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Computations of Three-Body Continuum Spectra
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We formulate a method to solve the coordinate space Faddeev equations for positive energies. The
method employs hyperspherical coordinates and analytical expressions for the effective potentials
at large distances. Realistic computations of the parameters of the resonances and the strength
functions are carried out for the Borromean halo nucléds (n + n + «) for J™ = 0*,1%,2%.
[S0031-9007(97)04096-9]

PACS numbers: 21.45.+v, 11.80.Jy, 21.60.Gx, 31.15.Ja

The three-body continuum problem has been the sub- The total wave function is now expanded in a complete
ject of numerous investigations [1]. Tremendous progresset of hyperangular functions
has been achieved, but still a number of problems remain = 3 ¢(i)( Q)
[2]. Many approximate solutions have been invented V(p, Q) = —5 an(p)z LV AL 3
. . . s p5/2 — = Sln(zal)
without an emerging established general procedure. Dif n=1 i=1

ferent treatments are usually needed for short-range a i) .
y g rEach of the three componentﬁ,(f) is expressed in the

long-range interactions and for energies below or abov di ¢ t Jacobi dinat d th
possible two-body thresholds [3—5]. It is necessary, putorresponding system of Jacobi coordinates, an ey
atisfy for eaclp the three Faddeev equations

not always easy, to distinguish between inaccurate nue _
merical results and shortcomings of the basic interactions. . D 2m > ¢;(f)
2 2

During the last decade a new class of weakly bound (A% = Aa) sin2a;) + P Vi Z sina;) -
three-body systems, nuclear halos, attracted enormous at- l = 4)
tention [6—8]. If no binary subsystem is bound, they are
called Borromean nuclei. These concepts are general anghere{i, j, k} is a permutation of1,2,3}. In the absence
of interest in many subfields of physics [9,10]. Accumu-of bound subsystems the eigenvalugs approach at
lating data from such systems demand analyses heavilgrge distances the hyperspherical spectrum obtained for
relying on the properties of their continuum spectra [11].V;, = 0, i.e., A,(p — ©) = K, (K, + 4), where K,, is
However, technical difficulties related to the precise behavedd or even natural numbers depending on the parity.
ior at large distance are substantial and so far unsolved. The expansion coefficien{§,(p) satisfy the equations

b}

Recently a new method with explicit analytical treat- 92 A, + 15/4 YmE
ment of the large distances [12] was used to obtain bound- (——2 + ”—2 — O — —2>fn(p)
state solutions to the Faddeev equations. The method ap p h

is very powerful as seen by the successful investiga- _ Z

tion of the Efimov effect [9,13]. The purpose of this -

Letter is to generalize the method to obtain continuum )

state solutions. In order to illustrate the efficiency of the The coupling terms> and @ approach zero at least as

method we perform a realistic computation of a three-body@st @sp ~~. For Borromean systems we can then choose

Borromean halo system. those solutions¥,, to Eq. (3) where the large-distance
Method—The kth particle has mass, and coordinate (p — %) boundary conditions fof,(f) are given by [14]

r,. The two-body potentials aré/;;. We shall use WY (-) B (+)

the three sets of Jacobi coordinates;, ;) and the fi(p) = duwFy (kp) = SuwFy " (kp).  (6)

corresponding three sets of hyperspherical coordinates (\where x2 = 2mE/R? and F*) are related to the Hankel
a;, (i, Q) [7,8,13]. The kinetic energy operator is then fynctions of integer order by

<an’ + 2Pnn’ ai)fn’(p) . (5)
p

n'#n

72 <, 82 15 A? . =

©2m ap 4p p 4n2
A I 0 R B m i 3
2 ; X Yy .
= —— —= Sin2a) + — + -4, — exp = =+ —|K,+ =]
sin2a) 0a? (2a) sifa  coda 27 Kk h? tep 2 2
2) (7)
where the angular momentum operatdfsand ?3 are  The continuum wave functions are orthogonal and nor-
related to thex andy degrees of freedom. malized to delta functions in energy.
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By diagonalization of theS matrix we obtain eigen- and furthermore with the same spin structure. We expand
functions and eigenphases. A rapid variation with energyn powers ofa; and find the leading order contribution
indicates a resonance. A precise computation of resdrom the transformation of such terms to be
nances and related widths can be done by use of the com- () L)
plex energy method, where Eq. (5) is soIvedEo# E, — [¢L (p’a-f):| _ ED7 L (p.9)i)

Yl sinRa;) sin2¢; ;)

il'/2  with the boundary condmonfn —6,,,,1,><

w/mp/4ii2HKNH(Kp). These solutions correspond to p mg(m; + mj + my)

poles of theS matrix [14]. tang;; = (=1) P NG
Large-distance behavio~Equation (4) can be solved !

for large distances, where for short-range potentials aNvherep is the parity of the permutatiofi, j, k}. Nonzero

partial waves, except waves, decouple. We expand L. values had produced higher powersafin Eq. (8).

each component on the hyperspherical basis with théhus, the eigenvalues. related to the other partial

quantum number$l,, l,, L, s, sy,S,J} whereL, S, and waves decouple at large distances and quickly approach

J are the total orbital angular momentum, total spin, andhe hyperspherical spectrum. These waves assume the

total angular momentum, respectively. We express two osymptotic behavior on a distance scale defined by the

the Faddeev components, k) in the coordinates related range of the interactions. On the other hand, the

to the third Jacobi sdt) and project out the partial wave waves couple and feel consequently the interactions over

with a given set of angular momentum quantum numbers2 distance defined by the scattering lengths.

This operation, leading from théh to the jth Jacobi We shall now concentrate on a system consisting of

coordinates, is denoted ®; ;. two neutrons and a spin-zero core. This model directly
For large p only small @ contribute to the terms applies to®He, a halo nucleus for which a large amount

proportional toVj(r;) in Eq. (4). This is due to the of experimental data exist. The model is also a good

assumption of short-range potentials and becayse approximation for another halo nucledsli [8].

p Sina;. Let us first explicitly consider the three coupled Because of the antisymmetry between neutrons the

componentsg;”, characterized by,; = 0 andl,; = L,  (hree coupled componenté(= 0, I,; = =1,2,3)

therefore with the same total orbital angular momentym, "€duce to two and the angular Faddeev equatlons [Eq. (4]
| are to leading order i (largep) given by

. (8

92 LIL +1 : 1 : 1
(_aa2 + c(:o§ al) + p*unn(p sine;) — Vz)d’é)(/?,al) = —2a;(=D*p*vnn(p S'”al)C(L), (10)
1
92 L(L+1) ) . 2\, @ L 2 . @)
T2 + 0% o + punc(p sinas) — v7 |o (p, az) = —2ax(—1)"p~unc(p Sinaz)Cr -, (11)
2

wherer? = A + 4, unn(x1) = Va3 (x1/p23)2m/ 1%, vne(x2) = Vis(xa/p13)2m/ B2, mps = mjme/(m; + my),

(2) (1) 2 -
(1) oL (p, o) @ ¢ (p,e) | oL (p,d) 5
C, =2——"=, C; = - + - ) = s = . 12
L sin2¢) L sin2¢) sin(2) o= ¢, ¢ 0 (12)

For large p the short-range potentialg?v(p sina;) |
vanish for all a; except in a narrow region around
zero. Because of this rescaling the effective range apand the solutions, vanishing at = /2, are given by
proximation becomes better wifh increasing and there- (i11) )= ADp ‘ 14
fore any potential with the same scattering length and ¢ (p, i) L P, @), (14)
effective range would lead to the same results. Let

L
us then in the reglon of large use square well po- P, (v,a) = cod a ( o _1 ) sin|:v<a — 1>:|
da COS« 2
tentials Vi (r) = VO @(r < R;), or equwalently ex- 15)

pressed by the reduced quantitieg (x) = —vo @(x <

X; = R;uji), where the parameters are adjusted to repro- The potentialsu(p sina;) are for largep only finite

duce the given two-body scattering lengths and effectivavhena; < a(()) <« 1. Then Egs. (10) and (11) are

ranges. The solutions are then accurate approximations to 22
our original problem at distances larger thzky [15]. (—— + L(L+1)— pzv(l) (l)(p a;)
The potentialsv(p sina;) are zero wheny; > a(()') = da; A
arcsinX;/p). Then Egs. (10) and (11) are = 2ai(—1)Lp2v(()l c’,  (e)
(_3_22 L+ V2>¢£i) pia) — 0. (13) W?,%e the wave functions i€}’ in Eq. (12) must be
da; cos «; ¢;" . The solutions to Eq. (16) are then
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A . 2, @
£ p.@) = BY sinlkia) — 2a(-1" P3¢l "
A 17) 2
k} = —[L(L +1) - pzv(()l) - 7] (18)

Matching the solutions, Egs. (14) and (17), and their
derivatives aty; = a(()’ gives a linear set of equations for =
. =

A(L') and B(L’). Physical solutions are then only obtained
when the corresponding determinant is zero. This is the
quantization condition fon and the eigenvalue equation
determining the asymptotic behavior &fp). 0
Realistic computations fdtHe.—The practical imple-
mentation of the method is tested &He considered as
two neutrons and &He core. The two-body interactions o 20 40 60 80 100
reproduce accurately the, p-, and d-phase shifts up p (fm)
to 20 MeV. 2Furthermor§, a diagonal three-body force,rig 1. The lowest angular eigenvalugs as a function of
S;exp(—p?/b3), is added in Eq. (5) for fine tuning. The for angular momenturd™ = 1~ (solid lines), and2* (dashed
range of the three-body force is given in terms of the hyperlines) for®He. The dotted lines are the large-distance asymp-
radius. ForHe, p = 2 fm corresponds roughly to con- totic behavior. The neutron-neutron and the neuttida-inter-

. - ctions are from [16] with(V®, rV) = (48.2 MeV, 2.33 fm),
figurations where the neutrons are at the surface of th 47,40 MeV, 2.30 fm),  (~21.93'MeV.,2.03 fm) for 5. p.

a-particle. The idea of using the three-body force is to in-3ng 4 waves, respectively. The spin orbit parameters are
clude effects beyond those accounted for by the two-bodw . r,,) = (—25.49 MeV, 1.72 fm). Maximum K, values up
interactions. to 142 are used.

Several phase equivalent parametrizations are possible
for each radial shape of the two-body potential. They dif-method. The radial equations were integrated numerically
fer in the number of two-body bound states of which theup to p.x = 180 fm where thel /p3 tail of the effective
lowests state is occupied by the core neutrons and therepotential becomes negligible. The numerical solutions
fore subsequently has to be excluded in the computationvere then matched at,., with the Hankel functiong&l ).

The results are very close after fine tuning by use of thérecisely at the pole only thié(*) function must match the
three-body interaction [16]. We shall therefore only usenumerical solution. We show the results for two different
the potentials without bound states. All possiblep, and  three-body forces, i.e., fine tuned to the ground state energy
d waves are included. The number of Jacobi polynomialsind to the2* resonance. The two cases in Table I can
in the basis expansion is carefully chosen to give accuratee considered to give the realistic range of the possible
numerical results up to a distance, typically around 40 fmyariation of the three-body force. Apart from the lowest
where the asymptotic behavior is reached and from the®™ state all these resonances reside above the effective
on the asymptotic solutions, Eqgs. (14) and (17), are used.

The accurate low-energy continuum spectrum calcula- 90
tions require integration of the radial equations up to dis-
tances of the order of 10 times the sum of the scattering
lengths. Forther + n + « system this is about 180 fm. 45

In Fig. 1 we show the two (strictly decoupled ) angular
eigenvalue spectra far- and2*. The structure is com-
plicated at small distances where avoided level crossings
are seen. The lowest level has in both cases an attractive;ﬁ
pocket unable to bind the system, but still responsible for &

L
50

several resonances. At large distance the structure is sim-z
pler as the hyperspherical spectrum is approached. In the
computation we use the asymptotic behavior, also shown
on Fig. 1. This improvement of the procedure is abso-

16

'/'/1;|"/)/‘V\'|""
‘”;*AZ///_

s (degrees)

-45

[

. . s —
lutely essential when accurate results are required. =90 o e ‘\*44"" =
The phase shifts for the cases in Fig. 1 are shown in Eneray (MeV)
Fig. 2. The rapid variation and the subsequent crossin

of 7/2, seen at four energies, are the traditional signg!G- 2. The eigenphases corresponding to the lowestl-

. . ues obtained after diagonalization of thienatrix forJ™ = 1~
of resonances. Itis also possible to have poles ofsthe (solid lines) and/™ = 2* (dashed lines). The interactions are

matrix without phase shifts crossing/2. N the same as in Fig. 1 where a diagonal three-body interac-
In Table I we give for a few spins and parities the tWotion, 5 exp(—p2/b3) with S5 = —31 MeV, by = 2.061 fm, is

lowest S-matrix poles obtained by the complex energyadded in all partial waves.
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TABLE I. The real and imaginary value&,,T') (in MeV)  and a shoulder at about 1.8 MeV. This significanten-
of the two lowestS-matrix polesE = E, — iI'/2 for °He  hancement results from the two overlapping broad reso-

for various spins and parities. The interactions used are thg;nces: see th§-matrix poles in Table I. It should be
same as in Fig. 1. The three-body interaction parameters a i '

Ss = —7.55 MeV. by = 2.9 fm and S5 — —31 MeV, bs — '‘Setectable although in the same energy region afthe
2.061 fm, respectively, for the first two and the last two resonance. The nucle@r strength function resembles the
columns. Correspondingly the excitation energies Afe=  plane wave result reflecting broader underlying structures.
E, + 095 MeV andE* = E, + 1.54 MeV. In conclusion, we have formulated a method to com-
J© E, r E T E, r E, T pute low-energy three-body continuum spectra for ar-
0 004 0064 146 083 062 056 L6 bitrary shqrt-range_ potentials by solving the Faddeev
0- 207 074 - 007 074 ... equations in coordinate space. The gngular parts of _the
I+ 162 074 255 086 162 074 255 0.86 cduations are treated purely numerically at short dis-
1~ 111 042 167 058 095 038 143 056 lances, whereas the large-distance behavior of eigenvalues
2+ 1.02 037 123 045 0845 0.093 1.05 0.40and eigenfunctions is computed essentially analytically
2~ 090 034 1.82 057 090 034 1.82 0.57 for all partial waves. Realistic computations for ground
state properties, transition matrix elements, phase shifts,
centrifugal barrier and must therefore correspond to ratherlesqnance energies, and widths Jof = 07,1%,2% are
smooth structures in the cross sections. carneql out for the Borromean_halo nucletide. The
. . established/™ = 2* resonance is found together with a
An observable less sensitive to the large-distance be:
number of other broader resonances.

havior is related to the excitations from the ground state. .
S . A. Cobis acknowledges the support from EU, the HCM
We show in Fig. 3 the lowest three strength funCtlons’Contract No. ERBCHBGCT930320.

Sd_,-(E), as functions of energy both for plane waves
and for the proper continuum wave functions. We find
91%, 60%, and 70% of the strength below 5 MeV, respec-
tively, for monopole, dipole, and quadrupole excitations.
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