken, and the configuration space splitsespectively, of the high and loy phases. Notice that
into an exponentially large number of components. Thdas it should) the latent heat is zero at the critical point
two minima are different manifestations of states withand at7 = 0. The high ¢ phase roughly reflects the
the same characteristics. The height of the secondanyroperties of the equilibrium states at temperatdre
minimum, relative to the one at = 0, measures the free- followed at temperatur&, while the lowg phase reflects
energy loss to keep the system in the same component tfe properties of the true equilibrium states at temperature
the quenched one. At equal temperatufes- 7' thisis 7. We see that at high temperature the higlphase is
just the complexityT>. For T # T' it also takes into energetically favored, while at low temperature it has an
account the free-energy variation of the equilibrium stateenergy higher than the one of equilibrium.

at temperatur@’ whenfollowed(i.e., adiabatically cooled Finally, in Fig. 5 we show for a fixed temperature the
or heated) from the temperatuf to the temperaturé. curve ofg(€) obtained by the Maxwell construction.

The presence o€ adds finite stability to the metastable Although we have based our discussion on a mean-
state, and the transition is displaced at higher temperdield model, we expect that the qualitative features of
tures. In Fig. 2 we display the phase diagram of thethe phase diagrams presented survive in finite dimension,
p = 4 model in the casd’ = T. The coexistence line
departs from the axes = 0 at the transition temperature
T, and reaches monotonically a critical poi(ft.., e..).

We also show the spinodal of the highsolution, which
touches thee = 0 axes at the dynamical temperaturg,

and the spinodal of the low solution for temperatures
larger thanT,. The coexistence line fof’ fixed, in the
interval T, = T’ = T, is qualitatively similar to the one

of Fig. 2 at high enough temperature, but (for> T,) it
never touches the axis = 0.

Even at zero temperature there is a first-order phase
transition in e, reflecting the fact that the energy of the
ground state is lower than the energy of the reference state 0 . . . . .
(S") when followed atl’ = 0. This can be seen in Fig. 3 0O 02 04 06 08 1 1.2
where we show the phase diagram 16r= 27,7, /(T + Temperature
\7\721.1 A’;]the Cm.'(.:al pomt the trar?glthn is second Ord.eraFlG. 3. Phase diagram in the-7" plane for p =4 and

ile the transition in zero coupling is not accompaniedy: 7 7 /(7. + T,). The upper curve is the spinodal of the
by heat release, a latent heat is present for nonzero |ow 4 phase, the lower one the spinodal of the higlphase,
In Fig. 4 we show, in the same conditions of Fig. 3,and the middle curve the coexistence line.
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0.05 . ' ' , . ending of the transition lines in a critical point implies
that the metastable state can be reached via closed paths
0} e in phase diagram leaving always the system in (stable
o or metastable) equilibrium, and the free-energy difference
'&"0-05- I of the two phases computed integrating the specific heat
% 0.1 along the loop. The absence of a first-order phase
a— | ] transition at large coupling is an important prediction of
5_0_15 | the analogy withp-spin model whose validity is cru_cial
(o] for an accurate determination of the free energy in the
- -0.21 ] low temperature phase.
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