## Long-Range Effects on Polymer Diffusion Induced by a Bounding Interface

X. Zheng, M. H. Rafailovich, and J. Sokolov

Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2275

Y. Strzhemechny and S. A. Schwarz

Physics Department, Queens College of The City University of New York, Flushing, New York 11376

B.B. Sauer

E. I. DuPont de Nemours & Company, Inc., Experimental Station, Wilmington, Delaware 19880

## M. Rubinstein

## Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (Received 31 March 1997)

We have measured the diffusion of deuterated polystyrene of molecular weight  $90 \times 10^3$  in various matrices of hydrogenated polystyrene as a function of distance from an attractive interface, oxide-covered silicon. Surprisingly long-range effects are observed. Diffusion rates an order of magnitude slower than bulk persist up to  $10R_g$  (radius of gyration) from the interface of either the diffusant or matrix polymers. The slowdown is independent of matrix molecular weight over a broad range. However, mixing of polymers within the matrix strongly influences the rates of diffusion. [S0031-9007(97)03536-9]

PACS numbers: 61.41.+e, 66.10.Cb

Kinetics and thermodynamic properties of fluids near interfaces and in confined geometries can be substantially different from their bulk counterparts. Recent studies have focused on the behavior of mechanical properties [1], glass transitions [2-7], diffusion in thin films [8-10] and colloidal particles [11], and phase separation [12–14]. Central issues in all these cases are the following: By what mechanism and over what distance is the influence of the bounding interfaces propagated? In this Letter, we report the results of an investigation of polymer melt diffusion near an attractive interface. Using a direct profiling technique, secondary ion mass spectrometry (SIMS), we are able to measure diffusion rates of deuterium-labeled polymers as a function of distance of the diffusant from the interface. The main result is the direct observation of very long range effects on the polymer dynamics, with diffusion rates showing order of magnitude reductions relative to the bulk even at distances up to 10 times the radius of gyration,  $R_g$ , of either the labeled tracer polymers or the matrix polymers.

Previously we have shown [9] that for polymers in direct contact with an attractive interface-hydrogenated polystyrene (hPS) near native oxide covered silicon—the diffusion coefficient *D* for escape from the wall is on the order of 100 times slower than bulk diffusion and has a different molecular weight dependence,  $D_{\text{near-surface}} \propto (M_W)^{-3/2}$  compared to  $(M_W)^{-2}$  in the bulk. We interpreted these results in terms of a reptation picture where monomer-surface contacts ( $\sim N^{1/2}$  per chain, where *N* is the number of monomers) restrict the chain mobility and modify the frictional force per chain from the bulk be-

havior,  $F_{\rm friction} \propto N$  to one where  $F_{\rm friction, surface} \propto N^{1/2}$ . This model suggests that once chains have diffused more than  $R_g$  the influence of the surface should be greatly reduced. However, closer examination of the depth profiles shown in Ref. [9] shows that the concentration profiles are well fit by the reduced diffusion coefficients even though they extend for distances far greater than  $R_g$ . These observations were confirmed by subsequent time dependence experiments on PS films of molecular weight,  $90 \times 10^3$ , which showed that the mean diffusion coefficient increased only by a factor of 2, from  $1.85 \times 10^{-16}$  to  $4.15 \times$  $10^{-16}$  cm<sup>2</sup>/sec after annealing at 153 °C for 40 min and 24 h, respectively. For the longer anneal, typical polymers diffused ~1000 Å. Since  $D_{\text{bulk}} \approx 4 \times 10^{-14} \text{ cm}^2/\text{s}$  at 153 °C [15] and  $R_g(90 \times 10^3 \text{ hPS}) = 78 \text{ Å}$ , it became clear that the surface was inducing a long-range effect. Similar results were obtained with  $200 \times 10^3$  hPS. A possible explanation for this behavior could be a model where polymers moving randomly will return to the wall, get stuck for a long time, and escape again. If the residence time is sufficiently long, set diffusion would be slowed down for long times. The dynamics for such a "multiple hit and stick" model have been worked out by Bychuk and O'Shaughnessy [16]. In between surface "hits," the polymers are postulated to diffuse at the bulk rate.

In order to test this theory, we prepared multilayer samples (Fig. 1) where a labeled layer of deuterated polystyrene (dPS) was placed in a matrix of hPS at varying distances  $X_W$  from the interface. If the above model is applicable, the diffusion rates for short times, before the dPS has reached the wall, should be bulklike.



FIG. 1. Profiles of dPS volume fraction vs distance for samples annealed at 153 °C for times from 600 to 7200 s. Curves through the data are diffusion calculations to fit the slopes on either side of each peak with a single average diffusion constant. The inset shows the sample geometry.

Dynamic SIMS experiments, using a rastered Ar<sup>+</sup> ion beam of energy 2 keV to sputter through the samples at a rate of approximately 400 Å/h, were run to obtain volume fraction versus distance profiles of the diffusing species. The setup is described in Ref. [17]. Samples were vacuum annealed at 153 °C for times ranging from 10 min to 2 h. Three surface preparations of the Si substrates were used: (1) native oxide covered (used as received from the supplier, Semiconductor Processing Co., after confirming with x-ray reflectivity on selected samples that the surfaces had 10-15 Å thick oxide lavers and were free of adsorbed organic layers), (2) covered with oxide grown with a modified Shiraki technique [18], and (3) hydrogen passivated surface [18]. Atomic force microscopy was used to verify that the films did not dewet the substrates or roughen following annealing. Reproducible results were obtained, the three surfaces exhibiting the same diffusion behavior within experimental errors. We note that partial oxidation of the hydrogen passivated surfaces might explain their similarity to the oxide surfaces. The majority of samples reported in this study used native oxide covered Si. The SIMS profiles, for  $90 \times 10^3$  dPS in a matrix of  $770 \times 10^3$  hPS  $(R_g = 235 \text{ Å})$ , are shown in Fig. 1, and the corresponding average diffusion coefficients are plotted in Fig. 2. The profiles are asymmetric, the diffusion rates on the side nearest the SiO interface being considerably smaller than those on the vacuum side. The solid lines in Fig. 1 are calculated diffusion profiles [19] fitting the SiO side and vacuum side slopes to different diffusion constants. The D's in the figure are for the vacuum side and therefore represent an average over distance from the SiO ranging typically from  $X_W$  to  $X_W$  + (400 ± 200 Å). The results indicate the dynamics are dramatically slowed out to  $X_W > 1000$  Å, more than  $10R_g$  of the  $90 \times 10^3$  dPS  $(R_g = 78 \text{ Å})$ . As can be seen in Fig. 1, dPS polymers have not reached the interface and, therefore, no direct



242



FIG. 2. The average diffusion constants, fitted to the tails of the profiles of Fig. 1, as a function of  $X_W$ .

contacts with the wall are necessary to effect a slowdown. We have also checked in several experiments with initial dPS volume fractions of 20% that our measured D's are close to the tracer limit. These experiments gave D's within 10% - 20% of the values in Table I.

Long-range forces between the diffusing polymers and the substrate, such as van der Waals forces, are not expected to be significant here due to the large distances from the interface. Excluding a direct effect of the interface, we can assume that the matrix polymers mediate the polymer-surface interaction. We performed two types of experiments to probe this effect: (1) Variation of the matrix molecular weight, with  $X_W$  of the initial dPS labeled layer fixed, to test the influence of matrix polymer size, and (2) split layers, where  $X_W$  is again fixed but the layer of total thickness  $X_W$  is divided into two sublayers of thicknesses X, Y with  $X + Y = X_W$  (see Fig. 4). The X and Y layers are deposited separately onto the silicon, the first, X, being spun cast from a toluene solution, the second, Y, floated from distilled water on top of X using a layer spun on a glass slide. The purpose of these experiments is to modify the degree of mixing, or entanglements, within the layer intervening between the interface and the layer at  $X_W$ . Polymers in the X layer are slowed due to direct contacts with the interface, and we ask to what degree may subsequent layers not in direct contact be slowed down when the X and Y layers are not initially entangled.

In the first set of experiments we prepared samples with a 90  $\times$  10<sup>3</sup> dPS layer 130 Å thick set at  $X_W \cong$  520 Å and varied the molecular weight of the hPS matrix from  $9 \times 10^3$  to  $8 \times 10^6$ . Samples were annealed at 153 °C for times varying from 15 min to 1 h. Less extensive sets of data were obtained for  $X_W = 388$  and 810 Å (at T = 135 °C, these samples were bilayers, the outer hPS layer not being present). The corresponding diffusion constants (representing an average, since the profiles are asymmetric) are plotted in Fig. 3. The data show an approximately constant D for a large intermediate range of matrix molecular weights, from  $27 \times 10^3$  to  $1 \times 10^6$ , and

TABLE I. Average diffusion constants from Fig. 1 and "effective"  $T_g$ 's as a function of  $X_W$  for 90 × 10<sup>3</sup> dPS at T = 153 °C.

| $X_w$ (Å)                            | 76    | 126   | 260   | 388   | 521   | 860   | 1882  |
|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| $D (10^{-16} \text{ cm}^2/\text{s})$ | 2.2   | 4.6   | 15.5  | 27.5  | 43.0  | 110.0 | 255.0 |
| $T_g^{\rm eff}$ (°C)                 | 125.5 | 122.6 | 117.5 | 114.8 | 112.6 | 107.5 | 102.6 |

an increase in D for both low and high matrix  $M_W$ . The low  $M_W$  region is qualitatively consistent with observed bulk trends [20], where the onset of the constraint release mechanism [21] and lowered glass transition,  $T_g$ , lead to increasing D with decreasing molecular weight. However, these effects are much reduced near the interface. For example [19], constraint release alone would account for  $D (90 \times 10^3 \text{ into } 27 \times 10^3 \text{ matrix})$  to be more than 10 times greater than D (90  $\times$  10<sup>3</sup> into 770  $\times$  10<sup>3</sup> matrix), in contrast to the far weaker dependence shown near the interface. The upturn in D for high matrix  $M_W (\geq 1 \times 10^6)$ is quite different from bulk tracer diffusion, which reaches an asymptotic value for matrix  $M_W$ 's greater than about  $200 \times 10^3$  in the case of  $90 \times 10^3$  PS tracer [20], and runs counter to the expectation that larger matrix polymers will propagate the surface effect out to greater distances. However, for these matrices, the width of the matrix polymers,  $\sim 2R_g$ , is becoming larger than  $X_W$  so that the increased diffusion rates of the  $90 \times 10^3$  may reflect the tendency of the matrix chains near the wall to swell back to bulk dimensions.

The split layer experiments were done using  $X_W$  fixed at 388 Å with 90 × 10<sup>3</sup> dPS diffusing into hPS matrices of three different molecular weights: 27 × 10<sup>3</sup>, 90 × 10<sup>3</sup>, and 770 × 10<sup>3</sup>, having bulk  $R_g$  of 44, 80, and 235 Å, respectively. The first part of the split layer, of thickness X ranging from 30 Å to the full  $X_W$ , was annealed in vacuum for 1 h at 153 °C to relax the polymer configurations induced by the spinning process. Subsequent layers of thicknesses (388 Å – X) of hPS, 130 Å of 90 × 10<sup>3</sup> dPS, and approximately 2300 Å of hPS were floated on top and annealed for 30 min at 153 °C. The results (Fig. 4)



FIG. 3. The average diffusion constants of  $90 \times 10^3$  dPS at 153 °C as a function of hPS matrix molecular weight for various  $X_W$  thicknesses. Sample geometry as in Fig. 1.

indicate that the diffusion at distance  $X_W$  increases significantly, nearly approaching bulk values, for small X. For larger X, the D's rapidly decrease to an asymptotic value independent of matrix molecular weight (for the matrix  $M_W$  ranging from 27 to  $770 \times 10^3$ ). The span of X over which D decreases and levels off correlates well with the  $R_g$  of the matrix polymers (see Fig. 4). As a further check, a sample was prepared with X = 38 Å (annealed for 1 h at 153 °C), Y = 350 Å, and the composite X + Ylayer was annealed for 10 h at 153 °C to restore equilibrium entanglements within the entire layer. The 90  $\times 10^3$  dPS layer and bulk layer were then prepared and annealed as above. The diffusion constant obtained was equal to that for a single deposited 388 Å layer, within experimental error; i.e., all memory of the original structure was removed.

These last experiments emphasize the importance of mixing in the layer separating the wall from the diffusing layer at  $X_W$ . For short times, the layers having  $X < R_g$  present a fairly impenetrable gel-like coating of the surface which is unentangled with the outer layers. The contact interactions across this interface between these chemically identical layers are much weaker than between PS and the silicon substrate, leading to more rapid diffusion in the outer layers. This is similar to our previous observation [9] that covering the silicon with an ultrathin layer of polyvinyl pyridine (PVP) (immiscible with PS) also led to a large increase in the rate of near-surface diffusion.

To conclude, we return to the question of how a bounding wall influences particle dynamics within the fluid.



FIG. 4. Results of split layer experiments for  $X_W = 388$  Å showing the diffusion coefficient of  $90 \times 10^3$  dPS at 153° for various X layer thicknesses. Inset shows sample geometry. Arrows indicate  $R_g$  values for the  $27 \times 10^3$ ,  $90 \times 10^3$ , and  $770 \times 10^3$  hPS matrix polymers.

If we examine the expression for the diffusion constant of entangled polymers in the reptation picture, we may consider the possible factors which could change near an interface. The reptation model expression [22] is D = $(k_{\rm B}TN_e/3N^2f_0)$ , where  $k_{\rm B}$  is Boltzmann's constant, T =temperature,  $N_e$  = number of monomers between entanglements, N = number of monomers per chain, and  $f_0$  is a monomeric friction coefficient. Polymer conformations enter through  $N_e$  and certainly might be different close to the wall. Bruinsma [23] has considered a two-fluid model of polymer transport near an interface consisting of a near-immobile group of chains having direct contacts, and a more mobile group of chains reptating through the network of the first group. The model of Ref. [23] may be applicable here, with a series of interlocking loops—at the interface causing  $N_e$  to be far smaller than the bulk value-providing a mechanism to propagate the influence of the surface. The other factor which may be modified, if the above reptation expression is valid, is the friction coefficient  $f_0$ . Though  $f_0$  is believed to be due primarily to local molecular interactions, it depends on temperature and rapidly increases as the glass transition temperature  $T_g$  is approached. If the  $T_g$  of the PS films is increased, as reported by Wallace et al. [3], we would expect the dynamics to be slowed even above  $T_g$ , since the value  $(T - T_g)$  is thereby reduced. The temperature dependence of D in bulk PS has been found [15] to be of the Williams-Landel-Ferry (WLF) form:  $log(D/T) = A - B/(T - T_0)$ , where A, B are numerical constants and  $T_0$  is a reference temperature. This WLF form may be fitted to the data of Fig. 2 assuming only  $T_0$  changes (with the corresponding  $T_g$  changing by an equal amount). The resulting "effective"  $T_g$ 's are listed in Table I. Some recent measurements of  $T_g$  in thin PS films indicate shifts of this order for  $T_g$  but disagree on whether  $T_g$  increases or decreases. It has been suggested that  $T_g$  is increased near strongly attractive walls and decreased near the free surface. At the moment, there is no consensus among experimental groups. Even if the actual  $T_g$  is different than the bulk values, the question arises as to why a local phenomenon, where the motional behavior on a scale of a few tens of monomers is believed to be relevant, should be changed at large distances from the wall. Baschnagel and Binder [7] have identified perturbations of polymer structure extending greater than  $R_g$  from Monte Carlo simulations in thin films, and Thompson et al. [5] performed molecular dynamics simulations which exhibit wall-induced glass transitions with shifts from the bulk depending on the magnitude of the wall-monomer interaction. A large length scale may enter through a divergent characteristic length identified with the approach of the glass transition. It may also be that the films do not have a  $T_g$  shift, but that the

dynamics are "solidlike" or "glasslike" due to the effects of contacts with the wall. Possibly, the mechanism is long-range dynamic correlations of chains mediated by the incompressible melt, giving the friction coefficient a nonlocal character which is influenced by the boundary condition on monomers at the extended two-dimensional boundary (i.e., the "stickiness" of the wall). Clearly, more experimental and theoretical work needs to be done.

We thank H. L. Frisch, B. O'Shaughnessy, and M. Turner for useful discussions, and O. Bahr and T. Petersen for experimental support. Support from the NSF (DMR-9316157 and MRSEC, DMR-9632525) and the DOE (DE-FG02-93ER45481) is gratefully acknowledged.

- J. V. Alsten and S. Granick, Macromolecules 23, 4856 (1990); H.-W. Hu and S. Granick, Science 258, 1339 (1992).
- [2] J.L. Keddie, R.A.L. Jones, and R.A. Cory, Faraday Discuss 98, 219 (1994); Europhys. Lett. 27, 59 (1994).
- [3] W. E. Wallace, J. H. van Zanten, and W. L. Wu, Phys. Rev. E 52, R3329 (1995).
- [4] J.A. Forrest et al., Phys. Rev. Lett. 77, 2002 (1996).
- [5] P. A. Thompson, G. S. Grest, and M. O. Robbins, Phys. Rev. Lett. 68, 3448 (1992).
- [6] A. K. Chakraborty and P. M. Adriani, Macromolecules 25, 2470 (1992).
- [7] J. Baschnagel and K. Binder, Macromolecules 28, 6808 (1995); P. Ray and K. Binder, Europhys. Lett. 27, 53 (1994).
- [8] J.G. van Alsten, B.B. Sauer, and D.J. Walsh, Macromolecules 25, 4046 (1992).
- [9] X. Zheng et al., Phys. Rev. Lett. 74, 407 (1995).
- [10] B. Frank, A.P. Gast, T.P. Russell, H.R. Brown, and C. Hawker, Macromolecules **29**, 6531 (1996); B.B. Sauer and D.J. Walsh, Macromolecules **27**, 432 (1994).
- [11] C. Cheung *et al.*, Phys. Rev. Lett. **76**, 2531 (1996); X. Qiu *et al.*, Phys. Rev. Lett. **65**, 516 (1990).
- [12] R. A. L. Jones et al., Phys. Rev. Lett. 66, 1326 (1991).
- [13] G. Brown and A. Chakrabarty, Phys. Rev. A 46, 4829 (1992).
- [14] G. Krausch et al., Phys. Rev. Lett. 71, 3669 (1993).
- [15] P.F. Green and E.J. Kramer, J. Mater. Res. 1, 202 (1986).
- [16] O. V. Bychuk and B. O'Shaugnessy, Langmuir 10, 3260 (1994); Phys. Rev. Lett. 74, 1795 (1995).
- [17] S. A. Schwarz et al., Mol. Phys. 76, 937 (1992).
- [18] G.S. Higashi et al., Appl. Phys. Lett. 56, 656 (1990).
- [19] J. Crank, *The Mathematics of Diffusion* (Oxford University Press, Oxford, 1975), 2nd ed.
- [20] P.F. Green and E.J. Kramer, Macromolecules 19, 1108 (1986).
- [21] W. W. Graessley, Adv. Polym. Sci. 47, 67 (1982); J. Klein, J. Polym. Prepr. 22, 105 (1979).
- [22] P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
- [23] R. Bruinsma, Macromolecules 23, 276 (1990).