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We propose a novel approach for combinatorial optimization problems. For solving the traveling
salesman problems, we combine chaotic neurodynamics with heuristic algorithm. We select th
heuristic algorithm of 2-opt as a basic part, because it is well understood that this simple algorithm
is very effective for the traveling salesman problems. Although the conventional approaches wit
chaotic neurodynamics were only applied to such very small problems as 10 cities, our method exhibi
higher performance for larger size problems with the order of 102. [S0031-9007(97)04059-3]

PACS numbers: 82.20.Mj, 02.60.Pn, 05.45.+b, 87.10.+e
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Various methods are proposed for solving the travelin
salesman problem (TSP) which is one of the typic
NP (nondeterministic polynomial)-hard combinatoria
optimization problems. One of the new approaches,
modern heuristics, is based upon artificial neural ne
works. The basic concept of this approach was propos
by Hopfield and Tank [1], who applied an artificial neura
network with symmetric mutual connections to the TS
which has a kind of gradient descent dynamics, namely
decreasing property of the computational energy functio
Although this approach is very attractive from the view
point of an application of artificial neural networks, th
Hopfield-Tank neural network has a notorious local min
mum problem. In order to solve such a difficult problem
a new approach using the chaotic neural network [2,3] h
been proposed [4–6]. The chaotic dynamics has seve
particular properties. One of them, self-similarity, i
that attractors of chaotic dynamical systems usually ha
fractal structures. Therefore, chaotic search is expec
to be efficient because the chaotic dynamics searc
solutions of the TSP only along such a fractal structu
with zero Lebesgue measure in the state space, if
optimum solution is located in the searching region.

However, these methods based on the recurrent ne
networks have two serious problems. First, the Hopfiel
Tank neural network, which provides the basic fram
work of the approach with chaotic dynamics, require
n 3 n mutual connections wheren is the number of neu-
rons. In the case of solving anN-city TSP, the num-
ber of neuronsn is N2 [1]. Therefore, the number of
mutual connections becomesn2  N4. If the number
of cities N increases, the number of mutual connectio
becomes huge, consequently calculation gets difficu
Second, constructing a closed feasible tour (which is
constraint in the case of solving the TSP and translated
starting from a city, visiting each city exactly once, an
returning to the starting city) is not easy in this approac
0031-9007y97y79(12)y2344(4)$10.00
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because a closed tour is realized only by firing patterns
the neural networks that satisfy the constraints, name
the number of firing neurons must be 1 in each row an
each column. If the state of neural networks does n
satisfy the constraint term, it cannot form even a close
feasible tour.

As another conventional approach for solving the TSP
several heuristic methods have been proposed by, e
Croes [7], Lin [8], and Lin and Kernighan [9]. It has
been shown that these methods are effective to obta
near-optimal solutions of the TSP and applicable to larg
problems than the methods based on the Hopfield-Ta
neural networks, because the constraint of the TSP
intrinsicly included in those heuristic methods. Namely
every solution realizes a closed feasible tour, and th
complexity is smaller than that of the Hopfield-Tank
neural networks. However, since these heuristic metho
also utilize a kind of gradient descent dynamics, the
share the local minimum problem.

As an approach for overcoming such a local minimum
problem, simulated annealing is known to be usefu
but it utilized only stochastic dynamics. Since there
are some results implying that chaotic neurodynamic
is more effective for combinatorial optimization than
stochastic dynamics in the framework of the Hopfield
Tank neural networks [5], it is natural to expect tha
chaotic neurodynamics would also be effective for th
local minimum problems appearing in heuristic methods

In this Letter, we apply chaotic neurodynamics to th
local minimum problem of the heuristic algorithm. In
our method, there are no constraint terms which must b
satisfied for forming a closed feasible tour because the
are already included in the basic heuristic algorithm itsel
Namely, our method always produces closed feasible tou

We select the 2-opt as the basic algorithm amon
the heuristic methods, because it is well known that
very good near-optimum solution can be obtained wit
© 1997 The American Physical Society
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this simple algorithm. The 2-opt algorithm searches th
minimum length tour by changing the visiting orde
of cities.

The schematic explanation of the 2-opt is described
Fig. 1. We define “a linkX-Y” as a connection between a
city X and a cityY, and “a tour” as the total visiting order.
The 2-opt algorithm is as follows:

1. At first, cities are arranged in a random order. Th
is an initial state.

2. The total length of the present tourD1 is calculated.
In Fig. 1, a present tour isA-B-H-I-J-C-D-E-F-G-A.

3. A link A-B and another linkC-D are selected and
virtually interexchanged, then a new tourA-C-J-I-H-B-
D-E-F-G-A is formed. The total length of the new tou
is D2.

4. If D1 . D2, these linksA-B and C-D are actually
interexchanged. Then the shorter length tour with ne
links A-C andB-D is obtained by this interexchange.

5. Such a procedure is repeated for all links betwe
each two cities while shorter length tours are found.

6. If there is no more decrease of the total tour lengt
the procedure is terminated.

Although this algorithm provides near-optimum solu
tions, there exists the local minimum problem in this alg
rithm, because it is based upon a kind of gradient desc
dynamics. Namely, there are many undesirable loc
minima where the 2-opt algorithm gets stuck.

Therefore, chaotic dynamics realized by the chao
neural network model [2,3] is introduced for avoidin
such a local minimum problem. In order to implemen
the 2-opt into the chaotic neural network, a neur
network model which behaves as the conventional 2-op
constructed as the first step. In the case of solvingN-city
TSP, there areN 3 N ways for constructing new links
in the 2-opt, soN 3 N neurons are prepared and the
are arranged on anN 3 N grid. In this neural network,
the si, jdth neuron corresponds to a linki-j that is a link
between citiesi andj, which means a cityj is visited next
to a city i. Then, the following equation is defined as
firing rate of thesi, jdth neuron:

xijst 1 1d  D1std 2 Dijstd , (1)

FIG. 1. The schematic representation of the 2-opt.A, B, . . . ,
I, and J represent cities. Dashed lines describe present lin
and dotted lines describe new links.
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xijstd $ 0 a link i-j should be connected,

xijstd , 0 no change,
(2)

whereD1std is a tour length at timet, Dijstd is the new
tour length obtained by applying the 2-opt to make th
city j visited next to the cityi. This neural network
changes its state asynchronously. Let us assume,
example, that a cityi corresponds to the cityA, and a city
j to C in Fig. 1. In the 2-opt algorithm, when the linkA-C
is connected, then the linksA-B andC-D must be cut and
the link B-D must be connected. Then, the visiting orde
between the citiesC andB is reversed. In order to realize
such an order-exchanging process, if thesi, jdth neuron
fires at timet 1 1, a city that had been visited next to a
city j at timet (corresponding to the cityD in Fig. 1) must
be visited next to the city that had been visited next to
city i at timet (corresponding to the cityB in Fig. 1), and
the visiting order between the city that was visited next
the city i at time t and the cityj (corresponding toB-H-I-
J-C in Fig. 1) must be reversed.

Then, we modify the neural network version of th
2-opt described in Eqs. (1) and (2) to the chaotic neu
network version in order to realize chaotic escape fro
local minima. Here, chaotic neurodynamics is applied
order changes. In the previous methods with chaotic d
namics [4], only the mutual interactions between neuro
have information for minimizing an energy function. In
the proposed method, we apply external inputs to chao
neurons in order to control firings for minimizing a tou
length. Namely,D1std 2 Dijstd in Eq. (1) can be used
as the external input for the internal statesjijstd of the
chaotic neurons [2,3].

Next, in order to control firings of chaotic neurons, w
adopt some connections with negative constant weigh
Because only a single city must be visited next to a cit
only a single neuron in each row or each column
an N 3 N grid is expected to fire. Frequent firings o
neurons on the same column or row would lead to ma
executions of the 2-opt algorithm from the same cit
Then a constraint for controlling such firings is describe
as follows:

Em 
NX

i1

√
NX

k1

xik 2 R

!2

1

NX
k1

√
NX

i1

xik 2 R

!2

, (3)

where R is a parameter for controlling a firing rate. I
should be noted that although Eq. (3) is prepared as
constraint term, it does not necessarily need to be satis
in a strict sense, because the essential constraint
forming a closed feasible tour is already included in th
basic part of our network, or the 2-opt algorithm itsel
Namely, this constraint is only introduced for a mor
efficient search. From Eq. (3), the value of the connecti
weightsWA

ijkl between thesi, jdth and thesk, ldth neurons
and the value of the thresholdaij of thesi, jdth neuron are
2345
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set as follows:

WA
ijkl  2Cfdiks1 2 djld 1 djls1 2 dikdg , (4)

aij  CR , (5)

where C is a positive constant. These connections
sparse and take the same value which gives low
computational complexity.

Moreover, we also introduce another kind of conne
tions in order to obtain higher solving abilities. We ma
negative connections between thesi, jdth and thesj, idth
neurons. These neurons are corresponding to the links
tween citiesi andj. If both neurons fire, the link betwee
i and j is connected repeatedly. It means that neural n
work searches the same state, and it is not efficient.
order to avoid such a situation, the following connectio
are introduced:

WB
ijkl  2Bdildjk , (6)

whereB is a positive constant.
From the chaotic neural network model [2,3] an

Eqs. (4)–(6), the novel order changing process which
propose is described as follows:

jijst 1 1d  ksjijstd 1 hsssD1std 2 Dijstdddd , (7)

hijst 1 1d  kmhijstd 2 C
NX

l1,lfii,j

xilstd

2 C
NX

l1,lfii,j

xljstd 2 Bxjistd , (8)

zijst 1 1d  kr zijstd 2 axijstd 1 CR , (9)

xijst 1 1d  ffjijst 1 1d 1 hijst 1 1d 1 zijst 1 1dg ,

(10)

where jijstd, hijstd, and zijstd are internal states o
externally applied inputs, feedback inputs, refractorine
of the si, jdth neuron, respectively,ks, km, andkr are the
decay parameters of each internal state,a is a scaling
parameter for the refractory effect,xijstd is the output of
the si, jdth neuron, andf is a sigmoidal function, namely
fszd  1yf1 1 exps2zyedg. If xijstd is larger than a
thresholdu, it is defined that thesi, jdth neuron fires, and
the tour order is changed so as to satisfy that a cityj is
visited next to a cityi.

By Eq. (7), if Dijstd is shorter thanD1std, the si, jdth
neuron becomes easy to fire, which enables a total
length to be decreased. If the behavior of this neu
network is chaotic, the internal states would never take
same values fundamentally, because the chaotic dyna
has nonperiodicity in its own property.

The result of our method applied to a 105-city pro
lem, Lin105 in Ref. [10], is shown in Fig. 2, withkm 
0.0, ks  0.0, R  1.75, e  0.001, C  0.001 25, B 
ay2, hszd  z, u 

1
2 , and changing the values ofkr

and a. Those results are the average values of the b
2346
e
er

-

e-

t-
In
s

e

s

ur
al
e
ics

-

st

solutions found in 10 000 iterations for each run with
different initial condition. They are compared with the
results of stochastic dynamics which are realized by repla
ing Eq. (9) by the following random neuron model [5]:

zijst 1 1d  2aZstd 1 CR , (11)

whereZstd is Gaussian distributed random numbers wit
the zero mean and the unit variance. From Fig. 2, it
clear that the chaotic dynamics leads to higher solvin
abilities at least than the simple stochastic dynamics.
should be noted that although the stochastic dynamics c
not search the optimum solution, 14 379, within 10 00
iterations on each run, the optimum solution can be o
tained 100% by our novel method with several paramet
values. Moreover, the average iteration for obtaining th
optimum solution using the novel method withkr  0.95
anda  0.015 is only 463.5.

In order to confirm the effectiveness and the robustne
of our method to TSP, we applied our method to five 100
city problems, KroA100, KroB100, KroC100, KroD100,
and KroE100 in Ref. [10]. Results are shown in Table
They are also average solutions obtained by changing
initial condition in each run, withkr  0.955, km  0.0,
ks  0.0, R  1.95, e  0.000 75, a  0.0115, C 
0.001 15, B  0.005 75, hszd  1.1z, andu 

1
2 . From

Table I, it is clear that the method with chaotic dynamic
is more effective than stochastic dynamics with th
random neuron model. The 100% solving ability is
obtained for the problem KroD100 by the chaotic method
By these experiments, it is confirmed that our method
efficient for various TSPs.

Our method is also applied to a 318-city problem
Lin318 [10], and the tour length of 42 196 is obtained with
kr  0.875, km  0.2, ks  0.0, R  0.85, e  0.003,
a  0.09, C  0.09, hszd  0.05z, andB  0.045.

In the case of using chaotic dynamics for combinatori
optimization, the network state keeps fluctuating withou

FIG. 2. Average solutions of a 105-city problem (Lin105) in
the cases of using chaotic neurons and random neurons. T
optimum solution, 14 379, is also shown by a dash-dotted line
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TABLE I. Average solutions of five different 100-city prob-
lems, compared with the results of the random neuron mod
A value of 21 294.0 for KroD100 means the optimum solutio
is obtained for all runs of that problem.

The Chaotic Random
optimum neuron neuron

KroA100 21 282 21 285.8 21 953.0
KroB100 22 141 22 150.7 22 510.7
KroC100 20 749 20 749.7 21 365.3
KroD100 21 294 21 294.0 21 587.3
KroE100 22 068 22 078.7 22 407.3

stopping even at global minimum. In order to treat su
a problem peculiar to the chaotic search, the origin
2-opt is applied to the network state at each iteration tim
obtained by our novel method. Then, for Lin318, th
result is improved to be 42 112 withkr  0.875, km 
0.2, ks  0.0, R  0.9, e  0.003, a  0.09, hszd 
0.125z, B  0.045, and C  0.09, with 10 000 cut-
off time.

In this Letter, we combine the advantages of novel m
dem heuristic approaches, namely, the chaotic neuro
namics for avoiding undesirable local minima, and th
2-opt method, which is applicable to large problem
Our neural network model has sparse mutual connectio
therefore the complexity of the neural network is sma
Furthermore, our neural network can always construc
closed feasible tour because the constraint for forming
closed feasible tour is already included in the heuristic
gorithm which is the basic part of our method.

In the previous approaches using chaotic dynam
[4–6], high solving abilities were obtained only in toy
problems with the order of 10 cities. The largest proble
was a 48-city TSP; however, only 5% solving ability wa
reported [6]. Our method exhibits higher solving abilitie
than the previous ones even in larger problems.

As the other advantage, our model can make heuris
methods chaotic. The chaotic dynamics can be easily
plied to other optimization problems, because our neu
network requires only a single evaluation parameter of t
el.
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state, for example, a total tour length in the TSP, which
applied to the chaotic neurons as external inputs. We ha
already applied this type of the chaotic neural network
the local minimum problem of image segmentation an
obtained good performances [11].

Although we experimentally decided the paramete
values of chaotic neural networks in this study, it i
an important future problem to develop an effectiv
algorithm for deciding the parameter values to obta
the better performances on the basis of theoretical a
numerical consideration on dynamical properties of th
chaotic neural networks [12,13].
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