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Density Functional Theory for Small Systems: Hard Spheres in a Closed Spherical Cavity
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We present a new approach to determining the equilibrium structure of a closed (canonical)
inhomogeneous fluid which combines grand canonical density functional theory and a series expansion
of the distribution functions in powers dfi /N), whereN is the average number of particles. For
hard spheres in a hard spherical cavity, comparison with canonical Monte Carlo results shows that the
method is rather accurate, even for small value®/of In certain (high packing) situations the density
profile develops a pronounced peak in the center of the cavity. Accounting properly for such peaks
provides a severe test of any density functional approximation. [S0031-9007(97)04188-4]

PACS numbers: 61.20.Gy, 68.45.—v

Understanding the properties of fluids confined in naraccurate DFT of fluids of hard spheres and hard disks
row capillaries or micropores is important for several[9—11] and of parallel hard cubes [12]. In particular, ob-
branches of surface physics and chemistry. Microporougaining the correct 0D limit of the free-energy functional
and mesoporous solids are widely used in separation pr@ppears to be important for a good description of the freez-
cesses and as materials for catalyst supports while zeolitegg transition [9].
clathrates, and fullerenes are molecular sieves, structuresThe usual procedure in studying adsorption of confined
with cavities which can hold only a few adsorbed mole-fluids is to assume that there is a particle reservoir so that
cules. In all such systems the fluid is extremely spatiallyone is working at a fixed chemical potentja) the grand
inhomogeneous and its thermodynamical [1] and dynamieanonical ensemble is the appropriate one. In the present
cal [2] properties are very different from those in bulk. situation we are dealing with a finite, inhomogeneous,
Developing a statistical mechanics of small systems is alosed system (with a fixed, finite number of particis
challenging problem [3]. In this Letter we focus on the and a conventional DFT approach (at fixed temperéafure
equilibrium structure (the average density profile) for aand u) is inadequate. One way of overcoming this prob-
simple model, a hard-sphere fluid confined in a hard spherlem would be to construct a canonical ensemble DFT in
cal cavity, and show that this can be described accuratelyhich a free-energy variational principle is established in-
by density functional theory (DFT) even for cases of verystead of the usual minimum grand-potential principle [13],
strong confinement where the packing constraints are vetyut then it is not clear how to modify a standard DF T recipe
pronounced. in order to account for the minimum free-energy principle

Previous approaches to such problems include virial exwhich comes from the fixed constraint. Here we sug-
pansions of the grand potential [3—5], integral equatiorgest an alternative approach which first performs a grand
theories [6], and computer simulation [7]. Direct calcula-canonical DFT treatment of the problem and then uses the
tion of the partition functions can be made for cavities con-solution to obtain an approximate profile for the canonical
taining up to about six molecules [5]. For larger systemsnsemble. The first step requires a reliable DFT recipe
alternative (approximate) methods are required and DFTsee, e.g., Ref. [8]), utilized in such a way that it gives
is a natural candidate as it has been applied successfullise to a predetermined average number of particles for a
to other types of confinement, e.g., fluids in slit and cylin-given confining box or cavity. This procedure is equiva-
drical pores where it has provided much insight into thelent to determining an appropriate chemical potential, as
structure and phase behavior [8]. Recent DFT approxiwe shall see below. The second step is based on an early
mations are designed to deal with confining geometriegdea of Lebowitz and Percus [14] which relates the canoni-
which reduce the effective dimensionality below that of thecal pair correlation functiorgy(r) to its grand canonical
bulk fluid. In the most extreme situation one considers aounterpart. This idea has been used recently in ana-
very small spherical cavity which cannot hold more thanlyzing finite size effects in the calculation of the struc-
one particle, and then one speakszefo dimensiorfOD)  ture factor by canonical molecular dynamics simulations
cavities [9,10]. Investigating this dimensional crossovel{15]. The present application provides a demanding test
has provided a much deeper understanding of the analytier the proposed method which can be generalized easily
cal structure of the free-energy functionals required forto other situations. Moreover, by making comparison with
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canonical Monte Carlo simulation results we examine the:;)?> (RSLT2) which interpolates betwedr in (ROS) and
performance of the recently proposed free-energy functiond; x..c—op presented in [9]. One might expect that the
als [9] in dealing with extremely confined fluids. density profiles obtained from minimization of the func-
The grand canonical density profiidr) of anopensys-  tionals with different choices ab; would be very similar
tem subject to an external potentitl,(r) is obtained except for those cases where a quasi-0D situation arises.
by minimizing the grand potential functiondl[p] = So far we have described the DFT used to calculate the
Flpl + [drp(r)[Ve(r) — ] at a given chemical po- density profile for an open system. This grand canonical
tential . A DFT recipe provides a prescription for the profile will be used below to obtain the canonical one.
intrinsic Helmholtz free-energy functiondi[p] (see, e.g., One subtlety should be pointed out. We require grand
Ref. [8]). In this Letter we employ the fundamental mea-canonical profiles with a fixed integer average number of
sure theory (FMT) of Rosenfeld [16] which appears to beparticles. For a given choice of chemical potentja|
one of the most successful theories for the study of hartve have no way to ensum priori that this choice will
spheres in highly inhomogeneous situations [17]. Furthertake us to the final desired value of the average number
more, the original FMT of Rosenfeld has recently beerof particles. The method of tackling this problem is to
modified in order to account for the correct dimensionalvary u slowly in the iterative process of solving the Euler-
crossover, giving rise to new functionals with the appro-Lagrange equations which arise from the minimization of
priate OD behavior [9,10]. Below we give a brief accountthe grand potential x is varied in order to obtain a density
of the FMT; more details can be found in the original pa-profile whose integral over the volume considered yields
pers [9,10,16,17]. The main assumption of the FMT isthe desired average number of particles. Sincacts as
that the excess contributigfix[ p ] to the free-energy func- a parameter in the iterative solution of the Euler-Lagrange
tional of a one-component system of hard spheres can tegjuations and at the end of this process remains unchanged,

expressed as this procedure is equivalent to knowing in advance the
(correct) chemical potentigkiy ).
BFlpl = BFlpl — BFdlel = f dr ®[{n,(r)}], As the final step in our method we use the following

relation between the canonical one-particle dengjyr)

1) andthe grand canonical opér), the latter associated with
where 8 = 1/kpT, and 8 Fia[p] is the ideal-gas contri- average number of particléé.
bution, i.e., the excess free-energy dengty'® is ex- {
pressed as a function of a set of weighted densitids) o(r) = + JN) + N + (__>
which are defined by, (r) = [pr)o @ — r')dr'. px(r) = p(X) + file.N) + ol V) + O N3 @)
The weight functionso®), based on the fundamental geo- \,here
metric measures of a three dimensional sphere of radius _
R, consist of four scalar and two vector quantities and fi(e,N) = 1 9N 3__2}0(1,) 3)
are given in [16,17]. In order to account for the di- ’ 2 d(Bu) ON2
mensional crossover in the FMT it is useful to express,
® asd = &) + O, + $3 where & = —nylog(l —

n3), ®; = (mny — my - mp)/(1 — n3) andd; = [3n3 — S _ 1 N & N

ny(ny - my)]/87(1 — n3)?> (ROS) where the dot denotes fo(e, N) 2 (Bu) IN2 file, N)

scalar product. In the uniform limit the vector weighted 1 N &3

densitiesn; = n, = 0 and ® is the scaled-particle or - — — p(r) (4)

P . e 6 d(Bu)? ON3

ercus-Yevick (PY) approximation to the excess free en-

ergy. Inthe same limit the pair direct correlation functionsare corrections of orded/N and 1/N?, respectively.
obtained by functional differentiation are identical to thoseEquations (2)—(4) provide us with the required link be-
of PY; ns is simply the packing fraction. If one eliminates tween the canonical and the grand canonical density pro-
®;, the remainde®; + @, yields the exact free-energy files and can be derived following a procedure similar to
and pair direct correlation function for a uniform hard rodthat used in [15]. Note that the correction terfisand
fluid in the limit of a one dimensional density distribution. f, depend upon the fluctuations in the number of particles

Such considerations lead Rosenfetdl. [9] to investi-  in the cavity and on the variations of the GC profile with
gate the OD limit and to propose modificationsdey. The  respect toN (or u). For largeN one can expect these
antisymmetrized form®; ,gym = n%(l — &3 247 (1 — corrections to be small but for small valuesMfit is not

n3)? (RSLT1) preserves the favorable features of the origi-obvious that the expansion is convergent. These correc-
nal functional for three dimensional situations (it yieldstion terms should be sensitive to packing constraints and
PY pair correlation functions) but vanishes in the ODtheir values should reflect the choice of DFT. One advan-
limit and ® then reduces to the exact free energy [9].tage of (2), however, is that the integralsfefand f, over

Note that £(r) = |my(r)/na(r)l. We have also inves- the confining volume must both be zero. This provides a
tigated the form®s;, = n%(l — 3¢ + 283 /247w (1 — useful check on the numerics. Since higher-order terms
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are complicated and difficult to calculate, the usefulness of y y y y T —
(2) rests on the ability of the leading terms to capture the 1.6+ @) Simulation _
essential physics. = By 382 ?;?3:3:: e
The object of our study is the three dimensional hard- -5 ROS 2nd order -
i 1 i i _ o E. RSLT2 Oth order ----
sphere fluid confined to a hard spherical cavity of ra o RSLT2 Lot orcer

dius R.,y by means of the following external potential
Vext(r) = 0 if r < Regy and Veg(r) = » if r > Reay
wherer is the distance to the center of the cavity. This
means that the farthest distance the center of the hard

RSLT2 2nd order -- --

sphere can access k,, — o/2 where o is the hard- 04
sphere diameter. In this case, because of the symmetry of

the problem, the density profile dependsroonly, and the -‘\Q’)
Euler-Lagrange equations for obtaining the grand canoni- 4 L\
cal profile can be solved by means of 1D fast Fourier trans- RSN
forms. In order to obtain a canonical density profile one mg F N\

must use Egs. (2)—(4) for a givety,, and average num-
ber of particlesV. All the derivatives in (3) and (4) are 2t
performed numerically.

Clearly the most demanding situations arise for cases
with few particles. As a preliminary test of the/N P
expansion (truncated to second order) we have considered 0
several cases witl = 10 at low average density where
any respectable density functional theory should provides|G. 1. Density profiles of hard spheres of diameterin
good grand canonical results. For these low density cases spherical cavity of radiu®.,, = 1.850 (maximum radius
all the DFT's we considered gave very accurate canonicaivailable to the center of the hard sphereRg, — o/2).

(@ N =8 and (b)N = 10 particles. The solid lines are the

results when compared with our canonical MC simulations; g ; ; ,
fesults of canonical MC simulations. Other lines represent

Although the grand canonical results are significantly,eroth (grand canonical), first, and second order results of ROS
different from MC the first two corrections in (2) are and RSLT2 theories (see text). Note the difference in vertical
sufficient to account for the differences. scales.

The situation is more interesting for high packings.
There one needs a good theory and, as argued above, when
using the FMT one should see differences between the réer N = 10 the first order result is very poor in the cen-
sults of the various prescriptions fab;. In Fig. 1 we tral zone and the second order is completely unphysical—
present the results of canonical MC simulations for a cavitysee Fig. 1(b). The new modifications RSLT1 and RSLT2
of radiusR.,, = 1.850 andN = 8, and10. These simu- yield very similar profiles so we do not plot the former.
lation data are compared with the results of the preserBoth seem to converge faov = 10 and yield results in
method using the original prescription ROS and RSLT2 forgood agreement with the simulation for the full range of
®;: We show the grand canonical profiles (zeroth ordeNote that all three prescriptions give similar second order
results), the results of the first order approximation [neprofiles forr = 0.40, for N = 9.
glecting f>(r,N) in (2)] as well as the second order re- The differences between the canonical and the grand
sults. The most remarkable feature of Fig. 1 is the peakanonical profiles in the center of the cavity remain even
in the center of the cavityr(near0) which grows very when the number of particles is large enough to give
rapidly asN increases. It is here where the main dif- negligible differences in other regions of the profile. This
ferences between the theories appear. This behavior ist@ppens, e.g., when one considars= 45 particles in a
symptom of a quasi-0D situation in the center of the cav-cavity of radiusR.,, = 2.80. For a different situation
ity, where there is a zone of strong localization arising from(e.g.,N = 35, R..y = 2.50), where there is no room for
the packing constraints. The grand canonical density prathe central peak, there are only very small differences
file p(r) is always significantly higher than the canonical between zeroth, first, and second order results for a given
results in the central zone. Contributions from values otheory.
N different from N are substantial, especially for higher The case&V = 2 is clearly a good test for the accuracy of
packings. Also in this zone the convergence of ti&/  the 1/N expansion; moreover, this case has the advantage
expansion is much slower than in other regions of the prothat the density profile is known exactly (the solution is
file. Forvalues ofV < 7 all the prescriptions fo; yield  given in terms of the volume available for one particle
similar results and the convergence is good. For=8  once the other is placed in the cavity, and is essentially the
RSLT2 appears to be performing slightly better than ROSonvolution of two spheres, one of radiasand the other
but by N = 9 (not plotted) ROS fails to converge, and of radiusR..,, — o /2). In Fig. 2 we compare the exact
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in order to (a) test DFT directly and (b) provide an inde-
pendent test of thél /N) expansion.
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