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Optical Solitons Carrying Orbital Angular Momentum

W. J. Firth and D. V. Skryabin*
Department of Physics and Applied Physics, John Anderson Building, University of Strathclyde,

107 Rottenrow, Glasgow, G4 0NG, United Kingdom
(Received 10 April 1997; revised manuscript received 1 July 1997)

We predict a new kind of ring-profile solitary wave in nonlinear optical media, with finite orbital
angular momentum. During propagation these fragment into fundamental solitons. Like free Newtonia
particles, these fly off tangential to the ring, vividly demonstrating conservation of orbital angular
momentum in soliton motion. [S0031-9007(97)04148-3]

PACS numbers: 42.65.Tg, 03.40.Kf, 42.65.Ky
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Solitons are important in many branches of science [
They are nonlinear waves which possess several mech
cal and other attributes more commonly associated w
particles. This analogy is usually developed in relation
their response to external “forces,” i.e., in the context
linear momentum; see, e.g., [2]. Here we describe ph
nomena which are neatly interpreted as solitons carryi
orbital angular momentum, arising from motion oblique
to the centroid of the system.

These solitons are produced in the fragmentation o
new kind of “doughnut soliton.” They have well-defined
angular momentum which is transformed into orbita
angular momentum of the daughter solitons. Below w
demonstrate this phenomenon in two rather differe
nonlinear optical systems. The close correspondence
the dynamics in the two cases lead us to believe th
this scenario should be quite general in solitonic syste
with enough dimensions to exhibit angular momentu
effects.

Our first model,x s3d, describes a beam propagatin
in a saturable self-focusing medium. In the paraxi
approximation the evolution inz of the field envelope
E1sx, y, zd obeys the following dimensionless equatio
[3]

i≠zE1 1
1
2

$=2
'E1 1 E1jE1j

2ys1 1 ajE1j
2d ­ 0 . (1)

Here $=' ­ $i≠x 1 $j≠y . For a pure Kerr medium
sa ­ 0d this equation is the well-known nonlinea
Schrödinger equation (NLS). With they-dimension
suppressed (1D case) the NLS is integrable, with ex
solutions—solitons—of sech profile. In 2D it ha
solitonlike solutions which are unstable, collapsin
to a singularity [3]. Saturation, described by a finit
positive a, prevents this collapse [3]. Thus, thoug
it is not integrable, Eq. (1) possesses stable solita
wave solutions, localized in 2D, which we will term
“solitons.”

Our second model,x s2d, is physically different, corre-
sponding to the coupled propagation of an optical fie
and its second harmonic in a quadratically nonline
medium. Their field envelopesE1 and E2 can be de-
0031-9007y97y79(13)y2450(4)$10.00
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scribed by the following system of rescaled equations [4

i≠zE1 1
1
2

$=2
'E1 1 Ep

1E2 ­ 0 ,

i≠zE2 1
1
4

$=2
'E2 1

1
2

E2
1 ­ bE2 .

(2)

A recent review [5] provides a good link to experi-
mental parameters, and to complications such as fie
polarization and walk-off which we neglect here. The
parameterb is the phase mismatch. Ifb is large enough,
it can be considered to dominate the derivative term
then solving forE2 and substituting into the equation for
E1 gives the NLS. Again Eqs. (2) are not integrable
but stable solitary solutions persist even for smallb,
far from the NLS limit. We present results forb ­
0 in the following: the phenomena we describe ar
not very sensitive tob. These solitons are now well
known both experimentally and theoretically; see [4–6
andop cit.

All quantities in Eqs. (1) and (2) are dimensionless
and these scaled units are used throughout the text a
in the figures. Note that both equations have a Galilea
invariance, and so the 2D spatial soliton centered o
sx ­ 0, y ­ 0d generates a family of equivalent solitons
which “move” with constant velocity in thesx, yd plane
as the beam propagates. It is such moving solitons whi
are important in the following.

Both models are Hamiltonian, and possess phas
translational, and rotational symmetries. As a cons
quence, both conserve the energy integralQ, transverse
momentum $P, and transverse angular momentum$L,
defined as follows:Q ­

R
dxdysjE1j

2 1 2jE2j
2d, $P ­R

dxdy $p ­
R

dxdy i
2 fE1s $=' ? Ep

1d 1 E2s $=' ? Ep
2 d 2

c.c.g, $L ­
R

dxdy $r 3 $p, where $p is the transverse
momentum density and$r is the transverse radius vector.
(For thexs3d model setE2 to zero.)

The angular momentum carried by light beams ha
attracted much recent interest. It has been predicte
and proved experimentally, that Laguerre-Gaussian bea
with azimuthal model indexl carry orbital angular mo-
mentumlh̄ per photon [7]. Frequency doubling such a
© 1997 The American Physical Society
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beam has been shown [8] to generate a second harmo
with doubled azimuthal mode index2l.

We now show that both our models admit nondiffrac
ing solitary wave solutions with finite angular momen
tum. Such “doughnut solitons” are ringlike solutions o
(1) or (2) with intensity independent ofz. Equations (1)
and (2) are reduced by the substitutionEmsz, r , ud ­
Amsrd expfimskz 1 ludg sm ­ 1, 2d to ordinary differen-
tial equations which we solve numerically using finite dif
ferences. Herer ­

p
x2 1 y2, u is the polar angle,k

is a real and free parameter, as isl, which we restrict
to integer values to ensure azimuthal periodicity.A1,2srd
are real functions which satisfy zero boundary condition
A1,2s0d ­ A1,2s1`d ­ 0. For the xs3d model, consider
m ­ 1 only (here and below).

For eachl, x s3d doughnut solitons exist for all positive
k (which is required for soliton confinement), while
for x s2d the existence condition isk . maxs0, 2by2d.
Doughnut solitons obey $P ­ 0 and j $Lj ­ jljQ in
both models. Typical spatial profiles are presented
Figs. 1(a) and 1(b).

To investigate doughnut soliton stability under propa
gation, we initialize (1) or (2) with a doughnut
soliton (plus noise) and simulate the subseque
evolution on both Cartesian and polar grids, usin
split-step algorithms. Both approaches give the sam
results. As a further check, conservation of the energ
momentum, and angular momentum was monitore
during the simulations. We find that these doughnu
usually break up into several solitons, which move o
at constant “velocity” (angle to the axis of propagation

FIG. 1. (a) One-ring solitary wave solutions of Eq. (1): plot
of the field amplitudeA1srd for k ­ 1 and l ­ 1, 3, 5, 7.
(b) Corresponding plots ofA1srd (full) and A2srd (dotted)
for Eqs. (2). (c) Perturbation growth rate Rel̃ vs L for
different values of l, for the x s3d case; k ­ 1, a ­ 0.1.
(d) Corresponding plots for thex s2d case;k ­ 1, b ­ 0.
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along paths tangent to the initial ring. The breakup
due to an azimuthal modulational instability. Before
discussing the asymptotic motion of the “daughter” sol
tons, therefore, we outline our doughnut soliton stabilit
analysis.

As regards radial perturbations, the criterion≠kQ . 0
[9] for stability applies to the doughnut solitons, and i
satisfied over most of the existence domain. Howeve
≠kQ . 0 does not imply stability with respect to azi-
muthal perturbations [10], which break the cylindri-
cal symmetry. We therefore considered azimuthal
perturbed doughnut solitons in the general form
Em ­ fAmsrd 1 e1

m sr , zdeiLu 1 e2
m sr , zde2iLugeimskz1lud

sm ­ 1, 2d. Substitution into (1) or (2) and linearization
results in partial differential equations fore

6
1,2sr , zd which

we solve numerically using a Crank-Nicholson schem
We integrate alongz until the perturbation growth rate be-
comes stationary and then average it over a further prop
gation distance. This procedure gives us an estimate
the real part of the maximally unstable eigenvaluel̃. Al-
ternatively, settinge

6
1,2 ­ fu6

1,2srd 1 iy6
1,2srdgelz yields

a boundary value problem whose spectrum we find by
finite difference method. The two methods give identica
results.

Dependencies of the perturbation growth rate Rel̃ on
L for various values ofl with other parameters fixed
are presented in Figs. 1(c) and 1(d). Physically,L must
be an integer to ensure azimuthal periodicity, but
appears in the linearized equations as a real parame
and extra insight can be gained by studying growth rat
for arbitrary positiveL. In every case there is a positive
growth rate over a range ofL values, with a well-defined
global maximum forL ­ Lmax. We find that azimuthal
instability sL fi 0d always dominates radial instability
which corresponds toL ­ 0. On propagation, we expect
the initially uniform field amplitude around the doughnu
to developN minima andN maxima, whereN is the
integer closest toLmax. As a consequence, the doughnu
should break up intoN solitons. In the cases illustrated
belowN ­ 2jlj for thex s3d model and2jlj 1 1 for x s2d.

We present results of direct numerical simulatio
of Eqs. (1) and (2) in Figs. 2 and 3, respectively, fo
the cases l ­ 1, 2, 3. Figures 2(a)–2(c) and 3(a)–
3(c) show the real part of the perturbation eigenmod
corresponding toL ­ N computed from the stability
analysis—the real part determines the field amplitud
modulation pattern which develops around the initial ring
Figures 2(d)–2(f) and 3(d)–3(f) show the field intensit
after propagating far enough for the modulational insta
bility to develop. Each of theN peaks of the eigenmode
evolves into an intensity peak (a protosoliton). (Fo
the x s2d case the field amplitudesE1, E2 are localized
in the same region of space due to their nonline
coupling.)

Figures 2(g)–2( j) and 3(g)–3( j) show the real par
of E1, indicating that adjacent protosolitons are out o
phase (this is less obvious in Fig. 3 becauseN is odd).
2451
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FIG. 2. Azimuthal modulational instability development and soliton trajectories, forx s3d case:a ­ 0.1, k ­ 1, with l ­ 1, 2, 3.
(a)–(c) Real part of the perturbation field pattern with maximal growth rate. (d)–(f ) Numerically computed field intensityjE1j

2 at
a point where protosolitons have developed. (g)–(i) Real part ofE1 at the same point, showing relative phases of protosolito
(k)–(m) Superimposed images of the transverse intensity distribution at differentz values, showing soliton trajectories tangential t
the initial ring. Note the change of scale.
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It has been noted that out-of-phase solitons repel ea
other, while in-phase attract; see, e.g., Ref. [11]. B
symmetry, the resultant force on each protosoliton shou
thus beradial and outward. In Figs. 2(k)–2(m) and 3(k)–
3(m) we superimpose a succession of images at differe
z, to show the daughter soliton trajectories. Far from
being radial, these aretangentialto the initial ring.

Our interpretation is that the intersoliton forces ar
actually negligible, and that the solitons are behavin
2452
FIG. 3. Same as Fig. 2, but for fieldE1 in the x s2d model:b ­ 0, k ­ 2.
ch
y
ld

nt

e
g

like free Newtonian particles, flying off tangential to
the doughnut soliton ring, and carrying away its angula
momentumvia the obliquity of their paths. The “mass”
of the nth soliton is its energyQn, and its angular
momentum is $rn 3 $pn, where Qn and $pn are now
definedlocally around thenth soliton’s position$rn. Using
conservation of energy and angular momentum and t
Galilean invariance of Eqs. (1) and (2) we calculate th
transverse speed of the solitons to bej $yj ­ jljyR, where
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R is the radius of the initial doughnut (the same speed f
each daughter soliton, independent of its energy).

This estimate is in good agreement with the numer
cal results shown in Figs. 2 and 3, with losses (due
nonsoliton “radiation”) at most 10%. Thus, in contrast t
recent work [11] in which interacting photorefractive soli
tons spiraled around each other, here we have nearly f
solitons, with dynamics dominated by angular momentu
conservation. Interactions forces may play a minor ro
in partitioning the energy among the protosolitons, but th
exponential localization of the daughter solitons mea
they rapidly cease to interact.

Generalizing from the particular cases displayed
Figs. 2 and 3, we find very similar behavior over
wide range of parameter values. For both models t
sign of l, which defines the direction of the angula
momentum, fixes the orientation of the soliton trajectorie
The number of daughter solitons depends strongly
the azimuthal indexl, but relatively weakly on all other
parameters.

While we believe that our results are conceptually an
pedagogically interesting, independent of direct expe
mental verification, it is naturally of interest to addres
the question of experimental observation of these or r
lated phenomena. We already mentioned the work
Shihet al. [11], and several other recent papers report e
periments which relate in some way to our scheme a
are thus generally encouraging, though in each case th
are important and interesting differences.

Tikhonenkoet al. report experiments in rubidium va-
por (a saturable self-focusing medium) [12,13]. They ob
served, and confirmed in simulations, fragmentation
beams with a phase dislocation. They did not consider t
possibility of doughnut solitons. Their experimental re
sults were quite strongly affected by the lack of azimuth
symmetry of their input beam, especially in the casel ­ 2
[13]. For the case ofl ­ 1 their results [12] are quite simi-
lar to ours, with two daughter solitons produced. A sid
view indicates straight-line trajectories with no evidenc
of interaction forces leading to spiraling.

In the x s2d case, Torner and Petrov [14] recently de
scribed numerical simulation for the case where the i
put was a Laguerre-Gaussian forE1 with E2 ­ 0. They
concentrated on the casel ­ 1. Typically three solitons
were output, broadly in accord with our findings, thoug
for quite different initial conditions. Stationary solutions
such as doughnut solitons, we would argue, are the natu
starting point for studies of more general input condition
or
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Finally, Fuerstet al. recently reported an experiment [6]
quite close to our model, except that the input is “unrolled
to form an intense line focus. The observed filamentatio
into up to six stable solitons is encouraging for similar ex
periments with finite angular momentum.

In conclusion, we have shown the existence of a ne
kind of ringlike solitary wave, with finite orbital angular
momentum. These are unstable on propagation, break
into filaments which become solitons, whose number
strongly dependent on the input angular momentum. T
solitons fly out tangentially from the initial ring, like
free Newtonian particles, and their motion is accurate
described using Newtonian conservation laws for energ
momentum, and angular momentum. This scenario
rather robust, with broadly similar phenomena occurrin
over a wide range of parameters, both in quadratical
nonlinear and in self-focusing media.
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