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We formulate a method to solve the coordinate space Faddeev equations for positive energies.
method employs hyperspherical coordinates and analytical expressions for the effective pote
at large distances. Realistic computations of the parameters of the resonances and the st
functions are carried out for the Borromean halo nucleus6He sn 1 n 1 ad for Jp ­ 06, 16, 26.
[S0031-9007(97)04096-9]

PACS numbers: 21.45.+v, 11.80.Jy, 21.60.Gx, 31.15.Ja
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The three-body continuum problem has been the su
ject of numerous investigations [1]. Tremendous progre
has been achieved, but still a number of problems rema
[2]. Many approximate solutions have been invente
without an emerging established general procedure. D
ferent treatments are usually needed for short-range a
long-range interactions and for energies below or abo
possible two-body thresholds [3–5]. It is necessary, b
not always easy, to distinguish between inaccurate n
merical results and shortcomings of the basic interaction

During the last decade a new class of weakly boun
three-body systems, nuclear halos, attracted enormous
tention [6–8]. If no binary subsystem is bound, they ar
called Borromean nuclei. These concepts are general a
of interest in many subfields of physics [9,10]. Accumu
lating data from such systems demand analyses heav
relying on the properties of their continuum spectra [11
However, technical difficulties related to the precise beha
ior at large distance are substantial and so far unsolved

Recently a new method with explicit analytical treat
ment of the large distances [12] was used to obtain boun
state solutions to the Faddeev equations. The meth
is very powerful as seen by the successful investig
tion of the Efimov effect [9,13]. The purpose of this
Letter is to generalize the method to obtain continuu
state solutions. In order to illustrate the efficiency of th
method we perform a realistic computation of a three-bod
Borromean halo system.

Method.—Thekth particle has massmk and coordinate
rk . The two-body potentials areVij. We shall use
the three sets of Jacobi coordinates (xi , yi) and the
corresponding three sets of hyperspherical coordinatesr,
ai , Vxi, Vyi) [7,8,13]. The kinetic energy operator is then
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where the angular momentum operatorsl̂2
x and l̂2

y are
related to thex andy degrees of freedom.
0031-9007y97y79(13)y2411(4)$10.00
b-
ss
in
d
if-
nd
ve
ut
u-
s.
d
at-
e
nd
-
ily
].
v-
.
-
d-
od
a-

m
e
y

(

The total wave function is now expanded in a comple
set of hyperangular functions

Csr, Vd ­
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. (3)

Each of the three componentsf
sid
n is expressed in the

corresponding system of Jacobi coordinates, and th
satisfy for eachr the three Faddeev equations
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wherehi, j, kj is a permutation ofh1, 2, 3j. In the absence
of bound subsystems the eigenvaluesln approach at
large distances the hyperspherical spectrum obtained
Vjk ­ 0, i.e., lnsr ! `d ­ KnsKn 1 4d, where Kn is
odd or even natural numbers depending on the parity.

The expansion coefficientsfnsrd satisfy the equations√
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The coupling termsP andQ approach zero at least as
fast asr23. For Borromean systems we can then choos
those solutionsCn0 to Eq. (3) where the large-distance
(r ! `d boundary conditions forf

sn0d
n are given by [14]

fsn0d
n srd ! dn,n0Fs2d

n skrd 2 Sn,n0Fs1d
n skrd , (6)

wherek2 ­ 2mEyh̄2 and F
s6d
n are related to the Hankel

functions of integer order by

Fs6d
n skrd ­

r
mr

4h̄2 H
s6d
Kn12skrd

!

r
m

2pkh̄2 exp

"
6ikr 6

ip
2

√
Kn 1

3
2

!#
.

(7)

The continuum wave functions are orthogonal and no
malized to delta functions in energy.
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By diagonalization of theS matrix we obtain eigen-
functions and eigenphases. A rapid variation with ener
indicates a resonance. A precise computation of re
nances and related widths can be done by use of the c
plex energy method, where Eq. (5) is solved forE ­ Er 2

iGy2 with the boundary condition f
sn0d
n ­ dn,n0 3p

mry4h̄2 H
s1d
Kn12skrd. These solutions correspond t

poles of theS matrix [14].
Large-distance behavior.—Equation (4) can be solved

for large distances, where for short-range potentials
partial waves, excepts waves, decouple. We expan
each component on the hyperspherical basis with
quantum numbershlx , ly , L, sx, sy , S, Jj where L, S, and
J are the total orbital angular momentum, total spin, a
total angular momentum, respectively. We express two
the Faddeev componentssj, kd in the coordinates related
to the third Jacobi setsid and project out the partial wave
with a given set of angular momentum quantum numbe
This operation, leading from theith to the jth Jacobi
coordinates, is denoted byRi,j .

For large r only small a contribute to the terms
proportional to Vjksrid in Eq. (4). This is due to the
assumption of short-range potentials and becauseri ~

r sinai . Let us first explicitly consider the three couple
components,f

sid
L , characterized bylxi ­ 0 and lyi ­ L,

therefore with the same total orbital angular momentumL,
d
a
-

L
-

t
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and furthermore with the same spin structure. We expa
in powers ofai and find the leading order contribution
from the transformation of such terms to be

Ri,j

"
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#
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s21dLf
sjd
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sins2wj,id
, (8)

tanwi,j ­ s21dp

s
mksmi 1 mj 1 mkd

mimj
, (9)

wherep is the parity of the permutationhi, j, kj. Nonzero
lxi values had produced higher powers ofai in Eq. (8).
Thus, the eigenvaluesl related to the other partial
waves decouple at large distances and quickly appro
the hyperspherical spectrum. These waves assume
asymptotic behavior on a distance scale defined by
range of the interactions. On the other hand, thes
waves couple and feel consequently the interactions o
a distance defined by the scattering lengths.

We shall now concentrate on a system consisting
two neutrons and a spin-zero core. This model direc
applies to6He, a halo nucleus for which a large amoun
of experimental data exist. The model is also a go
approximation for another halo nucleus,11Li [8].

Because of the antisymmetry between neutrons
three coupled components (lxi ­ 0, lyi ­ L, i ­ 1, 2, 3)
reduce to two and the angular Faddeev equations [Eq.
are to leading order ina (larger) given by
√

2
≠2

≠a
2
1

1
LsL 1 1d
cos2 a1

1 r2yNNsr sina1d 2 n2

!
f

s1d
L sr, a1d ­ 22a1s21dLr2yNNsr sina1dCs1d

L , (10)

√
2

≠2

≠a
2
2

1
LsL 1 1d
cos2 a2

1 r2yNcsr sina2d 2 n2

!
f

s2d
L sr, a2d ­ 22a2s21dLr2yNcsr sina2dCs2d

L , (11)

wheren2 ­ l 1 4, yNNsx1d ­ V23sx1ym23d2myh̄2, yNcsx2d ­ V13sx2ym13d2myh̄2, mm
2
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For large r the short-range potentialsr2ysr sinaid
vanish for all ai except in a narrow region aroun
zero. Because of this rescaling the effective range
proximation becomes better withr increasing and there
fore any potential with the same scattering length a
effective range would lead to the same results.
us then in the region of larger use square well po
tentials Vjksrd ­ 2V

sid
0 Qsr , Rid, or equivalently ex-

pressed by the reduced quantitiesyjksxd ­ 2y
sid
0 Qsx ,

Xi ­ Rimjkd, where the parameters are adjusted to rep
duce the given two-body scattering lengths and effec
ranges. The solutions are then accurate approximation
our original problem at distances larger than2Ri [15].

The potentialsysr sinaid are zero whenai . a
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0 ;
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2

≠2

≠a
2
i

1
LsL 1 1d
cos2 ai

2 n2

!
f

sid
L sr, aid ­ 0 , (13)
-

d
t

-
e
to

and the solutions, vanishing atai ­ py2, are given by
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The potentialsysr sinaid are for larger only finite
whenai , a

sid
0 ø 1. Then Eqs. (10) and (11) are√
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where the wave functions inC
sid
L in Eq. (12) must be

f
si,IId
L . The solutions to Eq. (16) are then
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Matching the solutions, Eqs. (14) and (17), and the
derivatives atai ­ a

sid
0 gives a linear set of equations for

A
sid
L and B

sid
L . Physical solutions are then only obtaine

when the corresponding determinant is zero. This is t
quantization condition forl and the eigenvalue equation
determining the asymptotic behavior oflsrd.

Realistic computations for6He.—The practical imple-
mentation of the method is tested on6He considered as
two neutrons and a4He core. The two-body interactions
reproduce accurately thes-, p-, and d-phase shifts up
to 20 MeV. Furthermore, a diagonal three-body forc
S3 exps2r2yb2

3 d, is added in Eq. (5) for fine tuning. The
range of the three-body force is given in terms of the hype
radius. For6He, r ­ 2 fm corresponds roughly to con-
figurations where the neutrons are at the surface of t
a-particle. The idea of using the three-body force is to in
clude effects beyond those accounted for by the two-bo
interactions.

Several phase equivalent parametrizations are poss
for each radial shape of the two-body potential. They di
fer in the number of two-body bound states of which th
lowests state is occupied by the core neutrons and ther
fore subsequently has to be excluded in the computatio
The results are very close after fine tuning by use of th
three-body interaction [16]. We shall therefore only us
the potentials without bound states. All possibles, p, and
d waves are included. The number of Jacobi polynomia
in the basis expansion is carefully chosen to give accura
numerical results up to a distance, typically around 40 fm
where the asymptotic behavior is reached and from th
on the asymptotic solutions, Eqs. (14) and (17), are use

The accurate low-energy continuum spectrum calcul
tions require integration of the radial equations up to di
tances of the order of 10 times the sum of the scatteri
lengths. For then 1 n 1 a system this is about 180 fm.

In Fig. 1 we show the two (strictly decoupled ) angula
eigenvalue spectra for12 and21. The structure is com-
plicated at small distances where avoided level crossin
are seen. The lowest level has in both cases an attrac
pocket unable to bind the system, but still responsible f
several resonances. At large distance the structure is s
pler as the hyperspherical spectrum is approached. In
computation we use the asymptotic behavior, also sho
on Fig. 1. This improvement of the procedure is abs
lutely essential when accurate results are required.

The phase shifts for the cases in Fig. 1 are shown
Fig. 2. The rapid variation and the subsequent crossi
of py2, seen at four energies, are the traditional sign
of resonances. It is also possible to have poles of theS
matrix without phase shifts crossingpy2.

In Table I we give for a few spins and parities the tw
lowest S-matrix poles obtained by the complex energ
ir
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FIG. 1. The lowest angular eigenvaluesln as a function ofr
for angular momentumJp ­ 12 (solid lines), and21 (dashed
lines) for 6He. The dotted lines are the large-distance asym
totic behavior. The neutron-neutron and the neutron-4He inter-
actions are from [16] withsV sld

c , r sld
c d ­ s48.2 MeV, 2.33 fmd,

s247.40 MeV, 2.30 fmd, s221.93 MeV, 2.03 fmd for s, p,
and d waves, respectively. The spin orbit parameters a
sVso , rsod ­ s225.49 MeV, 1.72 fmd. Maximum Kn values up
to 142 are used.

method. The radial equations were integrated numerica
up to rmax ­ 180 fm where the1yr3 tail of the effective
potential becomes negligible. The numerical solutio
were then matched atrmax with the Hankel functionsHs6d.
Precisely at the pole only theHs1d function must match the
numerical solution. We show the results for two differe
three-body forces, i.e., fine tuned to the ground state ene
and to the21 resonance. The two cases in Table I c
be considered to give the realistic range of the possi
variation of the three-body force. Apart from the lowe
21 state all these resonances reside above the effec

FIG. 2. The eigenphases corresponding to the lowestl val-
ues obtained after diagonalization of theS matrix for Jp ­ 12

(solid lines) andJp ­ 21 (dashed lines). The interactions ar
the same as in Fig. 1 where a diagonal three-body inter
tion, S3 exps2r2yb2

3 d with S3 ­ 231 MeV, b3 ­ 2.061 fm, is
added in all partial waves.
2413



VOLUME 79, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 29 SEPTEMBER1997

so-

e
es.
m-
ar-
ev
the
is-
lues
lly
d

ifts,

a

M

d

e
4,

k,

dy

d

.

ev.

ev.

d

ev.

dy

ys.
TABLE I. The real and imaginary valuessEr , Gd (in MeV)
of the two lowestS-matrix poles E ­ Er 2 iGy2 for 6He
for various spins and parities. The interactions used are
same as in Fig. 1. The three-body interaction parameters
S3 ­ 27.55 MeV, b3 ­ 2.9 fm and S3 ­ 231 MeV, b3 ­
2.061 fm, respectively, for the first two and the last two
columns. Correspondingly the excitation energies areEp ­
Er 1 0.95 MeV andEp ­ Er 1 1.54 MeV.

Jp Er G Er G Er G Er G

01 0.94 0.64 1.46 0.83 0.62 0.56 1.16 0.67
02 2.07 0.74 · · · · · · 2.07 0.74 · · · · · ·
11 1.62 0.74 2.55 0.86 1.62 0.74 2.55 0.86
12 1.11 0.42 1.67 0.58 0.95 0.38 1.43 0.56
21 1.02 0.37 1.23 0.45 0.845 0.093 1.05 0.4
22 0.90 0.34 1.82 0.57 0.90 0.34 1.82 0.57

centrifugal barrier and must therefore correspond to rath
smooth structures in the cross sections.

An observable less sensitive to the large-distance b
havior is related to the excitations from the ground sta
We show in Fig. 3 the lowest three strength function
Sl

01!Jp sEd, as functions of energy both for plane wave
and for the proper continuum wave functions. We fin
91%, 60%, and 70% of the strength below 5 MeV, respe
tively, for monopole, dipole, and quadrupole excitation
The peak is very pronounced for21 reflecting the observed
resonance of width 0.11 MeV at 0.82 MeV. Above th
plane-wave background for12 is seen a peak at 0.95 MeV

FIG. 3. The strength functions, SsldsEd ­
P

n 3
jknJp j jMsEldj j01lj2 for 6He as a function of energy
for transitions from the ground state to01 (dotted), 12

(solid), and 21 (dashed) excited continuum states. The o
erator is MsEl, md ­ r2 and

P3
i­1 qir

l
i Ylmsr̂id, respectively,

for l ­ 0 and 1, 2. The units are the corresponding sum
rules k01jr4j01l 2 k01jr2j01l2 ­ 749 fm4 for l ­ 0 and
q2

as2l 1 1d k01jr2l
a j01lys4pd ­ 1.31 e2 fm2 and 8.19 e2 fm4,

respectively, forl ­ 1, 2, where qa ­ 2e is the 4He charge
and ra is the 4He distance from the6He center of mass. The
interactions are the same as in Fig. 1 with a diagonal thre
body interaction added in all partial waves. The parameters
S3 ­ 27.55 MeV, b3 ­ 2.9 fm for 01 and S3 ­ 231 MeV,
b3 ­ 2.601 fm for 12 and21. The smooth curves correspond
to plane waves for the continuum states.
2414
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and a shoulder at about 1.8 MeV. This significant12 en-
hancement results from the two overlapping broad re
nances; see theS-matrix poles in Table I. It should be
detectable although in the same energy region as the21

resonance. The nuclear01 strength function resembles th
plane wave result reflecting broader underlying structur

In conclusion, we have formulated a method to co
pute low-energy three-body continuum spectra for
bitrary short-range potentials by solving the Fadde
equations in coordinate space. The angular parts of
equations are treated purely numerically at short d
tances, whereas the large-distance behavior of eigenva
and eigenfunctions is computed essentially analytica
for all partial waves. Realistic computations for groun
state properties, transition matrix elements, phase sh
resonance energies, and widths ofJp ­ 06, 16, 26 are
carried out for the Borromean halo nucleus6He. The
establishedJp ­ 21 resonance is found together with
number of other broader resonances.
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