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Solitary Waves in Quadratically Nonlinear Resonators
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We identify two-dimensional stable and unstable bright solitary waves or localized structures in a
planar resonator with a quadratically nonlinear medium driven by a field at the fundamental frequency
only. These waves are extremely localized while the nonlocal interaction between the fundamental
and second harmonics prevents a collapse. To a certain extent they can be regarded as residuals of
coexisting hexagon patterns. [S0031-9007(97)04100-8]

PACS numbers: 42.65.Tg, 42.65.Ky, 42.65.Pc

Bright solitary waves or localized structures are among . dA; 9%A, 9%A, . .
the most fascinating objects in nonlinear physics. They ‘37 * ox2 T 5y2 (A + DA + A2 = E,
introduce some discrete or particlelike behavior into oth- 5 5 (1)
erwise continuous systems. In nonlinear optical systern;:a“‘2 + <a A 49 A2> + (As + iy)As + A2 =0
stable solitary waves are found as rather robust self- 9T X2 Y2 ! '
organized light distributions (see, for example, [1]). Es-
pecially, in externally driven optical resonators a propemwhere A; and A, are the detunings of the two fields
excitation of the system may lead to the formation of a disfrom the corresponding resonances scaled in terms of the
crete number of well-defined localized structures on a lowesonance width at the fundamental frequency. Though
intensity background defined by the incident field. Thisthey have nothing to do with the common phase mismatch,
could be the basis of a future all-optical signal processthey play a similar role in Egs. (1). The timg is
ing and storage where one localized structure correspondgsaled in terms of the photon lifetime at the fundamental
to one bit. So far such structures were identified in thefrequency and the spatial variablEsandY in terms of the
transmitted field of resonator geometries with intensity desquare root of the product of the fundamental wavelength,
pendent nonlinearities. Examples are two-dimensional lovelocity of light, and the photon lifetime. Thug is the
calized structures in cavities with saturable focusing [2] orratio of the photon lifetimes and half the ratio of the
saturable absorbing media [3]. refractive indices corresponding to the fundamental and

The question arises of whether stable localized strucsecond harmonics. Throughout the analysis we assume
tures exist also in resonators with a quadratically nonlin« = 1/2, which is a reasonable approximation for realistic
ear material. In conservative systems, e.g., for the field¢onfigurations. The input field of the fundamental is
evolution in a planar waveguide or bulk material, one-E where an arbitrary phase can be transformed away.
and two-dimensional solitary waves could be identified asg'he fields are scaled in terms of the effective nonlinear
symbiotic structures of the fundamental and second haicoefficients arising from the second-order susceptibilities
monics [4—11]. We are interested in similar structuresand the overlap integrals entering into the modal theory
in a planar resonator. Resonators with quadratically nonfl5]. The absolute value of the overlap integrals depends
linear media are well established for frequency up- ancritically on the phase mismatch between the fundamental
down-conversion [12,13]. Here we do not focus on effi-and second harmonics.
cient frequency conversion rather than on the spatiotem- For large absolute values of the detuning of the second
poral evolution of both waves. Thus, in contrast to mostharmonic different signs result in effective focusingy (<
of the earlier investigations, we assume a driving field ab) or defocusing 4, > 0) behavior. This is evident from
the fundamental frequency. neglecting the derivatives in the second of Egs. (1) for

We consider a planar resonator with a quadratically nonlarge A, and substituting ford, in the first of Egs. (1)
linear medium. The frequencies of the incident fundamenleading to a cubic term there.
tal field and the generated second harmonic should be closeWe are interested in localized structures (bright solitary
to resonances. Thus the well-established modal theonwaves evanescent to a finite background of plane wave
can be applied [14,15], which simplifies the analysis consolutions) of Egs. (1). As a prerequisite for such structures
siderably compared to approaches based on forward amde look for bistability of the homogeneous or plane wave
backward propagating fields. The appropriately scaledolutions of Egs. (1) where the lower branch is stable
evolution equations for the transmitted fields and A,  with respect to arbitrary (i.e., homogeneous and spatially
of the fundamental and second harmonics are derived asmodulated) perturbations, and the upper branch is unstable
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with respect to spatially modulated perturbations of theperiod, the modulational instability sets in at the bold line.
plane wave solutions. The plane wave solutions arélane wave solutions which are homogeneously stable de-
obtained equating the derivatives in Egs. (1) to zero [16Ftabilize there with finite period. This leads to the for-

which yields for the moduli of the fields mation of hexagon patterns (see below). Otherwise, the
. 5 modulational instability sets in at the first limit point with

[lAwl™ + 2(y — A1Ay) [Al” + infinite period (continuation of bold line), leaving the plane
(A% + 1)(A§ + yHA > = (A% + y2E?, wave solutions modulationally unstable in domains I, Il

(2) IV (and stable in domain I). In particular, the upper branch
Al = lAn VAT + 2. of the bistable curve is modulationally unstable. Thus the
plane wave hysteresis will not describe the stationary so-
The above polynomial fofA;o|> has three real solutions lutions of the system appropriately.

for certain parameter ranges if The localized structures we are interested in are calcu-

1A, (1A = V3) lated numerically from Egs. (l). assuming rotz?\ti(_)nal sym-
B+ >y, AjA;, >0, (3)  metry in the(X, Y) plane. We find them coexisting with

1 the stable lower branch of the bistable curve, i.e., they

i.e., both detunings must have equal signs, which we adiave a plane wave background (see Fig. 2 for an example).
sume negative for the solutions under consideration to exfhe maximum amplitudes (of the fundamental) of local-
ist. For large negativa, this corresponds to the effective ized structures together with the plane wave background
focusing case, as pointed out above. By means of a lin-

ear stability analysis with spatially homogeneous pertur-

bations of the plane wave solutions we find that there is 8,
bistable behavior, with the plane wave solutions destabi- (a)
lizing and stabilizing at a pair of limit points. A typical

situation for negative\, is depicted in Fig. 1 where the 8
loci of critical points from the linear stability analysis of |

plane wave solutions are displayed in the, |A1|?) plane A1| 4.

[which is equivalent to théA,, E) plane, compare first of
Egs. (2)]. For spatially homogeneous perturbations, i.e.,
pertubations with infinite period, they are stable in domains
I, IV. This stability is referred to as homogeneous stabil-
ity. The plane wave solutions are homogeneously unstable
via limit points in domain Il and via Hopf bifurcations in
domain Il (as to Hopf bifurcations, cf. [17]). Taking into
account spatially modulated perturbations, i.e., with finite
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FIG. 1. Loci of critical points in the(A,,|Ay]?) plane for
plane wave solutions; = —4 andy = 0.5). The thin solid
line marks limit points, the dashed line Hopf bifurcations, and
the bold solid line where the modulational instability sets in.FIG. 2. Amplitude of the (a) fundamental and (b) second
In the shadowed part of domain | localized structures exist orharmonics of a localized structure &, = —4, A, = —1,

a plane-wave background. v = 0.5, andE = 4.6.
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are displayed in Fig. 3 for various values®f with E as  same as homogeneously stable). The branch of stable lo-
control parameter. The larger the negative detuning calized structures ends where the background destabilizes,
the larger the range where they exist. They emanate frome., at the same point in parameter space where they ema-
the plane wave background with infinitesimal amplitudenate from. From Fig. 3 itis evident that they substitute for
subcritically, i.e., unstably, and stabilize at a limit point. the plane wave hysteresis, even outside the range of plane
The stability was checked by means of a two-dimensionalvave bistability or if plane wave bistability does not exist
beam propagation method. At the point where the lo{cf. shadowed part of domain | in Fig. 1 where they exist
calized structures emanate from, the plane waves beconoa a stable plane wave background).
modulationally unstable either with finite or infinite pe- If there is no plane wave bistability, there is a transition
riod. In the latter case this occurs at a limit point (theto a hexagon pattern where the stable localized structures
terminate in parameter space [bold line in Fig. 3(c)].
Thus they can be considered as residuals of (coexisting)
12 = bistable hexagon patterns. This is illustrated in Fig. 4
(a) A, =-4 .
where the coexistence of a hexagon pattern and the plane
wave background is shown. The localized structures
°* may be arranged in an arbitrary way on the plane wave
background.
o The stable localized structures are strongly localized
o with very large amplitudes compared to their background.
O o] In particular, they generate a large amount of second har-
S % monic field in the center. Thus even a frequency doubling
based on stable localized structures could be of some in-
—/ terest for practical applications. In the center of the local-
ized structures their shape corresponds to the one of the
(b) A =25 solitary waves observed for free space propagation in bulk
materials [10]. The resonator influences the tails of the lo-
calized structures. The tails are characterized by mainly
destructive interference of the localized structures with the

1Al
|
o
O

8 ..°° plane wave background. In general, they are surrounded
< ] g' by at least one dark ring (cf. Fig. 2). In most cases the
= o creation of a bright localized structure results even in a

4 — OOO reduction of the total transmission of the system. Every

QT localized structure acts on the plane wave background like
_’/) a perturbation. For a stable background which is essential
for the existence of stable localized structures this pertur-

0 bation decays exponentially. There are two cases: they

(¢ A,=-15 decay in an nonoscillating or oscillating way. If there is
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FIG. 3. Maximum amplitudes of the fundamental of localized X y
structures (filled circles: stable; open circles: unstable) and 80

the plane-wave background (solid lines: stable; dashed lines:

unstable) in terms of the control paramekefor various values FIG. 4. Amplitude of the fundamental demonstrating the
of A, (A; = —4 andy = 0.5). The bold line in (c) marks coexistence of a plane wave and a hexagon patterm\fo+
maximum amplitudes of stable hexagon patterns. —4,A; = —1.5,y =0.5,andE = 4.7.
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