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Theoretical Molecular Rheology of Branched Polymers in Simple and Complex Flows:
The Pom-Pom Model
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The nonlinear rheological constitutive equation of a class of multiply branched polymers is derived
using the tube model. The molecular architecture may be thought of as twoq-arm stars connected by a
polymeric “crossbar.” The dynamics lead to a novel integrodifferential equation which exhibits extreme
strain hardening in extension and strain softening in shear. Calculations of flow through a contraction
predict that the degree of long-chain branching controls the growth of corner vortices, in agreement
with experiments on commercial branched polymers. [S0031-9007(97)04103-3]

PACS numbers: 83.10.Nn, 47.50.+d, 83.20.Fk, 83.85.Pt
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Polymer melts and concentrated solutions are comp
fluids whose dynamics are dominated by the topolo
cal restrictions of uncrossability of long-chain molecule
Substantial theoretical progress has been made within
framework of the tube model [1] in which the constrain
on a given chain segment are modeled by a tube of
ametera, coarse graining the curvilinear path of the poly
mer. Two dominant modes of “entangled” dynamics
long time scales emerge: Linear polymers may chan
their configurations viareptation—or curvilinear diffu-
sion, which leads to a sharp distribution of modes in stre
relaxation and a viscosity scaling with molecular weight
M3.4 [1–3]. Polymers with long-chain branching are con
strained tofluctuationmodes of the entangled arms, whic
lead to a broad relaxation spectrum and exponential dep
dence of viscosity on their arms’ molecular weight, eve
in the case of simple star polymers [4,5], where the theo
agrees quantitatively with experiments over a range of m
terials and molecular weights [6]. An additional proce
of retractionmay follow large deformations by which ex
tended chain segments with free ends rapidly regain th
equilibrium contour length inside the extended tubes. Th
accounts for the extreme shear thinning of linear and s
polymers [1]. Commercial long-chain branched polyme
differ distinctly from linear polymers [7–9] in rheologica
response. Low density polyethylene (LDPE), in partic
lar, which has multiple, irregularly spaced, long branche
shows “strain hardening” in transient extensional flow
that differs qualitatively from the behavior of unbranche
melts. In shear flow, however, the behavior of LDP
is highly “strain softening,” not unlike ordinary linear
polymers. Existing phenomenological constitutive the
ries do not capture this behavior. Even the very gene
integral-type equation [8], containing arbitrary functions o
the strain invariants, cannot combine the observed str
hardening in both uniaxial [8]and planar[10] extension
together with the softening in shear. Such equations the
2 0031-9007y97y79(12)y2352(4)$10.00
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fore cannot consistently account for the special behav
which occurs in complex flows of LDPE, when imple
mented in non-Newtonian flow solvers [11]. In particula
linear and branched melts of identical viscosity and t
minal relaxation times exhibit very different flow fields i
a contraction: Linear polymers mimic Newtonian fluid
while branched polymers set up a large rotating vortex
the corner of the contraction [12,13]. A theory connecti
the molecular topology to features of the flow is high
desirable. The tube model does indeed predict that
large-strain properties of branched polymers differ fro
the strain softening of linear polymers [14], suggesting th
it might provide the missing mathematical structure if pu
sued to a full constitutive equation. In this Letter we sho
that the outcome of such a project accounts for the effe
of branching in both simple and complex flows.

The class of branched polymers chosen for this stu
can be thought of as a generalization of theH-polymer
structure [15,16]. The “pom-pom” molecules contain ju
two branch points of chosen functionality—a “crossba
links two pom-poms ofq arms each (see Fig. 1). Struc
tural parameters are the molecular weight of the cross
Mb , molecular weight of the armsMa, and the branch num-
ber q. The entanglement molecular weightMe [1] is an-
other important molecular parameter, but will serve on
to define the dimensionless path lengthssa ­ MayMe and
sb ­ MbyMe. The model polymer contains the essent
feature of a strand between the two branch points. T
strand cannot diffuse at all on length scales longer th
a until the relaxation of the starlike arms is complete. A
longer time scales the melt may be considered as entan
crossbar strands only, diluted by the (relatively) rapid
moving arms [16] to a volume fractionfb. The crossbars
therefore behave at these time scales like linear polym
with large friction at their extremities, and so diffuse b
reptation. The reptation time is longer than the termin
relaxation of the arms by a factor ofs2

b, and the retraction
© 1997 The American Physical Society
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FIG. 1. The pom-pom model polymersq ­ 3d with effective
confining tube on the crossbar. Configurations are sho
schematically under (a) no strain and at higher strains caus
(b) no and (c) partial withdrawal of the branch points.

time by sb, so over a wide range of deformation rates a
non-Newtonian response arises from the dynamics of
crossbars alone.

The retraction of the crossbars under large strains a
differs from the rapid relaxation of linear polymers an
dangling arms. Instead they extend under strain until th
tension is sufficient to withdraw the dangling arms int
tubes originally occupied by crossbars [13]. The cons
quence of this new process of “branch point withdrawa
in a flow is radical: At deformation rates slow compare
to the retraction dynamics of the arms yet fast enough
stretch the crossbars, some of the arm material, saysc per
arm, may be aligned with the crossbar (see Fig. 1). T
frictional drag of the “blob” of the remaining relaxed arm
zb is then determined by the relaxation time of the now
shorter arms, which is exponentially faster insc:

zb ­ 2kT
tasscd

a2 q , (1)

wheretassd is the relaxation time of the segment a distanc
s from the branch point. To leading order ins this varies
astasxd ­ tas0d exps215fbsy4d. The key consequence
of this flow-induced renormalization ofzb is to limit the
dimensionless stretch factorlstd of the backbone to the
valueq determined by the degree of branching. In the lim
of highly entangled backbones it becomes valid to wo
with preaveraged dynamic variables. The stretch th
couples to the flow (with local deformation rate gradien
K) as a driven Gaussian spring [17]:

D
Dt

l ­ lsK : Sd 2
1
ts

sl 2 1d , (2)

strictly for l , q, and wherets ­ sbqtas0d is the stretch
relaxation time. DyDt is the substantive time deriva-
tive. When the maximum stretch would be exceeded, t
dynamical evolution is transferred to the variablescstd,
which measures the withdrawal and alignment [first ter
of Eq. (3)] of the branches:
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opposing their star-arm-like relaxation [second term
Eq. (3)]. The final dynamical variable needed to constru
the stress is the second moment of the orientation dis
bution functionSstd for tube segments containing cross
bars [1]. These orient in the flow, reptate, and retra
like linear polymers, but have a time-dependent reptati
time (like wormlike micelles [18], but due to changes i
configuration of the dangling ends rather than in molec
lar weight). The evolution equation forSstd is therefore
a simple modification of the Doi-Edwards result for en
tangled linear polymers:

Sstd ­
Z t

2`

dt0

tbst0d
exp

√Z t

t0

dt00

tbst00d

!
QsssEst, t0dddd , (4)

where Q is the Doi-Edwards tensor [1] describing th
average orientation att of tube segments created att0

and deformed byEst, t0d. The exponential term is their
survival probability and the reptation time varies astb ­
s4yp2ds2

bfbtafscstdg. Thus we arrive at a small set o
evolving structural dynamical variablesSstd, lstd, and
scstd, from which the stress may be calculated. Both th
tension and contour length of the crossbar increase linea
with l, and we need to respect the quadratic scaling
modulus with volume fraction of entangled material. Extr
contributions arise from arm material aligned with th
crossbar. The final expression for the polymeric stre
is [17]

s ­
15
4

G0fb

µ
fbl2std 1

2qscstd
2qsa 1 sb

∂
Sstd . (5)

A “solvent stress” contribution from material relaxing a
much faster rates than the flow rates (the pom-pom ar
and all higher “Rouse” modes in this case) is added via
Newtonian term. In all our simulations we chose a solve
viscosityhs ­ G0tsy8. Together with Eqs. (2)–(4), this
defines the constitutive theory for a melt of these branch
polymers at deformation rates up totas0d21.

The results for extensional and shear-stress transie
after the initiation of flow were computed for a system
with the molecular parametershq ­ 5, sa ­ 3, sb ­ 30j.
Results are shown in Fig. 2 together with data on LDP
for comparison. The deformation rates (dimensionless
terms of the stretch relaxation timets) vary from 0.045 to
6.0 (in terms oftb they are 6 times higher). As expected
the low rates exhibit simple stress growth to a steady-st
plateau. As the extension rate is increased, a very sm
amount of extension thinning is observed before the cro
bars begin to stretch. Throughout the range of deformat
rates over which the plateau stress is growing, the eq
librium value of l is also rising. At still higher rates, a
marked change of behavior sets in:l reaches its maximum
value in finite time, and thereafter branch-point withdraw
occurs—sc rapidly rises and finds its equilibrium value
The stress growth now shows a rapid hardening beh
ior which is cut off by the maximum sustainable stretch
2353
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FIG. 2. (a) Start-up transient viscosities in uniaxial extens
and shear for the LDPE [9]; (b) start-up viscosities for thehq ­
5, sa ­ 3, sb ­ 30j pom-pom model in shear and extensio
deformation rates are 0.045, 0.09, 0.18, 0.375, 0.75, 1.5,
and 6.0 in terms of the stretch relaxation timets. Weissenberg
numbers for orientation may be obtained by multiplying the
rates by 6.1.

For higher deformation rates, the extension viscosity th
again as the steady-state extensional stress now grows
weakly. The qualitative similarity with extensional data o
LDPE [11,19] is remarkable, and especially significant
occurring for both uniaxialandplanar extension.

The computations for shear flow show very different b
havior. Figure 2 also shows the growth of shear str
for the same range of deformation rates as before. O
shoots in the shear stresssxy are evident but liebelowthe
slow-flow case. Although the backbone may stretch tr
siently, and even reach its maximum value, no harden
effect results in steady state, and the shear response is
formly thinning. The unique softening behavior in she
arises because of the separation in time scale of orienta
2354
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and stretch of the active crossbar segments: At rates wh
couple to the stretch in extension, the molecule has alrea
aligned in shear parallel to the flow direction, reducing th
coupling termK : S in Eq. (3). This necessary separation
is a direct consequence of the entangled state of the cro
bar. Although LDPE is structurally more complex than
the pom-pom molecule, the generic feature of a modera
separation in time scales between segmental stretch a
orientation will survive. We believe this accounts for the
similarities between the LDPE data and our model.

The constitutive equation set derived above retain
structure of molecular significance yet is simple enoug
to be applied to flow in complex geometries. As a
example we have chosen the “benchmark” problem
flow into a planar 4 : 1 contraction. The calculations
were performed using a mixed Euler-Lagrange metho
[20] with a slightly modified version of the equations
sssThe numerical scheme utilizes a co-deforming grid o
finite elements so that history-dependent quantities a
local to the grid. One approximation of the equatio
set was necessary to make the computation feasible—
integral expression forSstd was replaced by a differential
approximation which has been shown to give very simila
results in all flow geometries [17]:DAyDt ­ K ? A 1

A ? KT 2 t
21
b sA 2 Id andSstd ­ AstdytrfAstdg.ddd

Figure 3 shows the flow and molecular stretch field
flsrdg of an unbranched moleculesq ­ 1d and branched
pom-poms withq ­ 5. The Weissenberg number, base
on the upstream wall shear rate, is unity in all case
We ­ 3Qtsy2L2, whereQ is the areal flux through the
contraction andL is the upstream width of the channel
Contrasting Figs. 3(a) and 3(b), one sees that the po
pom branching produces an enlargement of the corn
vortex, a phenomenon frequently observed with branch
LDPEs. From the simulation, the molecular source o
this phenomenon can be discerned. The color codi
shows that only the branched polymer is stretched in t
contracting region by the strong extensional flow there.

Surprisingly, the maximum stretch does not occur alon
the center line where the extension rate is greatest, b
close to the boundary between the corner vortex and t
funnel of material drawn into the contraction. This ca
be explained by following a fluid element as it move
from the wall region into the funnel, or more simply by
looking at the flow and stretch fields at earlier times. Th
is done in Fig. 3(c) which shows that, during the start-u
transient, a high degree of stretch develops at the ap
of the vortex where strand material is stripped of the wa
by the sink flow. This wall material, while not stretched
by the shear, ispreoriented by it, and hence rapidly
stretched by the extensional flow in the funnel. Th
enhanced version of this effect in the transient survives
the “wing” of high stretch in the steady flow of Fig. 3(b).

Thus, the vortex growth in a fluid with strong extension
hardening arises from the need to maintain a balan
between shear and extensional stresses [21]. For flu
with a high Trouton ratio, Tr (such as the pom-pom
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FIG. 3(color). Flow from start-up into a4 : 1 contraction computed for the pom-pom model with fixed total and crossbar molec
In (a) and (b) the upstream strain at the wall since initiation is 12.5. (a) We­ 1, q ­ 1 (linear polymer); (b) We­ 1, q ­ 5; (c)
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Keiller et al. showed that flow into a planar sink is con
fined to a narrow cone whose semiangle is proportiona
Tr21y2 [22]. Thus, higher Tr produces enlarged vortices

The molecular modeling and simulations described he
have relatively straightforward generalizations to oth
molecular architectures, and to polydisperse ensemble
molecules. With this new approach, molecular theory c
be used to explain the influence of polymer architecture
polymeric flow fields. The progress described here m
help in future designs of polymers for specific processi
properties.
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