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Optical Solitons Carrying Orbital Angular Momentum
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We predict a new kind of ring-profile solitary wave in nonlinear optical media, with finite orbital
angular momentum. During propagation these fragment into fundamental solitons. Like free Newtonian
particles, these fly off tangential to the ring, vividly demonstrating conservation of orbital angular
momentum in soliton motion. [S0031-9007(97)04148-3]

PACS numbers: 42.65.Tg, 03.40.Kf, 42.65.Ky

Solitons are important in many branches of science [1]scribed by the following system of rescaled equations [4]:
They are nonlinear waves which possess several mechani-
cal and other attributes more commonly associated with
particles. This analogy is usually developed in relation to
their response to external “forces,” i.e., in the context of 1 -
linear momentum; see, e.g., [2]. Here we describe phe- 10 Ey + ZViEz + EE% = BE>.
nomena which are neatly interpreted as solitons carrying
orbital angular momentum, arising from motion oblique A recent review [5] provides a good link to experi-
to the centroid of the system. mental parameters, and to complications such as field

These solitons are produced in the fragmentation of §olarization and walk-off which we neglect here. The
new kind of “doughnut soliton.” They have well-defined paramete is the phase mismatch. # is large enough,
angular momentum which is transformed into orbitalit can be considered to dominate the derivative terms,
angular momentum of the daughter solitons. Below wehen solving forE, and substituting into the equation for
demonstrate this phenomenon in two rather differen, gives the NLS. Again Egs. (2) are not integrable,
nonlinear optical systems. The close correspondence @yt stable solitary solutions persist even for small
the dynamics in the two cases lead us to believe thafar from the NLS limit. We present results fo =
this scenario should be quite general in solitonic systemg in the following: the phenomena we describe are
with enough dimensions to exhibit angular momentumnot very sensitive to3. These solitons are now well
effects. known both experimentally and theoretically; see [4—6]

Our first model, y©®, describes a beam propagating andop cit.
in a saturable self-focusing medium. In the paraxial All quantities in Egs. (1) and (2) are dimensionless,
approximation the evolution i of the field envelope and these scaled units are used throughout the text and
E\(x,y,z) obeys the following dimensionless equationin the figures. Note that both equations have a Galilean
[3] invariance, and so the 2D spatial soliton centered on

|- (x = 0,y = 0) generates a family of equivalent solitons
io.E; + —V2E; + E[|E|]*/(1 + a|E{|*) =0. (1) which “move” with constant velocity in théx,y) plane
2 as the beam propagates. It is such moving solitons which
are important in the following.
Both models are Hamiltonian, and possess phase,

1 d ES
i, Ey + 3V3E1 + EJE; =0,
)

Here %l =?ax +]ay. For a pure Kerr medium
(e = 0) this equation is the well-known nonlinear . ; )
Schrodinger equation (NLS). With the-dimension translational, and rotational symmgtrles. As a conse-
suppressed (1D case) the NLS is integrable, with exad{uence, both conserve the energy integpaltransverse

solutions—solitons—of sech profile. In 2D it has Momentum P, and transverse angular momentu

solitonlike solutions which are unstable, collapsingdefined as follows:0 = [ dxdy(IE\l* + 2|E>), P =

to a singularity [3]. Saturation, described by a finite | dxdy p = [ dxdy;[E\(V. + Ei) + Ex(Vy - E3) —

positive a, prevents this collapse [3]. Thus, thoughc.c], L = [ dxdy# X p, where p is the transverse

it is not integrable, Eq. (1) possesses stable solitarynomentum density and is the transverse radius vector.

wave solutions, localized in 2D, which we will term (For the xy® model set, to zero.)

“solitons.” The angular momentum carried by light beams has
Our second modely®, is physically different, corre- attracted much recent interest. It has been predicted,

sponding to the coupled propagation of an optical fieldand proved experimentally, that Laguerre-Gaussian beams

and its second harmonic in a quadratically nonlineawith azimuthal model indeX carry orbital angular mo-

medium. Their field envelopeg; and E, can be de- mentumlZ per photon [7]. Frequency doubling such a
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beam has been shown [8] to generate a second harmoratong paths tangent to the initial ring. The breakup is
with doubled azimuthal mode indeXx. due to an azimuthal modulational instability. Before

We now show that both our models admit nondiffract-discussing the asymptotic motion of the “daughter” soli-
ing solitary wave solutions with finite angular momen- tons, therefore, we outline our doughnut soliton stability
tum. Such “doughnut solitons” are ringlike solutions of analysis.
(1) or (2) with intensity independent gf Equations (1) As regards radial perturbations, the criterigpQ > 0
and (2) are reduced by the substitutiéf,(z,r,0) =  [9] for stability applies to the doughnut solitons, and is
An(r)exdim(kz + 160)] (m = 1,2) to ordinary differen-  satisfied over most of the existence domain. However,
tial equations which we solve numerically using finite dif- 9,0 > 0 does not imply stability with respect to azi-
ferences. Here = \/x2 + y2, 0 is the polar anglex  muthal perturbations [10], which break the cylindri-
is a real and free parameter, as/jswhich we restrict cal symmetry. We therefore considered azimuthally
to integer values to ensure azimuthal periodiciy;»(r)  perturbed doughnut solitons in the general form
are real functions which satisfy zero boundary conditionsE,, = [A,,(r) + €, (r,z)e’? + €, (r,z)e L0]eimkz+10)
A12(0) = Aj5(+%°) = 0. For the y® model, consider (m = 1,2). Substitution into (1) or (2) and linearization
m = 1 only (here and below). results in partial differential equations fef,(r, z) which

For eachl, y® doughnut solitons exist for all positive we solve numerically using a Crank-Nicholson scheme.
x (which is required for soliton confinement), while We integrate along until the perturbation growth rate be-
for @ the existence condition i& > max0, —8/2). comes stationary and then average it over a further propa-
Doughnut solitons obeyf’ =0 and |L| = l/l0 in  gation distance. This procedure gives us an estimate for
both models. Typical spatial profiles are presented irthe real part of the maximally unstable eigenvalueAl-
Figs. 1(a) and 1(b). ternatively, settingeis = [ui,(r) + ivi,(r)]e?* yields

To investigate doughnut soliton stability under propa-a boundary value problem whose spectrum we find by a
gation, we initialize (1) or (2) with a doughnut finite difference method. The two methods give identical
soliton (plus noise) and simulate the subsequentesults. ~
evolution on both Cartesian and polar grids, using Dependencies of the perturbation growth rate\ Re
split-step algorithms. Both approaches give the samé for various values of/ with other parameters fixed
results. As a further check, conservation of the energyare presented in Figs. 1(c) and 1(d). Physicallynust
momentum, and angular momentum was monitorede an integer to ensure azimuthal periodicity, but it
during the simulations. We find that these doughnut@ppears in the linearized equations as a real parameter,
usually break up into several solitons, which move offand extra insight can be gained by studying growth rates
at constant “velocity” (angle to the axis of propagation)for arbitrary positiveL. In every case there is a positive
growth rate over a range df values, with a well-defined
global maximum forL = L. We find that azimuthal
instability (L # 0) always dominates radial instability

2e (@) which corresponds td = 0. On propagation, we expect
20p 1 8 3 7 the initially uniform field amplitude around the doughnut
15 to developN minima andN maxima, whereN is the
< 10 integer closest td.ax. AS a consequence, the doughnut
should break up int&v solitons. In the cases illustrated
05 belowN = 2[| for the y® model and2|/| + 1 for y?.
0.0 DG L We present results of direct numerical simulation
024681012 02468101214 of Egs. (1) and (2) in Figs. 2 and 3, respectively, for
the cases! = 1,2,3. Figures 2(a)-2(c) and 3(a)—
2or 1er () 3(c) show the real part of the perturbation eigenmode
15 B P S corresponding toL = N computed from the stability
g g 08 A analysis—the real part determines the field amplitude
g0 g 06 modulation pattern which develops around the initial ring.
5 5 04 Figures 2(d)-2(f) and 3(d)—3(f) show the field intensity
08¢ 02 after propagating far enough for the modulational insta-
ootl . Jd oot b L bility to develop. Each of the&V peaks of the eigenmode
024 681012 024868101214 evolves into an intensity peak (a protosoliton). (For

the y® case the field amplitudeg;, E, are localized

of the field amplitudeA(r) for k =1 andl =1, 3, 5, 7

. ' ling.)
(b) Corresponding plots ofd;(r) (full) and A,(r) (dotted) coup . .
for Egs. (2). (c) Perturbation growth rate Revs L for Figures 2(9)—-2(j) and 3(g)-3(j) show the real part
different values ofl, for the y® case;x =1, a = 0.1. of Ei, indicating that adjacent protosolitons are out of
(d) Corresponding plots for the® case;x = 1, 8 = 0. phase (this is less obvious in Fig. 3 becanséds odd).
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FIG. 2. Azimuthal modulational instability development and soliton trajectories,y@rcase:a =01, =1, withl =1,23.
(a)—(c) Real part of the perturbation field pattern with maximal growth rate. (d)—(f) Numerically computed field infEniitgt

a point where protosolitons have developed. (g)—(i) Real paf,cit the same point, showing relative phases of protosolitons.
(k)—(m) Superimposed images of the transverse intensity distribution at differetities, showing soliton trajectories tangential to
the initial ring. Note the change of scale.

It has been noted that out-of-phase solitons repel eadike free Newtonian particles, flying off tangential to
other, while in-phase attract; see, e.g., Ref. [11]. Bythe doughnut soliton ring, and carrying away its angular
symmetry, the resultant force on each protosoliton shoulthomentumvia the obliquity of their paths. The “mass”
thus beradial and outward. In Figs. 2(k)—2(m) and 3(k)— of the nth soliton is its energyQ,, and its angular
3(m) we superimpose a succession of images at differemhomentum is7, X p,, where Q, and p, are now
z, to show the daughter soliton trajectories. Far fromdefinedlocally around thesth soliton’s positiorr,,. Using
being radial, these atangentialto the initial ring. conservation of energy and angular momentum and the
Our interpretation is that the intersoliton forces areGalilean invariance of Egs. (1) and (2) we calculate the
actually negligible, and that the solitons are behavingransverse speed of the solitons to|b¢ = |I|/R, where

14 14
12 12

14
12
10 10 10
8 8 . 8
. 6

4

2

0

0246 8101214 0246 8101214 0246 8101214

0246 8101214

0246 8101214 0246 8101214 0246 8101214 0 10 20 30

FIG. 3. Same as Fig. 2, but for fielg, in the y® model:8 = 0, k = 2.
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R is the radius of the initial doughnut (the same speed foFinally, Fuerstet al. recently reported an experiment [6]
each daughter soliton, independent of its energy). quite close to our model, except that the input is “unrolled”

This estimate is in good agreement with the numerito form an intense line focus. The observed filamentation
cal results shown in Figs.2 and 3, with losses (due tanto up to six stable solitons is encouraging for similar ex-
nonsoliton “radiation”) at most 10%. Thus, in contrast toperiments with finite angular momentum.
recent work [11] in which interacting photorefractive soli- In conclusion, we have shown the existence of a new
tons spiraled around each other, here we have nearly fréeénd of ringlike solitary wave, with finite orbital angular
solitons, with dynamics dominated by angular momentunmomentum. These are unstable on propagation, breaking
conservation. Interactions forces may play a minor roleénto filaments which become solitons, whose number is
in partitioning the energy among the protosolitons, but thestrongly dependent on the input angular momentum. The
exponential localization of the daughter solitons meansolitons fly out tangentially from the initial ring, like
they rapidly cease to interact. free Newtonian particles, and their motion is accurately

Generalizing from the particular cases displayed indescribed using Newtonian conservation laws for energy,
Figs.2 and 3, we find very similar behavior over amomentum, and angular momentum. This scenario is
wide range of parameter values. For both models theather robust, with broadly similar phenomena occurring
sign of I, which defines the direction of the angular over a wide range of parameters, both in quadratically
momentum, fixes the orientation of the soliton trajectoriesnonlinear and in self-focusing media.

The number of daughter solitons depends strongly on This work was partially supported by EPSRC Grant
the azimuthal index, but relatively weakly on all other No. GR/L 27916. D.V.S. acknowledges financial sup-
parameters. port from ORS award scheme.
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