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Dynamics of complex interfaces is investigated in a model of an oscillatory medium. The movin
interfacial zone separating two phases of homogeneous oscillation consists of a phase with cha
spatial and temporal behavior. As system parameters vary, the thickness of the interface grows u
a phase transition occurs where the chaotic phase fills the entire domain. The system behavior an
critical properties are analyzed in terms of two coupled stochastic equations describing the profiles
delimit the interfacial zone. [S0031-9007(97)04091-X]
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Interfaces play a prominent role in determining th
macroscopic dynamical behavior of many physic
systems. Examples include magnetic systems wh
Ising walls separate regions with opposite magneti
tion, diffusion-limited growth processes [1], chemical
reacting systems where fronts separate domains of
ferent chemical composition [2]. Recently, experimen
have been carried out on periodically forced, spatia
distributed, oscillatory chemical systems that sho
frequency locked chemical patterns, where interfa
separate domains of different discrete oscillation pha
[3]. The analysis carried out in the present Letter perta
to interfaces of this type.

Normally, the interface dynamics is described by
single-order parameter, the profile, which is assum
to be a single-valued function of the position alon
the interface. Langevin-type stochastic models for
interfacial profile have been successfully applied to ma
of the above systems. One of the most studied stocha
models of this type is the Kardar-Parisi-Zhang (KP
equation [4], which incorporates the simplest but relev
nonlinearity for the description of a wide class of grow
processes.

However, there are also examples of interfaces w
an internal structure which is not obviously negligib
or just reducible to a renormalization of the stochas
force term. In this Letter we study one such examp
arising in a 2D model of an oscillatory medium, where t
interface separates different phases of the same perio
spatially homogeneous solution [5]. The interface
one time instant is shown in Fig. 1 where the intern
structure of the interfacial zone and the upper a
lower profiles delimiting this zone are evident. Whi
the interface as a whole moves, the interfacial reg
separating the domains of homogeneous phases exh
irregular (chaotic) dynamics. Thus, one is led to foc
on the two profiles that delimit the region of irregula
dynamics. The treatment of the interfacial zone as
separate chaotic phase is supported by the existenc
0031-9007y97y79(12)y2277(4)$10.00
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a transition above which the interface destabilizes and
chaotic phase invades the homogeneous regions [5,6].
show that the relevant properties of the interface dynam
are captured by two coupled stochastic equations for
upper and lower profiles, respectively, rather than by
single stochastic equation for some average profile.
the analysis presented below, we identify the interfac
thicknessD as another relevant order parameter whic
satisfies a closed equation. The validity of this schem
is confirmed both by the accuracy of its prediction
below the critical point and by the agreement between t
predicted and numerically determined scaling exponent

The spatiotemporal dynamics of the system is describ
by the set of equations

zt11
i ­ s1 2 4´dfszt

i d 1 ´
X

j[N sid
fszt

jd , (1)

for the real dynamical variableszi, wherei ­ si, jd are
lattice-site labels,N sid is the von Neumann neighbor-
hood of sitei, and ´ gauges the strength of the diffu-
sive coupling. Moreover,fszd is a piecewise linear map
of the unit interval [fszd ­ bz for 0 # z # 1yb, and
fszd ­ a, otherwise]. The map parameters are chosen
that the local dynamics converges to a (super)stable peri
3 cycleA °! B °! C °! A, with A ­ a, B ­ ba, and
C ­ b2a. (This regime is akin to the 3:1 resonance ca
of Ref. [3]). An interface separating domains of any tw
of the three phases may be introduced using initial con
tions where half of the system is in one homogeneous ph
and the remainder in another phase [7]. Periodic bound

FIG. 1. Chaotic interfacial zone separating two homogeneo
phases (solid gray and white regions). The thick black curv
denote the upper and lower profiles.
© 1997 The American Physical Society 2277
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conditions are used in the direction parallel to the interfa
while the system has infinite extent in the propagation
rection. Periodicity of the homogeneous solution requi
that theAB interface behaves similarly toBC andCA in-
terfaces. Diffusive coupling induces a nontrivial dynami
of the interface separating adjacent phases. In particu
the interface can move with a nonzero velocityyf . Even
more striking is the spontaneous roughening observe
some parameter ranges (cf. Fig. 1) which emerges in s
of the determinism of the model and in the absence of a
source of local chaos characterized by positive Lyapun
exponents [5]. It has been shown that the interface
namics may be described by stochastic models driven
an effective noise resulting from the irregular motion i
side the interface itself. Far from the transition, where t
interfacial zone is very thin, the Edwards-Wilkinson (EW
model [8] describes the relevant features of the dynam
[9]; closer to the transition, where the interfacial zone
thick, this model breaks down. This breakdown is not d
to the importance of KPZ-like nonlinear gradient terms
we shall argue in the following.

We investigate the interfacial dynamics along the li
sa ­ 0.1, ´ ­ 0.173d in the sa, b, ´d parameter space
which illustrates all the relevant features including t
growth and eventual destabilization of the interfacial zo
An examination of the velocity of the interfaceyf al-
lows one to make an accurate determination of the po
bc where the interfacial thicknessD diverges, since this
can occur only whenyf ­ 0 [6]. The velocity vanishes
linearly with b 2 bc, wherebc ­ 2.54568s1d. Figure 2
shows the stationary probability distributionPsDd for
three values ofb. The logarithmic vertical scale indicate
an almost exponential decay ofPsDd for large D, while
the inset shows that an approximately power-law dep
dence is observed for smallD. However, the most inter-
esting feature is the superposition of the various cur
after rescalingD by its average valueD0 ; kDl (here
and in the following, angular brackets denote an av

FIG. 2. PsDd versusD2 ­ DyD0 for three values ofb: 2.544
(solid line), 2.542 (dashed line), and 2.54 (dotted line).
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age over space, time, and different realizations) and t
probability density in the corresponding way. This indi
cates that the fluctuations of the thickness are describ
by a single scaling parameter [10], the critical behav
ior of which can be more effectively studied by com
puting the average thicknessD0 for different values of
bc 2 b. Figure 3 shows a doubly logarithmic plot of
D0 versus bc 2 b from which one may deduce that
D0 ~ sbc 2 bd2a with a ø 0.34 6 0.01.

The stationary spatial correlation function of the
thickness, CDsxd ­ kdDsx 1 x0, tddDsx0, tdl 2 ksdDd2l,
where dD ­ D 2 D0, decays exponentially well below
the transition. This allows us to determine a correlatio
length , that also appears to diverge when the critica
point is approached. We find, ø sbc 2 bd2b , with
b ­ 0.6 6 0.1; the estimate of this exponent is much
less reliable since each correlation length is the result o
fit to an exponential decay.

The simulation results presented above may be und
stood in terms of the following phenomenological model

≠th1sx, td ­ D≠xxh1 1 F1sh1 2 h2d 2 y 1 j1sx, td ,

≠th2sx, td ­ D≠xxh2 1 F2sh1 2 h2d 1 y 1 j2sx, td ,
(2)

where h1 and h2 denote the heights of the upper and
lower profile, respectively, defined with respect to som
preassigned reference position. These profiles may
unambiguously defined in view of the superstability o
the homogeneous solutions. The model, consisting e
sentially of two coupled Edwards-Wilkinson equations, i
the natural extension of the model successfully employ
in Ref. [5] to reproduce the interface dynamics when th
thickness can be neglected (i.e.,h1 ø h2). Symmetry ar-
guments suggest that the diffusion coefficientD, the ve-
locity y, and the statistical properties of the stochast
terms are the same in both equations. In fact, as lo
as the mutual coupling can be neglected, there is no w
to distinguish the two profiles: the only difference is obvi
ously the sign of the velocity, since the relative position
of the ordered and disordered phases are exchanged.

FIG. 3. Plot ofD0 versussbc 2 bd.
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The coupling termsF1 and F2 have the net effect
of producing a repulsive “force” necessary to preve
the two profiles from crossing. Because of translation
invariance,F1 andF2 depend only on the local thickness
D ­ h1 2 h2. With the above conventions on the sig
of y, the oscillatory phases invade the chaotic interfac
phase; i.e., the two profiles approach one another. T
happens until the short range coupling is sufficient
strong to stop the process. At that point, if and only
the coupling termsF1 andF2 are different, will the whole
interface move with a nonzero velocity as observed in t
numerical simulations. This is a genuine nonequilibriu
feature of the interface dynamics.

In principle, one should add to each equation in (
square gradient terms of the KPZ form. However, w
argue below that the vanishing ofy at the transition
point makes such nonlinearities irrelevant. We note th
this two-interface model differs from two coupled KPZ
type interfaces studied earlier in various contexts [11,1
since the two interfaces in our model move with opposi
velocities and thusy cannot be removed by a simple
scaling ofh1 andh2.

Subtracting the second from the first equation in (2
one obtains a closed equation for the interface thicknes

≠tD ­ D≠xxD 1 FsDd 2 u 1 j , (3)

whereF ­ F1 2 F2, u ­ 2y, andj ­ j1 2 j2 is a
Gaussian white noise with correlation function

kjsx, td jsx0, t0dl ­ 2Gdsx 2 x0ddst 2 t0d . (4)

This model is similar to the phenomenological equatio
introduced in Ref. [13] to study an equilibrium depinnin
transition. In the statistically stationary regime, the a
erage interfacial thickness does not change, so that
average of Eq. (3) over the position along the interfacex
yields the relationkFl ­ u.

Addition of the two equations in (2) yields an evolution
equation for the mean profile which depends onD. The
velocity yf of the mean profile may be determined from
an average overx and yieldsyf ­ kF1l 1 kF2l.

In the subsequent analysis, we approximate the co
pling term by a linear function centered around the ave
age value in the stationary regime,kDl ­ D0: FsDd ­
FsD0d 2 gsD 2 D0d, where g ­ F0sD0d is a positive
constant. In this approximationFsD0d ­ u. Accord-
ingly, Eq. (3) simplifies to

≠tDsx, td ­ D≠xxD 2 gsD 2 D0d 1 jsx, td . (5)

By exploiting the periodic boundary conditions, th
above equation can be solved by Fourier transformi
in space, yielding an explicit expression for the spa
correlation function. Forx ø L, we find

CDsxd .
G

4
p

Dg

≥
1 2 e2

p
gyDx

¥
. (6)

The purely exponential decay is in accord with numeric
simulations, where it is observed even for early time
The measurements of the decay rate
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the standard deviationGys4
p

Dg d of D represent two
independent constraints on the three parametersg, D, and
G characterizing the model.

The additional information needed to determine a
parameters can be obtained from the behavior of t
temporal correlation function,CDstd ­ kdDsx, t 1 t0d 3

dDsx, t0dl. An analysis similar to that performed for the
spatial correlation leads to the asymptotic expression

CDstd .
G

4
p

Dg

∑
1 2

2
p

erfs
p

gt d
∏

. (7)

A one-parameter fit ofCDstd, together with the previous
information, allows one to determine all parameters. T
results for b ­ 2.542 are D ­ 1.05, g ­ 0.0087, and
G ­ 9.7. These values are accurate to within5% as
confirmed by a more detailed analysis of the behavi
of the low-k Fourier modes. Using these values, th
theoretical and simulated correlation functionsCDstd are
reported in Fig. 4, where one sees that the model is able
reproduce both the asymptotic exponential behavior a
the initial faster decay. This is still true rather close t
the transition.

The only significant deviation between the theoretic
predictions and the numerical observations concerns
tails of the probability distribution; however, this is
expected in view of the failure of the linearization ofF for
D sufficiently different fromD0. In fact, the assumptions
behind model (2) are further confirmed by the agreeme
between the diffusion constant as determined from t
evolution of D and from the behavior of the Fourier
modes of h1 and h2 (with the approach described in
[5]). When the two profiles are sufficiently close to on
another, the agreement is not obvious since a symme
breaking occurs as indicated by the nonzero velocity
the entire interface.

We observed that bothD and the correlation length
, parallel to the interface diverge as the critical poin
is approached. In view of the results presented abo
we might expect that system properties will rema

FIG. 4. Temporal correlation functionCDstd versust. Solid
curve (simulation); dashed curve [Eq. (7)].
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invariant in the vicinity of the critical point provided al
variables are suitably rescaled. Let us first perform
scaling analysis with reference to a repulsive force of
type FsDd ­ cyDh , since it is naturally scale invariant
Moreover, the relevant control parametersbc 2 bd may
be replaced by the velocityu since this also vanishe
linearly with sbc 2 bd.

We assume that the basic quantities scale withu as
follows: D ­ D0yua , t ­ t0yuz , x ­ x0yub. The scaled
equation is

uz2a≠t0 D0 ­ u2b2aD≠x0x0 D0 1 uahcyD0h 2 u

1 usz1bdy2j . (8)

Requiring that the model (except for the force that will b
considered separately) be invariant to this transformat
yields the following relations among the exponents:

2b 2 z ­ 0 ,

1 1 a 2 z ­ 0 , (9)

a 2 zy2 1 by2 ­ 0 ,

giving, a ­ 1y3, z ­ 4y3, b ­ 2y3. With these values
of the critical indices, one also finds that the coefficie
of the force scales asc0 ­ cuhy321. Accordingly, if
h . 3 the repulsive potential renormalizes to an infinite
high barrier atD ­ 0, so that the entire equation (8
is invariant under the renormalization transformation.
is obvious that forces decaying faster than algebraica
yield the same scenario.

For h , 3, the force diverges, indicating thata must
be larger than 1y3: the only physically consistent solu
tion is obtained by assuming that in this regime it is t
stochastic term which is negligible. As a result, in th
rescaled units (D0 ­ u1yhD), the probability distribution
PsDd becomes increasinglyd-like. The excellent invari-
ance ofPsDd observed in Fig. 2 is thus an indirect indica
tion that the forceF decays at least as fast as1yD3.

The exponenta can be most confidently tested again
our numerical data and the numerical value obtained fr
the analysis of Fig. 3,a ­ 0.34, is indeed extremely
close to the predicted value 1y3. The numerical estimate
of the scaling exponent of the correlation length,, b ø
0.6, also agrees with the predicted valueb ­ 2a ­ 2y3,
within the estimated error bounds.

Only for h ­ 3 does the force term neither vanish n
diverge: this is the scenario implicitly assumed by t
model in Eq. (5), since the dynamics is determined b
balance between the repulsive forceF and the attractive
contribution originating fromu. The accuracy of the
linear model even relatively close to the transition po
can be taken as an indication that the force presuma
decays only slightly faster than1yD3.

In general, one should also include lateral-grow
processes, which give rise to an additional KPZ-ty
2280
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nonlinearity [4]. This term may modify the critical
behavior as shown in [14] for a directed percolatio
problem. However, in our model, the coefficient of th
nonlinear term turns out to be proportional to the avera
velocity y, since the lateral and the forward growth of th
profile are both ruled by the very same mechanisms. T
feature follows from the isotropic growth of the profile
observed in Ref. [5]. Accordingly, scaling analysis show
that the nonlinear term vanishes asu2y3 and is thus
irrelevant.

The analysis shows that the critical behavior of th
chaotic interfacial zone separating two phases of
oscillation may be described by a set of coupled stochas
equations for the two interfacial profiles that defin
the zone. Complex interfacial dynamics combined wi
instabilities are features common to many chemical a
physical systems and the analysis presented here may
application in other contexts.

Research of R. K. was supported in part by a grant fro
the Natural Sciences and Engineering Research Counc
Canada.

[1] A.-L. Barabási and H. E. Stanley,Fractal Concepts in
Surface Growth(Cambridge University Press, Cambridge
1995).

[2] Chemical Waves and Patterns,edited by R. Kapral and
K. Showalter (Kluwer, Dordrecht, 1995).

[3] V. Petrov, Q. Ouyang, and H. L. Swinney, “Resonant Pa
tern Formation in a Chemical System” (to be published)

[4] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Let
56, 889 (1986).

[5] R. Kapral, R. Livi, G. Oppo, and A. Politi, Phys. Rev. E
49, 2009 (1994).

[6] Y. Cuche, R. Livi, and A. Politi (to be published).
The transition to the “strong turbulence” regime i
characterized by critical exponents that do not seem
correspond to any known universality class.

[7] A disordered domain with thickness of a few lattice site
between the two homogeneous phases is necessary
avoid exceptional lattice-dependent interfacial dynamic
If initial conditions with all three phases are considere
“point” topological defects where all three phases me
induce spiral waves (cf. Ref. [5]).

[8] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. Londo
A 381, 17 (1982).

[9] KPZ-like corrections are naturally expected to becom
relevant for sufficiently large sizes and long times.

[10] Such scaling is nota priori obvious; for instance, different
exponents are found in a roughening transition in th
model of U. Alon, M. R. Evans, H. Hinrichsen, and
D. Mukamel, Phys. Rev. Lett.76, 2746 (1996).

[11] A.-L. Barabási, Phys. Rev. A46, R2977 (1992).
[12] D. Ertas and M. Kardar, Phys. Rev. Lett.69, 929 (1992).
[13] J. M. J. van Leeuwen and H. J. Hilhorst, Physica (Amste

dam)107A, 318 (1981).
[14] M. A. Muñoz and T. Hwa, cond-mat/9702217.


