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Solitary Waves in Quadratically Nonlinear Resonators

C. Etrich, U. Peschel, and F. Lederer
Institut für Festkörpertheorie und Theoretische Optik,

Friedrich-Schiller-Universität Jena,
Max-Wien-Platz 1, 07743 Jena, Germany

(Received 28 April 1997)

We identify two-dimensional stable and unstable bright solitary waves or localized structures in
planar resonator with a quadratically nonlinear medium driven by a field at the fundamental frequen
only. These waves are extremely localized while the nonlocal interaction between the fundamen
and second harmonics prevents a collapse. To a certain extent they can be regarded as residua
coexisting hexagon patterns. [S0031-9007(97)04100-8]

PACS numbers: 42.65.Tg, 42.65.Ky, 42.65.Pc
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Bright solitary waves or localized structures are amon
the most fascinating objects in nonlinear physics. The
introduce some discrete or particlelike behavior into oth
erwise continuous systems. In nonlinear optical system
stable solitary waves are found as rather robust se
organized light distributions (see, for example, [1]). Es
pecially, in externally driven optical resonators a prope
excitation of the system may lead to the formation of a di
crete number of well-defined localized structures on a lo
intensity background defined by the incident field. Th
could be the basis of a future all-optical signal proces
ing and storage where one localized structure correspo
to one bit. So far such structures were identified in th
transmitted field of resonator geometries with intensity d
pendent nonlinearities. Examples are two-dimensional
calized structures in cavities with saturable focusing [2] o
saturable absorbing media [3].

The question arises of whether stable localized stru
tures exist also in resonators with a quadratically nonli
ear material. In conservative systems, e.g., for the fie
evolution in a planar waveguide or bulk material, one
and two-dimensional solitary waves could be identified a
symbiotic structures of the fundamental and second h
monics [4–11]. We are interested in similar structure
in a planar resonator. Resonators with quadratically no
linear media are well established for frequency up- an
down-conversion [12,13]. Here we do not focus on effi
cient frequency conversion rather than on the spatiote
poral evolution of both waves. Thus, in contrast to mo
of the earlier investigations, we assume a driving field
the fundamental frequency.

We consider a planar resonator with a quadratically no
linear medium. The frequencies of the incident fundame
tal field and the generated second harmonic should be cl
to resonances. Thus the well-established modal theo
can be applied [14,15], which simplifies the analysis co
siderably compared to approaches based on forward a
backward propagating fields. The appropriately scal
evolution equations for the transmitted fieldsA1 and A2
of the fundamental and second harmonics are derived a
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∂
1 sD2 1 igdA2 1 A2

1 ­ 0 ,

(1)

where D1 and D2 are the detunings of the two field
from the corresponding resonances scaled in terms of
resonance width at the fundamental frequency. Thou
they have nothing to do with the common phase mismat
they play a similar role in Eqs. (1). The timeT is
scaled in terms of the photon lifetime at the fundamen
frequency and the spatial variablesX andY in terms of the
square root of the product of the fundamental waveleng
velocity of light, and the photon lifetime. Thusg is the
ratio of the photon lifetimes anda half the ratio of the
refractive indices corresponding to the fundamental a
second harmonics. Throughout the analysis we assu
a ­ 1y2, which is a reasonable approximation for realist
configurations. The input field of the fundamental
E where an arbitrary phase can be transformed aw
The fields are scaled in terms of the effective nonline
coefficients arising from the second-order susceptibilit
and the overlap integrals entering into the modal theo
[15]. The absolute value of the overlap integrals depen
critically on the phase mismatch between the fundamen
and second harmonics.

For large absolute values of the detuning of the seco
harmonic different signs result in effective focusing (D2 ,

0) or defocusing (D2 . 0) behavior. This is evident from
neglecting the derivatives in the second of Eqs. (1)
large D2 and substituting forA2 in the first of Eqs. (1)
leading to a cubic term there.

We are interested in localized structures (bright solita
waves evanescent to a finite background of plane w
solutions) of Eqs. (1). As a prerequisite for such structu
we look for bistability of the homogeneous or plane wa
solutions of Eqs. (1) where the lower branch is stab
with respect to arbitrary (i.e., homogeneous and spatia
modulated) perturbations, and the upper branch is unsta
© 1997 The American Physical Society
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with respect to spatially modulated perturbations of th
plane wave solutions. The plane wave solutions a
obtained equating the derivatives in Eqs. (1) to zero [1
which yields for the moduli of the fields

fjA10j
4 1 2sg 2 D1D2d jA10j

2 1

sD2
1 1 1d sD2

2 1 g2dg jA10j
2 ­ sD2

2 1 g2dE2,

jA10j
2 ­ jA20j

p
D

2
2 1 g2 .

(2)

The above polynomial forjA10j
2 has three real solutions

for certain parameter ranges if

jD2j sjD1j 2
p

3 d
p

3 jD1j 1 1
. g, D1D2 . 0 , (3)

i.e., both detunings must have equal signs, which we a
sume negative for the solutions under consideration to e
ist. For large negativeD2 this corresponds to the effective
focusing case, as pointed out above. By means of a l
ear stability analysis with spatially homogeneous pertu
bations of the plane wave solutions we find that there
bistable behavior, with the plane wave solutions desta
lizing and stabilizing at a pair of limit points. A typical
situation for negativeD1 is depicted in Fig. 1 where the
loci of critical points from the linear stability analysis of
plane wave solutions are displayed in thesD2, jA10j

2d plane
[which is equivalent to thesD2, Ed plane, compare first of
Eqs. (2)]. For spatially homogeneous perturbations, i.
pertubations with infinite period, they are stable in domain
I, IV. This stability is referred to as homogeneous stabi
ity. The plane wave solutions are homogeneously unsta
via limit points in domain II and via Hopf bifurcations in
domain III (as to Hopf bifurcations, cf. [17]). Taking into
account spatially modulated perturbations, i.e., with fini

FIG. 1. Loci of critical points in thesD2, jA10j
2d plane for

plane wave solutions (D1 ­ 24 andg ­ 0.5). The thin solid
line marks limit points, the dashed line Hopf bifurcations, an
the bold solid line where the modulational instability sets in
In the shadowed part of domain I localized structures exist
a plane-wave background.
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period, the modulational instability sets in at the bold lin
Plane wave solutions which are homogeneously stable
stabilize there with finite period. This leads to the fo
mation of hexagon patterns (see below). Otherwise,
modulational instability sets in at the first limit point with
infinite period (continuation of bold line), leaving the plan
wave solutions modulationally unstable in domains II, II
IV (and stable in domain I). In particular, the upper branc
of the bistable curve is modulationally unstable. Thus t
plane wave hysteresis will not describe the stationary
lutions of the system appropriately.

The localized structures we are interested in are cal
lated numerically from Eqs. (1) assuming rotational sym
metry in thesX, Yd plane. We find them coexisting with
the stable lower branch of the bistable curve, i.e., th
have a plane wave background (see Fig. 2 for an examp
The maximum amplitudes (of the fundamental) of loca
ized structures together with the plane wave backgrou

FIG. 2. Amplitude of the (a) fundamental and (b) secon
harmonics of a localized structure atD1 ­ 24, D2 ­ 21,
g ­ 0.5, andE ­ 4.6.
2455
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are displayed in Fig. 3 for various values ofD2 with E as
control parameter. The larger the negative detuningD2
the larger the range where they exist. They emanate fr
the plane wave background with infinitesimal amplitud
subcritically, i.e., unstably, and stabilize at a limit poin
The stability was checked by means of a two-dimension
beam propagation method. At the point where the l
calized structures emanate from, the plane waves beco
modulationally unstable either with finite or infinite pe
riod. In the latter case this occurs at a limit point (th

FIG. 3. Maximum amplitudes of the fundamental of localize
structures (filled circles: stable; open circles: unstable) a
the plane-wave background (solid lines: stable; dashed lin
unstable) in terms of the control parameterE for various values
of D2 (D1 ­ 24 and g ­ 0.5). The bold line in (c) marks
maximum amplitudes of stable hexagon patterns.
2456
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same as homogeneously stable). The branch of stabl
calized structures ends where the background destabil
i.e., at the same point in parameter space where they e
nate from. From Fig. 3 it is evident that they substitute f
the plane wave hysteresis, even outside the range of p
wave bistability or if plane wave bistability does not exi
(cf. shadowed part of domain I in Fig. 1 where they ex
on a stable plane wave background).

If there is no plane wave bistability, there is a transiti
to a hexagon pattern where the stable localized structu
terminate in parameter space [bold line in Fig. 3(c
Thus they can be considered as residuals of (coexist
bistable hexagon patterns. This is illustrated in Fig
where the coexistence of a hexagon pattern and the p
wave background is shown. The localized structu
may be arranged in an arbitrary way on the plane wa
background.

The stable localized structures are strongly localiz
with very large amplitudes compared to their backgrou
In particular, they generate a large amount of second h
monic field in the center. Thus even a frequency doubl
based on stable localized structures could be of some
terest for practical applications. In the center of the loc
ized structures their shape corresponds to the one of
solitary waves observed for free space propagation in b
materials [10]. The resonator influences the tails of the
calized structures. The tails are characterized by ma
destructive interference of the localized structures with
plane wave background. In general, they are surroun
by at least one dark ring (cf. Fig. 2). In most cases
creation of a bright localized structure results even in
reduction of the total transmission of the system. Eve
localized structure acts on the plane wave background
a perturbation. For a stable background which is essen
for the existence of stable localized structures this per
bation decays exponentially. There are two cases: t
decay in an nonoscillating or oscillating way. If there

FIG. 4. Amplitude of the fundamental demonstrating t
coexistence of a plane wave and a hexagon pattern forD2 ­
24, D1 ­ 21.5, g ­ 0.5, andE ­ 4.7.
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no plane wave bistability, there is a transition to the p
riod of the modulational instability approaching the poin
where it sets in [case of Fig. 3(c)]. This results in man
rings, dark and bright (for a not so pronounced examp
cf. Fig. 2).

In conclusion, for negative detunings of the fundament
and second harmonics stable localized structures exist
a plane wave background. A collapse as in the case o
cubic nonlinearity does not exist because of the nonlocal
of the quadratic interaction. But extreme localization
found. The dissipative nature of the system results
a pronounced interference of the plane wave backgrou
with the tails of the localized structures.
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