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Density Functional Theory for Small Systems: Hard Spheres in a Closed Spherical Cavity
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We present a new approach to determining the equilibrium structure of a closed (canonical)
inhomogeneous fluid which combines grand canonical density functional theory and a series expansion
of the distribution functions in powers ofs1yN̄d, where N̄ is the average number of particles. For
hard spheres in a hard spherical cavity, comparison with canonical Monte Carlo results shows that the
method is rather accurate, even for small values ofN̄ . In certain (high packing) situations the density
profile develops a pronounced peak in the center of the cavity. Accounting properly for such peaks
provides a severe test of any density functional approximation. [S0031-9007(97)04188-4]
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Understanding the properties of fluids confined in na
row capillaries or micropores is important for severa
branches of surface physics and chemistry. Microporo
and mesoporous solids are widely used in separation p
cesses and as materials for catalyst supports while zeolit
clathrates, and fullerenes are molecular sieves, structu
with cavities which can hold only a few adsorbed mole
cules. In all such systems the fluid is extremely spatial
inhomogeneous and its thermodynamical [1] and dynam
cal [2] properties are very different from those in bulk
Developing a statistical mechanics of small systems is
challenging problem [3]. In this Letter we focus on the
equilibrium structure (the average density profile) for
simple model, a hard-sphere fluid confined in a hard sphe
cal cavity, and show that this can be described accurate
by density functional theory (DFT) even for cases of ver
strong confinement where the packing constraints are ve
pronounced.

Previous approaches to such problems include virial e
pansions of the grand potential [3–5], integral equatio
theories [6], and computer simulation [7]. Direct calcula
tion of the partition functions can be made for cavities con
taining up to about six molecules [5]. For larger system
alternative (approximate) methods are required and DF
is a natural candidate as it has been applied successfu
to other types of confinement, e.g., fluids in slit and cylin
drical pores where it has provided much insight into th
structure and phase behavior [8]. Recent DFT approx
mations are designed to deal with confining geometri
which reduce the effective dimensionality below that of th
bulk fluid. In the most extreme situation one considers
very small spherical cavity which cannot hold more tha
one particle, and then one speaks ofzero dimension(0D)
cavities [9,10]. Investigating this dimensional crossove
has provided a much deeper understanding of the analy
cal structure of the free-energy functionals required fo
466 0031-9007y97y79(13)y2466(4)$10.00
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accurate DFT of fluids of hard spheres and hard dis
[9–11] and of parallel hard cubes [12]. In particular, ob
taining the correct 0D limit of the free-energy functiona
appears to be important for a good description of the fre
ing transition [9].

The usual procedure in studying adsorption of confin
fluids is to assume that there is a particle reservoir so t
one is working at a fixed chemical potentialm; the grand
canonical ensemble is the appropriate one. In the pres
situation we are dealing with a finite, inhomogeneou
closed system (with a fixed, finite number of particlesN),
and a conventional DFT approach (at fixed temperatureT
andm) is inadequate. One way of overcoming this pro
lem would be to construct a canonical ensemble DFT
which a free-energy variational principle is established i
stead of the usual minimum grand-potential principle [13
but then it is not clear how to modify a standard DFT recip
in order to account for the minimum free-energy princip
which comes from the fixedN constraint. Here we sug-
gest an alternative approach which first performs a gra
canonical DFT treatment of the problem and then uses
solution to obtain an approximate profile for the canonic
ensemble. The first step requires a reliable DFT rec
(see, e.g., Ref. [8]), utilized in such a way that it give
rise to a predetermined average number of particles fo
given confining box or cavity. This procedure is equiva
lent to determining an appropriate chemical potential,
we shall see below. The second step is based on an e
idea of Lebowitz and Percus [14] which relates the cano
cal pair correlation functiongN srd to its grand canonical
counterpart. This idea has been used recently in a
lyzing finite size effects in the calculation of the struc
ture factor by canonical molecular dynamics simulatio
[15]. The present application provides a demanding t
for the proposed method which can be generalized ea
to other situations. Moreover, by making comparison wi
© 1997 The American Physical Society
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canonical Monte Carlo simulation results we examine t
performance of the recently proposed free-energy functio
als [9] in dealing with extremely confined fluids.

The grand canonical density profilersrd of anopensys-
tem subject to an external potentialVextsrd is obtained
by minimizing the grand potential functionalVfrg ­
F frg 1

R
dr rsrd fVextsrd 2 mg at a given chemical po-

tential m. A DFT recipe provides a prescription for the
intrinsic Helmholtz free-energy functionalF frg (see, e.g.,
Ref. [8]). In this Letter we employ the fundamental me
sure theory (FMT) of Rosenfeld [16] which appears to b
one of the most successful theories for the study of ha
spheres in highly inhomogeneous situations [17]. Furth
more, the original FMT of Rosenfeld has recently bee
modified in order to account for the correct dimension
crossover, giving rise to new functionals with the appr
priate 0D behavior [9,10]. Below we give a brief accou
of the FMT; more details can be found in the original p
pers [9,10,16,17]. The main assumption of the FMT
that the excess contributionFexfrg to the free-energy func-
tional of a one-component system of hard spheres can
expressed as

bFexfrg ­ bF frg 2 bFidfrg ­
Z

dr Ffhnasrdjg ,

(1)

whereb ­ 1ykBT , andbFidfrg is the ideal-gas contri-
bution, i.e., the excess free-energy densityb21F is ex-
pressed as a function of a set of weighted densitiesnasrd
which are defined bynasrd ­

R
rsr0dvsadsr 2 r0d dr0.

The weight functionsvsad, based on the fundamental geo
metric measures of a three dimensional sphere of rad
R, consist of four scalar and two vector quantities an
are given in [16,17]. In order to account for the d
mensional crossover in the FMT it is useful to expre
F as F ­ F1 1 F2 1 F3 where F1 ­ 2n0 logs1 2

n3d, F2 ­ sn1n2 2 n1 ? n2dys1 2 n3d andF3 ­ f 1
3 n3

2 2

n2sn2 ? n2dgy8ps1 2 n3d2 (ROS) where the dot denote
scalar product. In the uniform limit the vector weighte
densitiesn1 ­ n2 ­ 0 and F is the scaled-particle or
Percus-Yevick (PY) approximation to the excess free e
ergy. In the same limit the pair direct correlation function
obtained by functional differentiation are identical to thos
of PY; n3 is simply the packing fraction. If one eliminate
F3, the remainderF1 1 F2 yields the exact free-energy
and pair direct correlation function for a uniform hard ro
fluid in the limit of a one dimensional density distribution

Such considerations lead Rosenfeldet al. [9] to investi-
gate the 0D limit and to propose modifications forF3. The
antisymmetrized formF3,asym ­ n3

2s1 2 j2d3y24ps1 2

n3d2 (RSLT1) preserves the favorable features of the ori
nal functional for three dimensional situations (it yield
PY pair correlation functions) but vanishes in the 0
limit and F then reduces to the exact free energy [9
Note that jsrd ­ jn2srdyn2srdj. We have also inves-
tigated the formF3,int ­ n3

2s1 2 3j2 1 2j3dy24ps1 2
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n3d2 (RSLT2) which interpolates betweenF3 in (ROS) and
F3,exact 0D presented in [9]. One might expect that th
density profiles obtained from minimization of the func
tionals with different choices ofF3 would be very similar
except for those cases where a quasi-0D situation arise

So far we have described the DFT used to calculate
density profile for an open system. This grand canonic
profile will be used below to obtain the canonical on
One subtlety should be pointed out. We require gra
canonical profiles with a fixed integer average number
particles. For a given choice of chemical potentialm,
we have no way to ensurea priori that this choice will
take us to the final desired value of the average numb
of particles. The method of tackling this problem is t
varym slowly in the iterative process of solving the Euler
Lagrange equations which arise from the minimization
the grand potential.m is varied in order to obtain a density
profile whose integral over the volume considered yiel
the desired average number of particles. Sincem acts as
a parameter in the iterative solution of the Euler-Lagran
equations and at the end of this process remains unchan
this procedure is equivalent to knowing in advance th
(correct) chemical potentialmfinal.

As the final step in our method we use the followin
relation between the canonical one-particle densityrN̄ srd
and the grand canonical onersrd, the latter associated with
average number of particles̄N .

rN̄ srd ­ rsrd 1 f1sr, N̄d 1 f2sr, N̄d 1 O

µ
1

N̄3

∂
, (2)

where

f1sr, N̄d ­ 2
1
2

≠N̄
≠sbmd

≠2

≠N̄2 rsrd (3)

and

f2sr, N̄d ­ 2
1
2

≠N̄
≠sbmd

≠2

≠N̄2
f1sr, N̄d

2
1
6

≠2N̄
≠sbmd2

≠3

≠N̄3
rsrd (4)

are corrections of order1yN̄ and 1yN̄2, respectively.
Equations (2)–(4) provide us with the required link be
tween the canonical and the grand canonical density p
files and can be derived following a procedure similar
that used in [15]. Note that the correction termsf1 and
f2 depend upon the fluctuations in the number of particl
in the cavity and on the variations of the GC profile wit
respect toN̄ (or m). For largeN̄ one can expect these
corrections to be small but for small values ofN̄ it is not
obvious that the expansion is convergent. These corr
tion terms should be sensitive to packing constraints a
their values should reflect the choice of DFT. One adva
tage of (2), however, is that the integrals off1 andf2 over
the confining volume must both be zero. This provides
useful check on the numerics. Since higher-order ter
2467
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are complicated and difficult to calculate, the usefulness
(2) rests on the ability of the leading terms to capture th
essential physics.

The object of our study is the three dimensional har
sphere fluid confined to a hard spherical cavity of ra
dius Rcav by means of the following external potentia
Vextsrd ­ 0 if r , Rcav and Vextsrd ­ ` if r . Rcav
wherer is the distance to the center of the cavity. Thi
means that the farthest distance the center of the h
sphere can access isRcav 2 sy2 where s is the hard-
sphere diameter. In this case, because of the symmetry
the problem, the density profile depends onr only, and the
Euler-Lagrange equations for obtaining the grand cano
cal profile can be solved by means of 1D fast Fourier tran
forms. In order to obtain a canonical density profile on
must use Eqs. (2)–(4) for a givenRcav and average num-
ber of particlesN̄ . All the derivatives in (3) and (4) are
performed numerically.

Clearly the most demanding situations arise for cas
with few particles. As a preliminary test of the1yN̄
expansion (truncated to second order) we have conside
several cases with̄N # 10 at low average density where
any respectable density functional theory should provid
good grand canonical results. For these low density ca
all the DFT’s we considered gave very accurate canonic
results when compared with our canonical MC simulation
Although the grand canonical results are significant
different from MC the first two corrections in (2) are
sufficient to account for the differences.

The situation is more interesting for high packings
There one needs a good theory and, as argued above, w
using the FMT one should see differences between the
sults of the various prescriptions forF3. In Fig. 1 we
present the results of canonical MC simulations for a cavi
of radiusRcav ­ 1.85s andN̄ ­ 8, and10. These simu-
lation data are compared with the results of the prese
method using the original prescription ROS and RSLT2 fo
F3: We show the grand canonical profiles (zeroth ord
results), the results of the first order approximation [n
glecting f2sr, N̄d in (2)] as well as the second order re
sults. The most remarkable feature of Fig. 1 is the pe
in the center of the cavity (r near0) which grows very
rapidly asN̄ increases. It is here where the main dif
ferences between the theories appear. This behavior
symptom of a quasi-0D situation in the center of the ca
ity, where there is a zone of strong localization arising fro
the packing constraints. The grand canonical density p
file rsrd is always significantly higher than the canonica
results in the central zone. Contributions from values
N different from N̄ are substantial, especially for highe
packings. Also in this zone the convergence of the1yN̄
expansion is much slower than in other regions of the pr
file. For values ofN̄ , 7 all the prescriptions forF3 yield
similar results and the convergence is good. ForN̄ ­ 8
RSLT2 appears to be performing slightly better than RO
but by N̄ ­ 9 (not plotted) ROS fails to converge, and
2468
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FIG. 1. Density profiles of hard spheres of diameters in
a spherical cavity of radiusRcav ­ 1.85s (maximum radius
available to the center of the hard sphere isRcav 2 sy2).
(a) N̄ ­ 8 and (b)N̄ ­ 10 particles. The solid lines are the
results of canonical MC simulations. Other lines represe
zeroth (grand canonical), first, and second order results of R
and RSLT2 theories (see text). Note the difference in verti
scales.

for N̄ ­ 10 the first order result is very poor in the cen
tral zone and the second order is completely unphysica
see Fig. 1(b). The new modifications RSLT1 and RSL
yield very similar profiles so we do not plot the forme
Both seem to converge for̄N ­ 10 and yield results in
good agreement with the simulation for the full range ofr.
Note that all three prescriptions give similar second ord
profiles forr $ 0.4s, for N̄ # 9.

The differences between the canonical and the gra
canonical profiles in the center of the cavity remain ev
when the number of particles is large enough to gi
negligible differences in other regions of the profile. Th
happens, e.g., when one considersN̄ ­ 45 particles in a
cavity of radiusRcav ­ 2.8s. For a different situation
(e.g.,N̄ ­ 35, Rcav ­ 2.5s), where there is no room for
the central peak, there are only very small differenc
between zeroth, first, and second order results for a gi
theory.

The casēN ­ 2 is clearly a good test for the accuracy o
the1yN̄ expansion; moreover, this case has the advant
that the density profile is known exactly (the solution
given in terms of the volume available for one partic
once the other is placed in the cavity, and is essentially
convolution of two spheres, one of radiuss and the other
of radiusRcav 2 sy2). In Fig. 2 we compare the exac
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FIG. 2. Density profiles of hard spheres in a spherical cavit
of radiusRcav ­ 1.4s for N̄ ­ 2. The solid line is the exact
canonical result forN ­ 2 (see text). Other lines represent
zeroth (grand canonical), first, and second order results of RO
(see text). The inset displays the low density case (N̄ ­ 2,
Rcav ­ 2.5s). Note the difference in vertical scales.

density profile for 2 particles in a cavity of radiusRcav ­
1.4s with the results of ROS (the other prescriptions
give very similar profiles). For this demanding case th
second order results remain good even where the ex
density is zero,r , 0.1s. The inset shows results for
the low density casēN ­ 2, Rcav ­ 2.5s for which the
first order correction already yields very good results whil
the second order correction gives a nearly exact dens
profile. For very small cavities,Rcav # 1.3s, the second
order profiles are (slightly) negative in the excluded centr
region but still capture the main features of the exac
results.

In summary, we have presented a new method for dea
ing with highly inhomogeneous fluids in the canonical en
semble by combining a FMT (density functional) approac
with Eq. (2) relating the grand canonical density profile
to the canonical one. This method has been applied to
hard-sphere fluid confined in a spherical cavity. In mos
situations all versions of the FMT theory yield results in
good agreement with simulation. However, for high pack
ings and certain radii of the cavity the density profile in th
center of the cavity is strongly peaked and is very sens
tive to the choice of the FMT theory. In such circum-
stances the new modifications RSLT1 and RSLT2 (whic
are designed to achieve the correct dimensional crosso
to quasi-0D behavior) fare much better than the origina
ROS. It would be interesting to examine the performanc
of other DFT’s for this particular problem. It would also
be worthwhile to perform grand canonical MC simulation
y

S

e
act

e
ity

al
t

l-
-
h

a
t

-
e
i-

h
ver
l
e

s

in order to (a) test DFT directly and (b) provide an inde
pendent test of thes1yN̄d expansion.
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