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We propose a novel approach for combinatorial optimization problems. For solving the traveling
salesman problems, we combine chaotic neurodynamics with heuristic algorithm. We select the
heuristic algorithm of 2-opt as a basic part, because it is well understood that this simple algorithm
is very effective for the traveling salesman problems. Although the conventional approaches with
chaotic neurodynamics were only applied to such very small problems as 10 cities, our method exhibits
higher performance for larger size problems with the order éf 1050031-9007(97)04059-3]

PACS numbers: 82.20.Mj, 02.60.Pn, 05.45.+b, 87.10.+e

Various methods are proposed for solving the travelingoecause a closed tour is realized only by firing patterns of
salesman problem (TSP) which is one of the typicalthe neural networks that satisfy the constraints, namely,
NP (nondeterministic polynomial)-hard combinatorial the number of firing neurons must be 1 in each row and
optimization problems. One of the new approaches, oeach column. If the state of neural networks does not
modern heuristics, is based upon artificial neural netsatisfy the constraint term, it cannot form even a closed
works. The basic concept of this approach was proposefasible tour.
by Hopfield and Tank [1], who applied an artificial neural As another conventional approach for solving the TSP,
network with symmetric mutual connections to the TSP several heuristic methods have been proposed by, e.g.,
which has a kind of gradient descent dynamics, namely, &roes [7], Lin [8], and Lin and Kernighan [9]. It has
decreasing property of the computational energy functionbeen shown that these methods are effective to obtain
Although this approach is very attractive from the view- near-optimal solutions of the TSP and applicable to larger
point of an application of artificial neural networks, the problems than the methods based on the Hopfield-Tank
Hopfield-Tank neural network has a notorious local mini-neural networks, because the constraint of the TSP is
mum problem. In order to solve such a difficult problem,intrinsicly included in those heuristic methods. Namely,
a new approach using the chaotic neural network [2,3] hagvery solution realizes a closed feasible tour, and the
been proposed [4—6]. The chaotic dynamics has severabmplexity is smaller than that of the Hopfield-Tank
particular properties. One of them, self-similarity, is neural networks. However, since these heuristic methods
that attractors of chaotic dynamical systems usually havalso utilize a kind of gradient descent dynamics, they
fractal structures. Therefore, chaotic search is expecteshare the local minimum problem.
to be efficient because the chaotic dynamics searches As an approach for overcoming such a local minimum
solutions of the TSP only along such a fractal structurgroblem, simulated annealing is known to be useful,
with zero Lebesgue measure in the state space, if thieut it utilized only stochastic dynamics. Since there
optimum solution is located in the searching region. are some results implying that chaotic neurodynamics

However, these methods based on the recurrent neuriel more effective for combinatorial optimization than
networks have two serious problems. First, the Hopfieldstochastic dynamics in the framework of the Hopfield-
Tank neural network, which provides the basic frame-Tank neural networks [5], it is natural to expect that
work of the approach with chaotic dynamics, requireschaotic neurodynamics would also be effective for the
n X n mutual connections whereis the number of neu- local minimum problems appearing in heuristic methods.
rons. In the case of solving aN-city TSP, the num- In this Letter, we apply chaotic neurodynamics to the
ber of neuronsn is N2 [1]. Therefore, the number of local minimum problem of the heuristic algorithm. In
mutual connections becomeg = N*. If the number our method, there are no constraint terms which must be
of cities N increases, the number of mutual connectionssatisfied for forming a closed feasible tour because they
becomes huge, consequently calculation gets difficultare already included in the basic heuristic algorithm itself.
Second, constructing a closed feasible tour (which is &amely, our method always produces closed feasible tours.
constraint in the case of solving the TSP and translated as We select the 2-opt as the basic algorithm among
starting from a city, visiting each city exactly once, andthe heuristic methods, because it is well known that a
returning to the starting city) is not easy in this approachvery good near-optimum solution can be obtained with
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this simple algorithm. The 2-opt algorithm searches the x;;(t) = 0 alink i-j should be connected
minimum length tour by changing the visiting order
of cities.

The schematic explanation of the 2-opt is described in . . .
Fig. 1. We define “aplinkX—Y’ asa conne(F:)tion between a where D, (7) is a tour length at time, D;;(1) is the new

city X and a cityY, and “a tour” as the total visiting order. tour _Ien_g’_[h obtained by apply.ing thg 2-opt to make the
The 2-opt algorithm is as follows: city j visited next to the cityi. This neural network

1. Atfirst, cities are arranged in a random order. ThisChangeS its statt_e_asynchronously. Le_t us assume, for
is an initial s’tate example, that a city corresponds to the cit, and a city

2. The total length of the present toDy is calculated. J toCinFig. 1. Inthe 2-'opt algorithm, when the liC
In Fig. 1, a presen? tour iA—BI?H—I-J—C—D—I[iE-F-G—A is connected, then the links-B andC-D must be cut and

3 A link A-B and another linkc-D are selected and the link B-D must be connected. Then, the visiting order
virtljally interexchanged, then a new toAeC-J-I-H-B- between the citie€ andB is reversed. In order to realize

D-E-F-G-Ais formed. The total length of the new tour such an order-exchanging process, if {iig/)th neuron
is D, fires at timer + 1, a city that had been visited next to a

4. If D; > D,, these linksA-B and C-D are actually cityj_gt timet (corresponding to the cit} in F'g 1) must
interexchanged. Then the shorter length tour with nevxP.e V.'S'ted next to the C|ty_that had b.een V'S.'ted next to a
links A-C andB-D is obtained by this interexchange. City I at timet (corresponding to_the Citig in F'g'.l)’ and

5. Such a procedure is repeated for all links betweeﬁhe visiting order between the city that was visited next to
each two cities while shorter length tours are found. the cityi at timet and the cityj (corresponding td@-H-I-

6. If there is no more decrease of the total tour Iength:]'gl:_;]n Fig. 1) muglt betr:eversed.l work . fth
the procedure is terminated. en, we modify the neural network version of the

Although this algorithm provides near-optimum solu- 2-opt described in Egs. (1) and (2) to the chaotic neural

tions, there exists the local minimum problem in this algo_network version in order to realize chaotic escape from

rithm, because it is based upon a kind of gradient descellm(?caI minima. Here, chaotic neurodynamics is applied to

dynamics. Namely, there are many undesirable IOCa(Prder changes. In the previous methods with chaotic dy-

minima where the 2-opt algorithm gets stuck namics [4], only the mutual interactions between neurons

Therefore, chaotic dynamics realized by the chaotié1ave information for minimizing an energy function. In_
neural network model [2,3] is introduced for avoiding (€ Proposed method, we apply external inputs to chaotic

such a local minimum problem. In order to implementneurons in order to control firings for minimizing a tour
the 2-opt into the chaotic neural network, a neurallen%rt]h' NtameIE/’.Dl(tt) f_ lt)r"]f(t? ![n qu' (:tL) ca(n)be} ;Jhsed
network model which behaves as the conventional 2-opt igﬁ t('e externa 'gpg or the internal staigs(s) of the
constructed as the first step. In the case of solWrgty chaotic neurons [2,3].

TSP, there arev X N ways for constructing new links dNe;(t, in order to ct(_)ntrol f'.;'r?gs of t(.:haOt'C n:eurt()ns,_V\ﬁ
in the 2-opt, sON X N neurons are prepared and theya opt Some connections with neégative constant weignts.

are arranged on aN X N grid. In this neural network, Because only a single city must be visited next to a city,

the (i, j)th neuron corresponds to a lind§ that is a link only a single neuron in each row or each column in

between cities andj, which means a city is visited next el gtrr':j IS expectled to fire. Freqlljde?t f(ljn?gs of
to a cityi. Then, the following equation is defined as aneurons on the same column or row would lead to many
firing rate of the(i, j)th neuron: executions of the 2-opt algorithm from the same city.

Then a constraint for controlling such firings is described
xij(t + 1) = Dy(1) — D7), (1) as follows:

N 2 N N 2
Em:Z< xik—R) + Z(ink_R), (3)
i=1 \k=1 k=1 \i=1

where R is a parameter for controlling a firing rate. It
should be noted that although Eq. (3) is prepared as a

()

x;;(t) < 0 nochange

N

. Present links constraint term, it does not necessarily need to be satisfied
K B in a strict sense, because the essential constraint for
_______________ forming a closed feasible tour is already included in the
| New links basic part of our network, or the 2-opt algorithm itself.
J Namely, this constraint is only introduced for a more

FIG. 1. The schematic representation of the 2-0p¢.B, .. efficient search. From Eq. (3), the value of the connection

I, and J represent cities. Dashed lines describe preseniylinks\NeightSWSkz between thdi, j)th and the(k, /)th neurons
and dotted lines describe new links. and the value of the threshodd; of the (i, j)th neuron are
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set as follows: solutions found in 10 000 iterations for each run with a
A= 8l — &) + 84(1 — &, 4 different initial condmon. They are compa'red with the
Wijia Cloul i) i ol @) results of stochastic dynamics which are realized by replac-
a;j = CR, (5) ing Eq. (9) by the following random neuron model [5]:

where C is a positive constant. These connections are Gi(t +1) = —aZ(t) + CR, (11)

sparse and take the same value which gives IOWe\fvhereZ(t) is Gaussian distributed random numbers with

col\rr/|1putat|onal comlple>.<|tty. d ther kind of the zero mean and the unit variance. From Fig. 2, it is
_ Moreover, we aiso Introduce anotner kind ot CONNEC~1qar that the chaotic dynamics leads to higher solving
tions in order to obtain higher solving abilities. We make

i ¢ bet o)t and the( 7. Dith abilities at least than the simple stochastic dynamics. It
negative connections between tig;)th and the(/, /) should be noted that although the stochastic dynamics can-

neurons. T_hese heurons are corres'ponding_to the links bﬁbt search the optimum solution, 14 379, within 10000
tween cities andj. If both neurons fire, the link between ;. iions on each run. the optimiJm solut’ion can be ob-

| andj is connected repeatedly. It means that n_eL_JraI Netained 100% by our novel method with several parameter

work search_es the same S'Fate’ and it is _not eff|C|en'_[. I(}alues. Moreover, the average iteration for obtaining the

ordgr to avoid such a situation, the following connectlonsoptimum solution using the novel method with = 0.95

are introduced: anda = 0.015 is only 463.5.

Wff-kl = —Bi0ji, (6) In order to confirm the effectiveness and the robustness
‘ of our method to TSP, we applied our method to five 100-

gCity problems, KroA100, KroB100, KroC100, KroD100,
nd KroE100 in Ref. [10]. Results are shown in Table I.
hey are also average solutions obtained by changing the

initial condition in each run, wittkk, = 0.955, k,, = 0.0,

Eij(t + 1) = k& (1) + h(Di(1) — D)), ()  k, = 0.0, R =195, € =0.00075, a = 0.0115, C =

whereB is a positive constant.

From the chaotic neural network model [2,3] an
Egs. (4)—(6), the novel order changing process which w
propose is described as follows:

N 0.001 15, B = 0.00575, h(z) = 1.1z, andf = % From
it + 1) = kyn;j(t) — C Z x;1(2) Table 1, it is clear that the method with chaotic dynamics
I=1,1#i,j is more effective than stochastic dynamics with the

N random neuron model. The 100% solving ability is

—C > x;() — Bx;(t), (8) obtained for the problem KroD100 by the chaotic method.

I=L1#ij By these experiments, it is confirmed that our method is

Gi(t + 1) = k. £ij(t) — ax;;(r) + CR, (9) efficient for variqus TSPs. '
Our method is also applied to a 318-city problem,
xij(t + 1) = fI&; + 1) + n;(e + 1) + ;& + 1], Lin318 [10], and the tour length of 42 196 is obtained with
(10) k. = 0.875, k,, = 0.2, k, = 0.0, R = 0.85, ¢ = 0.003,
a = 0.09, C = 0.09, h(z) = 0.05z, andB = 0.045.

where &;;(¢), n;;(r), and {;;(z) are internal states of  In the case of using chaotic dynamics for combinatorial

externally applied inputs, feedback inputs, refractorinesgptimization, the network state keeps fluctuating without
of the (i, j)th neuron, respectively;, k,,, andk, are the
decay parameters of each internal statejs a scaling

parameter for the refractory effeat;;(¢) is the output of 15200 T . . - .
the (i, j)th neuron, and is a sigmoidal function, namely, 15100 - Ra"domkrgguégg o
f(z) = 1/[1 + exp(—z/€)]. If x;;(¢) is larger than a 15000 | kr=0.95 o |
thresholdd, it is defined that thei, j)th neuron fires, and °
the tour order is changed so as to satisfy that a jcity £ 14900 r 1
visited next to a cityi. B 14800 - 4
. . [=]
By Eq. (7), if D;;(z) is shorter thanD,(z), the (i, j)th °
) . S 14700 | .
neuron becomes easy to fire, which enables a total tour g
length to be decreased. If the behavior of this neural z 14600 | 1
network is chaotic, the internal states would never take the 14500 | i
same values fundamentally, because the chaotic dynamics R +
SR 14400 |_ o g + iy -
has nonperiodicity in its own property. © | =
The result of our method applied to a 105-city prob- 14300 ' ' ' ' '
. . . - ) 0.004 0.006 0.008 0.01 0.012 0.014 0.
lem, Lin105 in Ref. [10], is shown in Fig. 2, with,, = o 0.012 0014 0.016

0.0, k; = 0.0, R = 1'715’ € = 0.001, € = 000125, B = 5 5 Average solutions of a 105-city problem (Lin105) in
a/2, h(z) = z, = 7, and changing the values &  the cases of using chaotic neurons and random neurons. The
and a. Those results are the average values of the besiptimum solution, 14 379, is also shown by a dash-dotted line.
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TABLE I. Average solutions of five different 100-city prob- state, for example, a total tour length in the TSP, which is
lems, compared with the results of the random neuron modelpplied to the chaotic neurons as external inputs. We have
A value of 21294.0 for KroD100 means the optimum solution 5iready applied this type of the chaotic neural network to
is obtained for all runs of that problem. . . .

the local minimum problem of image segmentation and

The Chaotic Random obtained good performances [11].
optimum neuron neuron Although we experimentally decided the parameter
KroA100 21282 21285.8 21953.0 values of chaotic neural networks in this study, it is
KroB100 22141 22150.7 22510.7 an important future problem to develop an effective
KroC100 20749 20749.7 21365.3 algorithm for deciding the parameter values to obtain
KroD100 21294 21294.0 21587.3 the better performances on the basis of theoretical and
KroE100 22068 22078.7 22407.3

numerical consideration on dynamical properties of the
chaotic neural networks [12,13].
stopping even at global minimum. In order to treat such The authors would like to thank Professor T. Matozaki

a problem peculiar to the chaotic search, the originafor his encouragement and Professor T. Fukao for his
2-opt is applied to the network state at each iteration tim&aluable comments. This research was partly supported
obtained by our novel method. Then, for Lin318, theby Research Fellowships of the Japan Society for the
result is improved to be 42112 with, = 0.875, k,, = Promotion of Science for Young Scientists to M. H.

0.2, ks, = 0.0, R=09, e =0.003, = 0.09, h(z) =
0.125z, B = 0.045, and C = 0.09, with 10000 cut-

off time.
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