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Phase Diagram of Coupled Glassy Systems: A Mean-Field Study
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In the example of the sphericalp-spin model, we study the phase diagram of glassy systems in
presence of an attractive coupling with a quenched configuration. We find competition among
phases, separated by a coexistence line terminating in a critical point, as in ordinary first-order
transitions. We argue that these results are not an artifact of the mean-field approximation, and m
observed in numerical simulations of realistic glassy models. [S0031-9007(97)04049-0]
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The transition from liquid to glasses presents in man
materials highly universal features. These may be qua
tatively understood in the framework of the Gibbs
DiMarzio scenario and its generalizations [1]. Roughly
speaking, the picture is the following. Still in the liquid
phase, when the temperature is smaller than a crosso
value (Td), the system may be trapped for a long time in
one of the exponentially large number of local minima o
the free energy. In this region the large time dynamic
becomes extremely slow because it is dominated b
transitions among different local minima. The numbe
(N ) of these local minima is related to the complexity
(or configurational entropy)SsT d by the formulaN ­
expfNSsT dg, N being the number of particles. The total
entropy S is the sum of two contributions: the entropy
of each minimum and the complexity. The complexity is
supposed to vanish linearly at a lower temperature (i.e.,
a temperatureTc , Td), where the height of the typical
barriers becomes infinite. The correlation time diverge
at Tc, and one can argue in favor of a Vogel-Fulcher law

This scenario is exactly implemented in a large clas
infinite range models, with the only difference that the
lifetimes of local equilibrium states (and the correspond
ing free-energy barriers) diverge when the volume of th
system goes to infinity [2,3]. In fact, the correlation time
diverges atTd, as can be seen in the mode coupling ap
proximation which is exact for these models. On th
contrary, in short range systemsTd signals a change in
behavior, but we cannot assign to it any sharply define
value.

In this Letter we will show that if we generalize the
models by introducing two coupled replicas of the sam
system [4–8], we find thatTd corresponds to the edge
of a metastable region. In the same way the complexi
is related to the difference of a free-energy in th
stable and in the metastable phase. Now, in short ran
models the properties of a metastable phase can only
approximately computed because of thefinite mean life
of metastable states, and in the mean-field approximati
metastable states have aninfinitemean life. It is now clear
that the complexity andTd can be sharply defined only in
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the framework of the mean-field approximation. We wi
see that, as in ordinary first-order phase transition, a k
of Maxwell construction allows us to extract qualitativ
features of the phase diagram of real systems.

Let us describe the construction in the case of
system composed by only one type of particles wi
coordinatesxi , for i ­ 1, N; the generalization to many
kind of particles is trivial. We consider two replicas o
the same system, with coordinatesx and y, respectively,
in an asymmetric relation. The replicay is a typical
configuration distributed according to the Boltzman
Gibbs law with the original Hamiltonian of the system
[i.e., Hsyd] at a temperatureT 0, and does not feel any
influence from the replicax. The replicax, instead, feels
the influence of the replicay, and for a fixed value ofy,
thermalizes at a temperatureT with a Hamiltonian

Hesx j yd ­ Hsxd 2 e
X

i,k­1,N

wsxi 2 ykd . (1)

The function w is different from zero only at short
distance; an example iswsxd ­ 1 if jxj , a andwsxd ­
0 if jxj , 1. An interesting behavior is present when th
value ofa is smaller than the typical interatomic distanc
(e.g., a ­ 0.3 atomic distances). The quantityq ;
N21

P
i,k­1,N wsxi 2 ykd measures then the similarity o

the two configurations, and would be close to one wh
the two replicas stay in similar configurations. Fo
positive couplinge the x variables feel a potential which
pushes them near to they variables. We can define a free
energy for thex variables in the presence of the quench
y variables as

FsT , e, yd ­ sNbd21ln

√Z
dx expf2bHesx j ydg

!
, (2)

a quantity that should be self-averaging with respect to
distribution of they and can therefore be computed as

FQsT , T 0, ed ­

R
dy expf2b0HsydgFsT , e, ydR

dy expf2b0Hsydg
, (3)

The temperatureT 0 of the reference configurationy
can be equal or different from that of thex configura-
tion (T).
© 1997 The American Physical Society
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Let us consider what happens for small positivee in
the regionTc , T , Td in the simpler case where the
two temperatures are equal. Ate ­ 0 the probability that
the replicax would stay in a same local minimum of the
replicay is exponentially small. While, whene . 0, the
case in which the replicax stay near to the replicay
is energetically favored. The system can therefore s
in two different phases: (1) Replicax different from y
(q very small) and its free energyFsT , ed ø FsT , 0d.
(2) Replicax near toy (hereq ø 1). The free energy
is given byFsT , ed ø FsT , 0d 2 eq 1 TSsT d.

It is now clear that in this picture there is a first-orde
phase transition ate ø TSsTd with a discontinuity in
the internal energy given byq. Moreover, ate ­ 0 the
difference in free energy among the two phases is exac
given by TSsTd. The thermodynamic properties in the
T -e plane (for different values ofT 0) are quite interesting.
The previous argument tell us something only in th
region of smalle, the fate of the first-order transition for
largee is a very interesting question. In principle such
computation could be done in structural glasses by us
the replicated hypernetted chain approach of [9]; howev
the computations would be rather involved. Here as a fi
investigation we limit ourselves to study what happen
in a generalized spin glass model, the sphericalp-spin
models with long range forces [10].

It is clear that this generalized spin glass is microsco
ically very different from a structural glass; however, w
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believe that many of the issues that we are discussing
this Letter, and in particular the qualitative features of th
phase diagrams in theT 2 e plane, are quite universa
and reflect very general properties of the phase spa
We conjecture that the phase diagram for real glasse
similar to that of the generalized spin glasses if we on
consider the order of the phase transition and the topolo
of the various transition lines in theT 2 e plane. Indeed,
this happens for some of the most significative qualitati
prediction for the off-equilibrium dynamics of thep-spin
model that have been observed in simulations of more
alistic glass models (i.e., soft binary mixtures) [11].

The model is defined in terms ofN real dynamical
variables (spins)Si (i ­ 1, . . . , N), subjected to the con-
straint

PN
i­1 S2

i ­ N and interacting via the Hamiltonian

HJ ­ 2
P1,N

i1,···,ip
Ji1,...,ip Si1 · · · Sip with independent cen-

tered Gaussian couplingsJi1,...,ip
with varianceJ2

i1,...,ip
­

p!ys2Np21d. The model has been studied extensive
during the last few years, and furnishes, forp . 2, a
good toy model of fragile glasses in mean field. It ha
been often observed [2] that the Langevin relaxation
this model leads to equations homologous to those
schematic mode coupling theory [12]. In spin models t
natural way to couple two replicas consists in adding
the Hamiltonian a term2e

P
i SiS

0
i . Here we can define

q ­ N21
P

i­1,N SiS
0
i . The overlapq is equal to one if

the configurations of the two systems coincide. The tw
replicas potential is
FQsT , T 0, ed ­

*R
dS0 expf2b0HJsS0dgFsT , e, S0dR

dS0 expf2b0HJ sS0dg

+
,

FsT , e, S0d ­ sNbd21 ln

∑Z
dS exp

µ
2bHJsSd 1 be

NX
k­1

SkS0
k

∂∏
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where thek l denotes the average over theJ ’s.
In the following we will study the phase diagram o

the model in thee-T plane in two situations: (a)T 0 ­
T , corresponding to restricting the partition sum to th
vicinity of a particular equilibrium state at each tempera
ture; (b) T 0 fixed, corresponding to probe the evolutio
of the free-energy landscape in the vicinity of a fixe
configuration of equilibrium atT 0 when T is changed.
The Legendre transform ofFsT , T 0, ed, V sq, T , T 0d ;
mine FsT , T 0, ed 1 eq, which corresponds physically to
constraining the value of the overlap toq, was studied
in detail in [8] with the aid of the replica method. The
interested reader can find there details about the gen
method and the analytic expression forV .

The shape of the functionV turned out to be charac-
teristic of a mean-field system undergoing a first-ord
phase transition. At high enough temperatureV is an
increasing and convex function ofq with a single mini-
mum for q ­ 0. Decreasing the temperature to a valu
Tf , the potential loses the convexity property and a pha
transition can be induced by a finite coupling. A se
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ondary minimum develops atTd, the temperature of dy-
namical transition [2], signaling the presence of long-li
metastable states. The minimum of the potential has
ceived a dynamical interpretation [8,13] as correspond
to the states reached at long times by the evolution
temperatureT starting at time zero from an equilibrium
configuration at temperatureT 0. The height of the sec-
ondary minimum reaches the one of the primary minimu
at T ­ Ts and coexistence in zero coupling takes plac
This is the usual statical transition point in zero couplin
and it is not accompanied by the release of latent he
In Fig. 1 we show the shape of the potential in the va
ous regions. (The attentive reader would have notic
that with respect to the curves presented in [8] only o
secondary minimum is present at low temperature. T
results we present here are corrected, taking into acco
replica symmetry breaking effects, the meaning of whi
has been discussed in [14].)

Although the behavior of the potential function is an
alogous to the one found in ordinary systems undergo
a first-order phase transition, the interpretation is he
2487
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FIG. 1. The potential as a function ofq for p ­ 4, T 0 ­
2TsTdysTs 1 Tdd ­ 0.523, and various values ofT , in order
of decreasing temperatures from top to bottom (i.e.,T ­
0.7, 0.6., 0.56, 0.523). For p ­ 4 one has Ts ­ 0.503 and
Td ­ 0.544.

radically different. While in ordinary cases differen
minima represent qualitatively different thermodynamic
states, this is not the case in the potential discuss
here. In our problem the local minimum appears whe
ergodicity is broken, and the configuration space spl
into an exponentially large number of components. T
two minima are different manifestations of states wit
the same characteristics. The height of the second
minimum, relative to the one atq ­ 0, measures the free-
energy loss to keep the system in the same componen
the quenched one. At equal temperaturesT ­ T 0 this is
just the complexityTS. For T fi T 0 it also takes into
account the free-energy variation of the equilibrium sta
at temperatureT 0 whenfollowed(i.e., adiabatically cooled
or heated) from the temperatureT 0 to the temperatureT .
The presence ofe adds finite stability to the metastable
state, and the transition is displaced at higher tempe
tures. In Fig. 2 we display the phase diagram of th
p ­ 4 model in the caseT 0 ­ T . The coexistence line
departs from the axese ­ 0 at the transition temperature
Ts and reaches monotonically a critical pointsTcr , ecr d.
We also show the spinodal of the highq solution, which
touches thee ­ 0 axes at the dynamical temperatureTd ,
and the spinodal of the lowq solution for temperatures
larger thanTs. The coexistence line forT 0 fixed, in the
interval Ts # T 0 # Td, is qualitatively similar to the one
of Fig. 2 at high enough temperature, but (forT 0 . Ts) it
never touches the axise ­ 0.

Even at zero temperature there is a first-order pha
transition ine, reflecting the fact that the energy of th
ground state is lower than the energy of the reference st
(S0) when followed atT ­ 0. This can be seen in Fig. 3
where we show the phase diagram forT 0 ­ 2TsTdysTs 1

Tdd. At the critical point the transition is second orde
While the transition in zero coupling is not accompanie
by heat release, a latent heat is present for nonzeroe.
In Fig. 4 we show, in the same conditions of Fig. 3
2488
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FIG. 2. Phase diagram in thee-T plane for p ­ 4 and
T 0 ­ T . The upper curve is the spinodal of the lowq phase,
the lower one the spinodal of the highq state, and the middle
curve the coexistence line. The coexistence line touches
axese ­ 0 at T ­ Ts, while the spinodal of the highq phase
touches it atT ­ Td. For T , Ts the spinodal of the lowq
phase remains finite and touches theT ­ 0 axes at finitee.

the latent heatQ ­ E1 2 E2 2 esq1 2 q2d, where
E1 (q1) and E2 (q2) are the averageHJ (overlaps),
respectively, of the high and lowq phases. Notice that
(as it should) the latent heat is zero at the critical po
and at T ­ 0. The high q phase roughly reflects the
properties of the equilibrium states at temperatureT 0

followed at temperatureT , while the lowq phase reflects
the properties of the true equilibrium states at temperat
T . We see that at high temperature the highq phase is
energetically favored, while at low temperature it has
energy higher than the one of equilibrium.

Finally, in Fig. 5 we show for a fixed temperature th
curve ofqsed obtained by the Maxwell construction.

Although we have based our discussion on a mea
field model, we expect that the qualitative features
the phase diagrams presented survive in finite dimensi

FIG. 3. Phase diagram in thee-T plane for p ­ 4 and
T 0 ­ 2TsTdysTs 1 Tdd. The upper curve is the spinodal of th
low q phase, the lower one the spinodal of the highq phase,
and the middle curve the coexistence line.
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FIG. 4. Latent heat of the transition as a function of th
temperature forp andT 0 as in Fig. 3. The latent heat change
sign in the point where the transition becomes reentrant.

where the potential can be estimated, complementi
the mean-field results with the Maxwell construction
We believe that the existence of a coexistence lin
terminating in a critical point, is a constitutive feature
of systems whose physics is dominated by the existen
of long-lived metastable states. The predictions of th
Letter can be submitted to numerical test in glassy mod
systems such as, e.g., Lennard-Jones, or hard sphe
or polymer glasses. The phase diagram starts to ha
nontrivial features at temperatures greater thanTs, and
in this region the thermodynamical properties can b
computed by using standard numerical simulations f
small samples. It is possible that better results cou
be obtained using algorithmsparallel tempering [15]
that have been tested for spin glasses and allow
equilibration in the low temperature region at least fo
not too large samples. For example, the identification
the complexityS as the free-energy difference betwee
the stable and the metastable phases could allow a dir
measure of this quantity in a simulation. Indeed th

FIG. 5. Equation of state forT 0 ­ 2TsTdysTs 1 Tdd andT ­
0.609. The horizontal line corresponds to coexistence and
obtained by the Maxwell construction.
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ending of the transition lines in a critical point implies
that the metastable state can be reached via closed pa
in phase diagram leaving always the system in (stab
or metastable) equilibrium, and the free-energy differenc
of the two phases computed integrating the specific he
along the loop. The absence of a first-order phas
transition at large coupling is an important prediction o
the analogy withp-spin model whose validity is crucial
for an accurate determination of the free energy in th
low temperature phase.
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