
VOLUME 79, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 22 SEPTEMBER1997

DNA
n the
odel.
ent of
ed in
Denaturation of Heterogeneous DNA

Dinko Cule and Terence Hwa
Department of Physics, University of California at San Diego, La Jolla, California 92093-0319

(Received 3 January 1997)

The effect of heterogeneous sequence composition on the denaturation of double-stranded
is investigated. The resulting pair-binding energy variation is found to have a negligible effect o
critical properties of the smooth second-order melting transition in the simplest (Peyrard-Bishop) m
However, sequence heterogeneity is dramatically amplified upon adopting a more realistic treatm
the backbone stiffness. The model yields features of “multistep melting” similar to those observ
experiments. [S0031-9007(97)04133-1]

PACS numbers: 87.15.Da, 68.35.Rh, 68.45.Gd, 82.65.Yh
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The denaturation or melting of double-stranded DN
molecules upon changes in ambient temperatures or
vent conditions is a subject which has had a long histo
[1,2]. In early theoretical studies [1,3], DNA melting wa
described by the nearest-neighbor 1D Ising model wh
yielded only a sharpcrossoverbut not a thermodynamic
phase transition [4]. A smooth second-order transiti
was later demonstrated in a modified version of the 1
Ising model [5], after including an effectivelong-rangein-
teraction arising from the configurational entropy gain
the denatured segments. Experimentally, a purified DN
sample containing a unique sequence and length is fo
to exhibit distinct multistep melting, where the “melting
curves” (to be specified below) exhibit sharp features co
sisting of plateaus of variable sizes separated by steps [2
These fine features have been attributed to the melt
of individual “domains” associated with variations in th
composition of the nucleotide sequences, since the bind
energies of the two kinds of base pairs, adenine-thym
(AT) and guanine-cytosine (GC), are significantly differe
[7]. The effect of binding energy variation has been stu
ied previously using the nearest-neighbor 1D Ising mod
[1,8]. In this paper, we investigate this effect in deta
by incorporating the important configurational entropy
the denatured strands in a systematic way. We find t
sequence heterogeneity itself is not sufficient to produ
multistep melting, with the phase transition remaining
be of the second order. Nevertheless, heterogeneity
be dramatically amplified by small changes in the detail
form of the configurational entropy, leading to the appa
ent multistep melting behavior for finite length sequence

A simple way of incorporating the entropy of the
single-stranded segments is to model the two sin
strandsr

s1d
n and r

s2d
n by random walks [9], with the in-

dex n denoting thenth base pair. The binding of com-
plementary base pairs is described by a potential funct
Vnsrs1d

n 2 r
s2d
n d, whereVn has a hard core (reflecting the

repulsion of the phosphate backbone) and an attrac
(short-ranged) tail mimicking the hydrogen bond betwe
each base pair. Further taking into account the directio
specificity of the hydrogen bonds, one obtains the follow
0031-9007y97y79(12)y2375(4)$10.00
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ing Hamiltonian for a double strand ofN base pairs:

bH ­
1
T

NX
n­1

Ω
K
2

s yn11 2 ynd2 1 Vns ynd
æ

. (1)

In Eq. (1), yn is the component of the relative displace
ment field r

s1d
n 2 r

s2d
n along the direction of hydrogen

bond and is the important degree of freedom we will fo
cus on. The quadratic coupling describes the stiffness
the backbone.

The model (1) without then dependence in the interac-
tion V is known as the Peyrard-Bishop (PB) model [10]
Although PB specifically used the Morse potential forV ,
the qualitative behavior of the system is well known for a
large class of short-ranged potentials, via a mapping to
fictitious quantum mechanics problem [11]. Let the dept
of the (asymmetric) “potential well”V s yd be U0 and the
range of attraction bea; then a continuous phase tran-
sition [12] occurs at a critical temperatureTm, given by
the conditionT2

mys2Ka2d , U0. This phase transition is
characterized by a discontinuity in the specific heatC and
an algebraic divergence in the average separation distan
, between the base pairs,, , sTm 2 T d2n with n ­ 1.
The inverse of the pair distance,21 is the order parameter
of this transition and can be directly related (see below)
the fraction of unbroken base pairs, a key experiment
observable [2].

Next, we describe the effect of a variable interactio
Vns yd which is fixed by the DNA sequence. For sim-
plicity, we restricty to the positive real axis, and model
the interaction as a product of a short-ranged functio
das yd [with das0 , y & ad ø 1 and das y . ad ! 0]
and a variable strengthVn [13]. We assume the sequence
to be random and short-range correlated, with an avera
pairing energyVn ­ 2U0, and the fluctuationdVn ­
Vn 2 V described by its variancedVmdVn ­ D dm,n.
(Here, the overbar denotes average over the ensemble
random sequences.) Some important conceptual issue
understand are whether the melting transition survives
the presence of the quenched-in variable interaction, a
if so, what is the nature of the transition.
© 1997 The American Physical Society 2375
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These issues have been studied in the past decad
the context of some closely related systems, e.g., o
describing the adsorption of a Gaussian random h
eropolymer by a solid surface [14–18] (withyn being
the distance of thenth monomer from the surface and
Vns yd giving the interaction of that monomer with the
surface), and another describing the wetting of a 1D int
face from a random substrate [19–21]. It is known th
the melting transition still exists and the effect of quenc
in randomness ismarginal in the renormalization group
sense. This conclusion is straightforwardly reached,
instance, by considering the perturbative effect of a we
disorder on the melting temperature: Assuming that t
effect of randomness is negligible in the smallD limit,
then fluctuation in base separationyn is correlated along
the backbone up to the lengthj , ,2. At a temperature
T slightly below the melting temperatureTm of the pure
system,j , T 2

mysTm 2 T d2 becomes very long. Varia-
tion in the interaction energyU0 averaged over the scale
j is dU ,

p
Djyj ø

p
D sTm 2 T dyTm, which leads to

a shift in the melting temperature of the order

dTm ~ sTm 2 Td
p

DyU0 . (2)

The effect of randomness is revealed by comparingdTm

with dT ; Tm 2 T in the limit dT ! 0. Randomness
is irrelevant if dTm ø dT, but is non-negligible if
otherwise. The problem at hand is “marginal” sinc
dTm , dT.

Much effort has been devoted to resolving whether t
randomness is marginally relevant or marginally irreleva
Early studies [14,19] suggest that it is marginally irrele
vant, such that critical properties of the melting transitio
are the same as those of the pure case (up to logarith
corrections). However, more recent renormalizatio
group studies [20,21] find the randomness to
marginally relevant, indicating that the scaling prop
erties should be different from the pure case beyond
crossover lengthj3 , expfc U2

0 yDg with c , Os1d, or
equivalently if the reduced temperature is within th
Ginzburg temperaturedT3 , j

21y2
3 . The actual scaling

behavior in the asymptotic “strong coupling” regime
however not accessible from these studies.

The theoretical results have so far not been carefu
tested numerically: In Ref. [19], evidence in support
the irrelevancy of randomness was reported, while t
contrary was claimed in Ref. [20]. The numerics in th
latter work was in fact rather qualitative; no attempt
characterizing the alleged strong coupling regime w
made. The numerics in Ref. [19] was flawed on th
other hand by assuming a particular value for the melti
temperature which was later shown to be incorrect [2
We have thus reinvestigated the nature of the melti
transition numerically.

As in Refs. [19,20], we use a transfer matrix calculatio
[24]. We start with the transfer integral solution of th
“wave function”fns yd [10],
2376
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fn11s yd ­
Z

y0

exp

∑
2

K
2T

s y 2 y0d2 2
Vns yd

T

∏
fns y0d .

(3)
To speed up the numerics, we placed the recursion
lation (3) on a lattice such thaty takes on only non-
negative integer values, from0 to L. We further restricted
yn11 2 yn [ f0, 61g. The potential functionVns yd has
the simple formVns y ­ 0d ­ 2U0 6

p
D with equal

probability, andVns y . 0d ­ 0. To characterize the sys-
tem, we compute (for each configuration of the rando
potential Vn) the “steady-state” probability distribution
Pns yd of finding yn at y. This is obtained (up to nor-
malization) as the product of the forward- and backwar
propagated wave functions (see also [20]). Sufficien
long segments (,104) close to the two ends of the se
quence are truncated to ensure that the results are
dependent of the choice of boundary conditions. Fro
the steady-state distribution, we compute the mome
k ym

n lL ;
PL

y­0 ym Pns yd, and then average over differ-
ent realization of the randomness (or average overn for
very long sequences). For example, the average pair d
tance, is given by, ­ k ynlL.

We first identify the critical point by monitoring
the L dependence of the dimensionless variance,dy ­
fk y2

nlL 2 k ynl2
Lg1y2y,, which should beL independent

at the critical point. This is shown in the inset in
Fig. 1(a) for systems withU0 ­ 21, D ­ 1, K ­ 1,
andN ­ 105, averaged over ten independent realizatio
of random sequences. The parameters are chosen s
that j3 , Os1d and the system is readily in the stron
coupling regime. (Note also that the unit ofn in our
simplified discrete model is no longer one base pa
With the above parameters, the length of our syste
corresponds to a sequence of several thousand b
pairs of the PB model [10], with620% pair-to-pair
variation in the binding energy.) Using the empiricall
obtained value ofTm, we plot the pair distance, vs the
reduced temperature in Fig. 1(a). An exponentn ­ 1 is

FIG. 1. (a) The average pair distance, for various transverse
system sizes. The melting temperatureTm ø 3.07 is deter-
mined from the plot in the inset. (b) The melting curves
showing the fraction of unbroken pairsPs0d. Scaling laws with
n ­ 1 are shown by the dotted straight lines.
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obtained, indicating the absence of anomalous scaling.
further test the relevancy of the randomness, we dire
measure the average fraction of unbroken pairs,Pns0d,
which should scale as1y, , sTm 2 Td if the randomness
is irrelevant. However, as pointed out in Ref. [22
relevancy of the randomness would imply addition
singularity in the distributionPns y ! 0d, resulting in
the anomalous scaling ofPns0d. This quantity is plotted
against the reduced temperature in Fig. 1(b). Aga
we find no evidence of anomalous scaling. Since o
calculations are performed in the strong-coupling regim
we conclude that either the randomness is irrelevant or
asymptotic scaling in the strong-coupling regime is alm
indistinguishable from the pure problem. Similar resu
have been obtained for a variety of different parame
choices.

While the ultimate resolution to the issue of th
relevancy of sequence heterogeneity may require
larger systems with good statistics, it is clear from Fig
that the melting transition encountered here is rat
smooth. Indeed, the numerically obtained melting cur
for a singlesample is very smooth [see Fig. 3(b) below
without any noticeable fine structures. The smoothn
of the transition is irrefutable even in the specific he
curves used to support the relevancy of randomn
in Ref. [20]. This makes the experimentally observ
multistep melting behavior rather puzzling. To investiga
the possible cause of multistep melting, we recall a rec
numerical finding [25] that fluctuation effect in DNA
melting is much enhanced upon adopting a more reali
form of the backbone stiffness, to reflect the fact that
DNA is significantly more rigid in the double-strande
conformation. An explicitlyy-dependent stiffness

Ks yn, yn11d ­ K1 1 sK2 2 K1d e2s yn1yn11dy2b (4)

was used in Ref. [25] to match the stiffness of the dou
strandK2 (for y ­ 0) and the single strandK1 , K2 (for
y ! `). Numerical solution [25] of the homogeneou
version of (3) using the modified stiffnessKs y0, yd yields
what appears to be afirst-ordermelting transition.

Let us examine the effect of the variable stiffness
some detail. To facilitate the analysis, we modify the e
ponential factor in (4) toe2ynyb . This does not cause an
significant differences sinceyn ø yn11. With the modi-
fied form of Ks yd, one can straightforwardly perform th
transfer integral (3), which in the continuum limit yield
a Schrödinger-like equation forfns yd, with an effective

potential eVns yd ­ Vns yd 1
T
2 lnfKs ydyK1g 1 const, as

well as an effective diffusion coefficientTy2Ks yd. Let us
focus on the form ofeV : In addition to the original attrac-
tive potentialVns yd of rangea, there is now arepulsive
term of the orderU1 ­ sTy2d lnsK2yK1d . 0 of rangeb.
The latter plays the role of an (entropic)barrier and is
the main effect introduced by the variable stiffnessKs yd.
Qualitative features of the homogeneous system can
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FIG. 2. (a) Solution of the homogeneous PB model with
variable backbone stiffness. The order parameter,21 still
vanishes linearly with the reduced temperature. (b) The slo
a has an exponential dependence on the ratiobya. Tm itself
changed by,50% over the range ofbya studied.

obtained by solving the Schrödinger equation using a co
stant stiffnessK and a toy potential functioneV s yd on
the half spacey . 0, with eV ­ 2U0 1 U1 for y , a,eV ­ 1U1 for a , y , b, and eV ­ 0 for y . b. We
find the order parameter,21 of the homogeneous prob-
lem still to have the form,21 ­ a ? sTm 2 T dyTm near
Tm, although the amplitudea increasesexponentiallyfor
increasingU1 or bya. Our finding is verified numeri-
cally (Fig. 2) by exactly diagonalizing the transfer integra
(3) for the homogeneous problem, using the Morse p
tential for V s yd and Eq. (4) forKs y, y0d as in Ref. [25].
Note that the width of the transition region scales as1ya.
Thus, for the parameter valueK2yK1 ­ 1.5 andbya ø 5
used in Ref. [25] [corresponding toa ø 100 according to
Fig. 2(b)], the transition region is extremely narrow, mak
ing it very much first-order-like in appearance.

The heterogeneous system is studied next using
lattice transfer matrix algorithm, incorporating the to
potential eV as described above, withU0 ! U0 6

p
D.

We usedU1 ­ 0.2 and bya ­ 3 such that thea value
of the homogeneous system is,100 as in Ref. [25]. For
such large values ofa’s, the melting curves forindividual
samples display drastic multistep behavior even for rath
long sequences ofN ­ 105; a typical example is shown in
Fig. 3(a). The very smooth melting curve for the origina
heterogeneous model without barrier (a , 1) is shown
in Fig. 3(b) for comparison. As in the pure PB mode
with entropic barrier, we expect that the heterogeneo

FIG. 3. Melting curves for asinglerandom sequence: (a) with
and (b) without the entropic barrier (see text).
2377
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FIG. 4. Density plot of the probability distributionPns yd for
a system with entropic barrier as in Fig. 3(a). Darker sha
correspond to larger probability.

model still undergoes a second-order melting transit
with self-averaging melting curve at sufficiently larg
scales. We can understand the sharp steps in Fig.
as resulting from the first-order-like transition of variou
domainswith different local transition temperaturesTm,
shifted by variations in the average localU0 along the
sequence: Because of the small width of the transit
region (,1ya), a sequence length ofOsa2d is necessary
just to reduce the typical shift inTm down to the size
of the transition region. Thus, the crossover length
the onset of self-averaging is expected to be a factor
Osa2d longer for the system with barrier. The exponent
dependence ofa on the barrier makes the multiste
feature easily observable for realistic sequence lengths

The domain structures are readily visualized by plotti
the full probability distributionPns yd at various tempera-
tures close to the melting point (Fig. 4). It is seen that is
lated segments of the sequence unbind already at as m
as10% below the nominal transition temperature, indica
ing that the equilibrium configuration of the DNA consis
of localized bubbles of denature regions. To test whet
the experimentally observed multistep features are ind
the result of an effective barrier induced by the variab
stiffness, one needs to determine very accurately the f
of Ks yd.

To summarize, we have shown that variations in ba
pair binding is by itself insufficient to generate the mu
tistep melting behavior for heterogeneous DNA stran
However, the inclusion of a variable backbone stiffness
sults in an entropic barrier which yields a sharp, first-ord
like transition for the homogeneous system, and multis
melting for the heterogeneous system. Asymptotically,
transition is still expected to be second order; however,
crossover length is exponentially long.

We are grateful to M. Lässig, H. Li, and B. H. Zimm fo
helpful discussions, and especially to S. M. Bhattachar
and S. Mukherji for important comments. This research
supported by a Sloan research fellowship and a Beckm
young investigator award.
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