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Denaturation of Heterogeneous DNA
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The effect of heterogeneous sequence composition on the denaturation of double-stranded DNA
is investigated. The resulting pair-binding energy variation is found to have a negligible effect on the
critical properties of the smooth second-order melting transition in the simplest (Peyrard-Bishop) model.
However, sequence heterogeneity is dramatically amplified upon adopting a more realistic treatment of
the backbone stiffness. The model yields features of “multistep melting” similar to those observed in
experiments. [S0031-9007(97)04133-1]

PACS numbers: 87.15.Da, 68.35.Rh, 68.45.Gd, 82.65.Yh

The denaturation or melting of double-stranded DNAing Hamiltonian for a double strand &f base pairs:
molecules upon changes in ambient temperatures or sol- N
vent conditions is a subject which has had a long history B = 1 Z
[1,2]. In early theoretical studies [1,3], DNA melting was T
described by the nearest-neighbor 1D Ising model which

yielded only a shargrossoverbut not a thermodynamic |n Eq. (1), y, is the component of the relative displace-
phase transition [4]. A smooth second-order transition, .t field D9 along the direction of hydrogen

was later demonstrated in a modified version of the 10,14 and is the important degree of freedom we will fo-

Ising r.nodel.[5'], after including an eff(.-:'cti\!eng-rangein? cus on. The quadratic coupling describes the stiffness of
teraction arising from the configurational entropy gain ofio hackbone.

the denatured segments. Experimentally, a purified DNA

sample containing a unique sequence and length is foung . v/ is known as the Peyrard-Bishop (PB) model [10].

to exhibit distinct multistep melting, where the “melting Although PB specifically used the Morse potential for
curves” (to be specified below) exhibit sharp features cong, o qualitative behavior of the system is well known for a
sisting o_f plateaus of variable sizes se.parated by steps [z,qtgrge class of short-ranged potentials, via a mapping to a
These fine features have been attributed to the melting.ious quantum mechanics problem [11]. Let the depth

of |nd|V|_d_uaI “domains” as_somated with variations m_thg of the (asymmetric) “potential wellV(y) be U, and the
composition of the nucleotide sequences, since the blndln&nge of attraction be: then a continuous phase tran-

energies of the two kinds of base pairs, adenine-thyming;;; [12] occurs at a critical tem :

) . S . peratu?g,, given by
(AT) and guanme-cytogme (GC), are _S|g_|n|f|cantly dn‘ferentthe conditionT2 /(2Ka?) ~ U,. This phase transition is
.[7]' The_ effect Of. binding energy variation has bgen Studcharacterized by a discontinuity in the specific h€and
ied previously using the nearest-neighbor 1D Ising model, 5 qepraic divergence in the average separation distance
[1,8]. In this paper, we investigate this effect in detail ; yatween the base pairé,~ (T,, — T)~" with v = 1.
by incorporating the Important conflg_uratlonal entropy 9TThe inverse of the pair distanée! is the order parameter
the denatured strands' In a systematic way. We find thajt 1his transition and can be directly related (see below) to
sequence hetgrogenelty itself is not Su_ff|C|ent to PFOd“C'ﬂne fraction of unbroken base pairs, a key experimental
multistep melting, with the phase transition remaining to p<aryable 2].
be of the second order. Nevertheless, heterogeneity can Next, we describe the effect of a variable interaction

be dramatically amplified by small changes in the detailed, (y) which is fixed by the DNA sequence. For sim-
form of the configurational entropy, leading to the appar-.: '

i iting behavior for finite | h plicity, we restricty to the positive real axis, and model
ent multistep melting behavior for finite length sequencesy,q jnieraction as a product of a short-ranged function
A simple way of incorporating the entropy of the

. ; 2™ 5,(y) [with §,(0<y =<a)=1 and §,(y > a) — 0]
smgle—st[%nded ;sz?gments is to model th? two _S'ngl%md a variable strengtti, [13]. We assume the sequence
strandsr»~ andr:~ by random walks [9], with the in- o be random and short-range correlated, with an average
dexn denoting thenth base pair. The blndlng of com- pairing energyv_n = —U,, and the f|uctuatiorﬁvn =
plementary base pairs is described by a potential functioly, — v described by its variancéV, sV, = A Smn-
V,,(rfll) — rflz)), whereV, has a hard core (reflecting the (Here, the overbar denotes average over the ensemble of
repulsion of the phosphate backbone) and an attractiveandom sequences.) Some important conceptual issues to
(short-ranged) tail mimicking the hydrogen bond betweerunderstand are whether the melting transition survives in
each base pair. Further taking into account the directiondahe presence of the quenched-in variable interaction, and
specificity of the hydrogen bonds, one obtains the follow-f so, what is the nature of the transition.

e = v} @

n=1

he model (1) without the dependence in the interac-
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These issues have been studied in the past decade ip ) _ f ex;{—ﬁ( _ e — Vn(y):|¢ ()
the context of some closely related systems, e.g., on nrIly v Y Y T Y
describing the adsorption of a Gaussian random het- ®)
eropolymer by a solid surface [14-18] (with, being

the distance of theith monomer from the surface and
:Jgfya )Cg)'vgng q rfogﬁéirggggﬂbﬂgt?ﬁé VT;E%“;[ ;V'ltg it:tzrnegative integer values, frofnto L. We further restricted

Ll = _ + . .
face from a random substrate [19—21]. It is known tha&y”+1 yn € [0, 1] "The potential functiorV,(y) has

. o ooNe he simple formV,(y = 0) = —U, * +A with equal
the melting transition still exists and the effect of quenCh'probability, andv,(y > 0) = 0. To characterize the sys-
in randomness isnarginal in the renormalization group

sense. This conclusion is straightforwardly reached, fotem’ we compute (for each configuration of the random

instance, by considering the perturbative effect of a wea otential V) the “steady-state” probability distribution

. . : n of finding y, aty. This is obtained (up to nor-
disorder on the melting temperature: Assuming that th‘?‘na(liyz)ation) as t%é prodyuct of the forward- ar(1dpbackward-
effect of randomness is negligible in the smalllimit,

o L propagated wave functions (see also [20]). Sufficiently
then fluctuation in base separanp;,; is correlated along long segments£10*) close to the two ends of the se-
?elbﬁrbggfoulot;(; the Iltg:g?;; ge.atAt atgfrr:gerature guence are truncated to ensure that the results are in-

St'g y - TZV\;(T TeT)Iz%J per urE,,l e\r;urg dependent of the choice of boundary conditions. From
Sys ?m"f , m/ Ao m ecomes very long. varia- .o steady-state distribution, we compute the moments
tion in the interaction energy, averaged over the scale

. . (ymy = ZL,=0 y™ P,(y), and then average over differ-
isoU ~ /A =~ AT, — T)/T,,, which leads to n L
ishiftin the mgéiig tempferature (31‘/the order ent realization of the randomness (or average avéor

very long sequences). For example, the average pair dis-
8Ty = (T — TINA/U,. (2)  tance( is given byl = (y,);.
The effect of randomness is revealed by compa#iiy, We first identify the cri.tical point by monitoring
with 8T = T,, — T in the limit 8T — 0. Randomness the L dependence of the dimensionless variante,=
is irrelevant if 6T,, < 8T, but is non-negligible if [(y2). — (y,)i]'/2/¢, which should beL independent
otherwise. The problem at hand is “marginal” sinceat the critical point. This is shown in the inset in
8T, ~ oT. Fig. 1(a) for systems withUy = —1, A =1, K =1,
Much effort has been devoted to resolving whether th@ndN = 10°, averaged over ten independent realizations
randomness is marginally relevant or marginally irrelevantof random sequences. The parameters are chosen such
Early studies [14,19] suggest that it is marginally irrele-that éx ~ O(1) and the system is readily in the strong
vant, such that critical properties of the melting transitioncoupling regime. (Note also that the unit ofin our
are the same as those of the pure case (up to logarithm@mplified discrete model is no longer one base pair.
corrections). However, more recent renormalization'With the above parameters, the length of our system
group studies [20,21] find the randomness to becorresponds to a sequence of several thousand base
marginally relevant, indicating that the scaling prop-pairs of the PB model [10], with+20% pair-to-pair
erties should be different from the pure case beyond sariation in the binding energy.) Using the empirically
crossover lengthéx ~ expc U3/A] with ¢ ~ O(1), or  obtained value off,, we plot the pair distancé vs the
equivalently if the reduced temperature is within thereduced temperature in Fig. 1(a). An exponent 1 is

Ginzburg temperaturé Ty ~ f;l/z. The actual scaling
behavior in the asymptotic “strong coupling” regime is
however not accessible from these studies. 100
The theoretical results have so far not been carefully
tested numerically: In Ref. [19], evidence in support of 3°
the irrelevancy of randomness was reported, while the
contrary was claimed in Ref. [20]. The numerics in the ™
latter work was in fact rather qualitative; no attempt in
characterizing the alleged strong coupling regime was 1o |-
made. The numerics in Ref. [19] was flawed on the 4
other hand by assuming a particular value for the melting 5 T T e 0 o 300
temperature which was later shown to be incorrect [20]. V(1=T/Ty) V(1=T/Tmw)
We have thus reinvestigated the nature of the meltm%lG. 1. (a) The average pair distanEdor various transverse

tranSI_tlon numerically. . . __system sizes. The melting temperatufg = 3.07 is deter-
As in Refs. [19,20], we use a transfer matrix calculationmined from the plot in the inset. (b) The melting curves,

[24]. We start with the transfer integral solution of the showing the fraction of unbroken paiP{0). Scaling laws with
“wave function” ¢, (y) [10], v = 1 are shown by the dotted straight lines.

To speed up the numerics, we placed the recursion re-
lation (3) on a lattice such that takes on only non-

0004 L it
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obtained, indicating the absence of anomalous scaling. To
further test the relevancy of the randomness, we directly
measure the average fraction of unbroken paftg0),
which should scale as/¢ ~ (T,, — T) if the randomness

is irrelevant. However, as pointed out in Ref. [22],
relevancy of the randomness would imply additional
singularity in the distributionP,(y — 0), resulting in B Aara s |
the anomalous scaling d@f,(0). This quantity is plotted 00.90 092 094 096 098 100 0 2 4 6
against the reduced temperature in Fig. 1(b). Again, /T, bla

we find no evidence of anomalous scaling. Since Ougg . (a) Solution of the homogeneous PB model with a

calculations are performed in the strong-coupling regimevariable backbone stiffness. The order parameftef still
we conclude that either the randomness is irrelevant or theanishes linearly with the reduced temperature. (b) The slope

asymptotic scaling in the strong-coupling regime is almostr has an exponential dependence on the rafio. T,, itself
indistinguishable from the pure problem. Similar resultschanged by~50% over the range 0b/a studied.
have been obtained for a variety of different parameter

choices. obtained by solving the Schrodinger equation using a con-

While the ultimate resolution to the issue of the o, iiffnessk and a toy potential functio(y) on
relevancy of sequence heterogeneity may require yet . o wWith ¥ = — U+ U for v <
larger systems with good statistics, it is clear from Fig. 11€¢ Nall spacey =0, wi = Yo plory < a,

that the melting transition encountered here is rathef = *Ui fora <y <b, andV =0 for y > b. We
smooth. Indeed, the numerically obtained melting curvdind the order parameteff ' of the homogeneous prob-
for a singlesample is very smooth [see Fig. 3(b) below], lem still to have the formt™" = & - (T,, — T)/T,, near
without any noticeable fine structures. The smoothnes&» although the amplitude: increasesxponentiallyfor
of the transition is irrefutable even in the specific heatincreasingU; or b/a. Our finding is verified numeri-
curves used to support the relevancy of randomnes&@lly (Fig. 2) by exactly diagonalizing th.e transfer integral
in Ref. [20]. This makes the experimentally observed(3) for the homogeneous problem, using the Morse po-
multistep melting behavior rather puzzling. To investigatetential for V(y) and Eq. (4) forK(y,y') as in Ref. [25].
the possible cause of multistep melting, we recall a recerliote that the width of the transition region scaled as.
numerical finding [25] that fluctuation effect in DNA Thus, for the parameter valu&, /K, = 1.5 andb/a =~ 5
melting is much enhanced upon adopting a more realistigSed in Ref. [25] [corresponding t ~ 100 according to
form of the backbone stiffness, to reflect the fact that thd"i9- 2(P)], the transition region is extremely narrow, mak-
DNA is significantly more rigid in the double-stranded iNg it very much first-order-like in appearance. _
conformation. An explicitlyy-dependent stiffness The heterogeneous system is studied next using the
lattice transfer matrix algorithm, incorporating the toy
K(ynyns1) = Ki + (Ko — Ky)e /204y potential V as described above, withy — Uy = +/A.

i ) We usedU; = 0.2 andb/a = 3 such that thex value
was used in Ref. [25] to match the stiffness of the doublgy e homogeneous systemA00 as in Ref. [25]. For
strandk; (for y = 0) and the single stranff; < K» (for  gych Jarge values af’s, the melting curves foindividual
y — ). Numerical solution [25] of the h?mog_eneous samples display drastic multistep behavior even for rather
version of (3) using _the modified s_tlﬁneKs(y_,y) yields long sequences &f = 10%; a typical example is shown in
what appears to befast-ordermelting transition. _ Fig. 3(a). The very smooth melting curve for the original

Let us examine t_hg effect of the_varlable s'glffness iNheterogeneous model without barrier & 1) is shown
some detail. To facilitate the analysis, we modify the ex-j, Fig. 3(b) for comparison. As in the pure PB model

. g i ; _ . _
ponential factor in (4) t@ »/b. This does not cause any yith entropic barrier, we expect that the heterogeneous
significant differences sincg, = y,+;. With the modi-

fied form of K(y), one can straightforwardly perform the

transfer integral (3), which in the continuum limit yields 1.0 g S . 1.0

a Schrddinger-like equation fap,(y), with an effective 08 | @) ] 08

potential V,,(y) = V,(y) + %In[K(y)/Kl] + const, as Q06 | 1 9os

well as an effective diffusion coefficiefft/2K (y). Let us Loak 1 Lo

focus on the form oV: In addition to the original attrac- - 02 | L=400 E 02 |

tive potentialV,(y) of rangea, there is now aepulsive N '

term of the ordei/; = (T/2)In(K,/K;) > 0 of rangeb. %060 163 165 168 170 %5 29 30 3
The latter plays the role of an (entropibgrrier and is T T

the main effect introduced by the variable stiffnéSsy).  FIG. 3. Melting curves for asinglerandom sequence: (a) with
Qualitative features of the homogeneous system can hend (b) without the entropic barrier (see text).
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