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Critical Behavior of Complex Interfaces
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Dynamics of complex interfaces is investigated in a model of an oscillatory medium. The moving
interfacial zone separating two phases of homogeneous oscillation consists of a phase with chaotic
spatial and temporal behavior. As system parameters vary, the thickness of the interface grows until
a phase transition occurs where the chaotic phase fills the entire domain. The system behavior and its
critical properties are analyzed in terms of two coupled stochastic equations describing the profiles that
delimit the interfacial zone. [S0031-9007(97)04091-X]

PACS numbers: 64.60.Ht, 05.70.Ln, 68.35.Ct

Interfaces play a prominent role in determining thea transition above which the interface destabilizes and the
macroscopic dynamical behavior of many physicalchaotic phase invades the homogeneous regions [5,6]. We
systems. Examples include magnetic systems wherghow that the relevant properties of the interface dynamics
Ising walls separate regions with opposite magnetizaare captured by two coupled stochastic equations for the
tion, diffusion-limited growth processes [1], chemically upper and lower profiles, respectively, rather than by a
reacting systems where fronts separate domains of dikingle stochastic equation for some average profile. In
ferent chemical composition [2]. Recently, experimentshe analysis presented below, we identify the interfacial
have been carried out on periodically forced, spatiallythicknessA as another relevant order parameter which
distributed, oscillatory chemical systems that showsatisfies a closed equation. The validity of this scheme
frequency locked chemical patterns, where interfacess confirmed both by the accuracy of its predictions
separate domains of different discrete oscillation phaseselow the critical point and by the agreement between the
[3]. The analysis carried out in the present Letter pertainpredicted and numerically determined scaling exponents.
to interfaces of this type. The spatiotemporal dynamics of the system is described

Normally, the interface dynamics is described by aby the set of equations
single-order parameter, the profile, which is assumed
to be a single-valued function of the position along 2 =1 - 4e)f(z)) + Z f(z), (1)
the interface. Langevin-type stochastic models for the JEN(G)
e e Dbl 0 Ml he eal ynamical varabes, wherei = () ae
models of this type .is the Kardar-Parisi-Zhang (sz)tfgttlce—snel labels, NV (i) is the von Neumann ne|ghpor-
o . AR . pood of sitei, and ¢ gauges the strength of the diffu-

quation [4], which incorporates the simplest but relevani.

. ; o . sive coupling. Moreoverf(z) is a piecewise linear map
Bfgég]:;glsty for the description of a wide class of growth of the unit interval [f(z) = bz for 0 = z = 1/b, and

. ..f(z) = a, otherwise]. The map parameters are chosen so
H.owever, there are allso examples (.)f mterface_s Wit hat the local dynamics converges to a (super)stable period-
an internal structure which is not obviously negligible : _ Z
. . o -3cycleA— B— C — A, with A = a4, B = ba, and
or just reducible to a renormalization of the stochastic

A ; o . :
force term. In this Letter we study one such examplec b7a. (This regime is akin to the 3:1 resonance case

arising in a 2D model of an oscillatory medium, where themc Ref. [3]). An interface separating domains of any two

interface separates different phases of the same eriodimc the three phases may be introduced using initial condi-
, P P : P {fons where half of the systemis in one homogeneous phase
spatially homogeneous solution [5]. The interface at

one time instant is shown in Fig. 1 where the internaland the remainder in another phase [7]. Periodic boundary
structure of the interfacial zone and the upper and
lower profiles delimiting this zone are evident. While
the interface as a whole moves, the interfacial region
separating the domains of homogeneous phases exhibits|
irregular (chaotic) dynamics. Thus, one is led to focus
on the two profiles that delimit the region of irregular FIG. 1. Chaotic interfacial zone separating two homogeneous

dynamics. The treatment of the interfacial zone as @hases (solid gray and white regions). The thick black curves
separate chaotic phase is supported by the existence dénote the upper and lower profiles.
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conditions are used in the direction parallel to the interfacege over space, time, and different realizations) and the
while the system has infinite extent in the propagation diprobability density in the corresponding way. This indi-
rection. Periodicity of the homogeneous solution requiregates that the fluctuations of the thickness are described
that theAB interface behaves similarly 8C andCAin- by a single scaling parameter [10], the critical behav-
terfaces. Diffusive coupling induces a nontrivial dynamicsior of which can be more effectively studied by com-
of the interface separating adjacent phases. In particulaputing the average thicknesy, for different values of
the interface can move with a nonzero veloaity. Even b. — b. Figure 3 shows a doubly logarithmic plot of
more striking is the spontaneous roughening observed in, versus b. — b from which one may deduce that
some parameter ranges (cf. Fig. 1) which emerges in spit&q « (b, — b)~* with @ = 0.34 * 0.01.

of the determinism of the model and in the absence of any The stationary spatial correlation function of the
source of local chaos characterized by positive Lyapunothickness, Ca(x) = (SA(x + x',1)8A(x', 1)) — ((6A)?),
exponents [5]. It has been shown that the interface dywhere A = A — Ay, decays exponentially well below
namics may be described by stochastic models driven bthe transition. This allows us to determine a correlation
an effective noise resulting from the irregular motion in-length ¢ that also appears to diverge when the critical
side the interface itself. Far from the transition, where thepoint is approached. We find =~ (b, — b)~#, with
interfacial zone is very thin, the Edwards-Wilkinson (EW) 8 = 0.6 = 0.1; the estimate of this exponent is much
model [8] describes the relevant features of the dynamickess reliable since each correlation length is the result of a
[9]; closer to the transition, where the interfacial zone isfit to an exponential decay.

thick, this model breaks down. This breakdown is not due The simulation results presented above may be under-
to the importance of KPZ-like nonlinear gradient terms asstood in terms of the following phenomenological model:
we shall argue in the following. _ _ _

We investigate the interfacial dynamics along the ling?t1 (6 1) = Ddchy + Fi(hy = ho) = v + £1(x, 1), 2
(a =0.1,e = 0.173) in the (a,b,e) parameter space, 9d;h(x,1) = Dd,chy + Fo(hy — hy) + v + &E(x, 1),
which illustrates all the relevant features including the
growth and eventual destabilization of the interfacial zone
An examination of the velocity of the interface; al-
lows one to make an accurate determination of the poi
b. where the interfacial thickness diverges, since this
can occur only whew, = 0 [6]. The velocity vanishes
linearly with b — b., whereb, = 2.54568(1). Figure 2
shows the stationary probability distributioA(A) for
three values ob. The logarithmic vertical scale indicates ,, . .

: ; thickness can be neglected (i.By, = hy). Symmetry ar-
an almost exponential decay #fA) for large A, while S =,
. . uments suggest that the diffusion coefficiéntthe ve-
the inset shows that an approximately power-law depen? . L . .
) ' ocity v, and the statistical properties of the stochastic
dence is observed for small. However, the most inter- X X
. ) o . terms are the same in both equations. In fact, as long
esting feature is the superposition of the various curves ; .
: . _ as the mutual coupling can be neglected, there is no way
after rescalingA by its average valué\, = (A) (here ST L ) ; .
. . to distinguish the two profiles: the only difference is obvi-
and in the following, angular brackets denote an aver- ; : ) i "
ously the sign of the velocity, since the relative positions

of the ordered and disordered phases are exchanged.

where h; and h, denote the heights of the upper and
lower profile, respectively, defined with respect to some
nr[)reassigned reference position. These profiles may be
unambiguously defined in view of the superstability of
the homogeneous solutions. The model, consisting es-
sentially of two coupled Edwards-Wilkinson equations, is
the natural extension of the model successfully employed
in Ref. [5] to reproduce the interface dynamics when the
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' 10°° (b,~b) 102
FIG. 2. P(A) versusA_ = A/A, for three values ob: 2.544
(solid line), 2.542 (dashed line), and 2.54 (dotted line). FIG. 3. Plot ofA, versus(b. — b).
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The coupling termsF; and F, have the net effect the standard deviatiod'/(4/Dg) of A represent two
of producing a repulsive “force” necessary to preventindependent constraints on the three parametets, and
the two profiles from crossing. Because of translational’ characterizing the model.
invariance,F; and F, depend only on the local thickness The additional information needed to determine all
A = hy — hy. With the above conventions on the sign parameters can be obtained from the behavior of the
of v, the oscillatory phases invade the chaotic interfaciatemporal correlation functiona(z) = (§A(x,t + ') X
phase; i.e., the two profiles approach one another. Thi§A(x,#)). An analysis similar to that performed for the
happens until the short range coupling is sufficientlyspatial correlation leads to the asymptotic expression
strong to stop the process. At that point, if and only if r 2
the coupling termg"; andF, are different, will the whole Calt) = —— [1 - = erf(\/ﬁ)] @)
interface move with a nonzero velocity as observed in the 4J/Dg .
numerical simulations. This is a genuine nonequilibriumA one-parameter fit o€, (¢), together with the previous
feature of the interface dynamics. information, allows one to determine all parameters. The

In principle, one should add to each equation in (2)results forb = 2.542 are D = 1.05, g = 0.0087, and
square gradient terms of the KPZ form. However, wel’ = 9.7. These values are accurate to withific as
argue below that the vanishing af at the transition confirmed by a more detailed analysis of the behavior
point makes such nonlinearities irrelevant. We note thabf the low+ Fourier modes. Using these values, the
this two-interface model differs from two coupled KPZ- theoretical and simulated correlation functiofig(z) are
type interfaces studied earlier in various contexts [11,12]reported in Fig. 4, where one sees that the model is able to
since the two interfaces in our model move with oppositereproduce both the asymptotic exponential behavior and
velocities and thusy cannot be removed by a simple the initial faster decay. This is still true rather close to
scaling ofh; andh,. the transition.

Subtracting the second from the first equation in (2), The only significant deviation between the theoretical
one obtains a closed equation for the interface thicknesspredictions and the numerical observations concerns the

A =Doy A+ FA) —u+ &, (3) tails of dthe pmb?bri]”t); (ljistribfutri]onl; however, tft}is is
_ _ _ _ _ expected in view of the failure of the linearization®ffor

whereF = Fy = Fa, u = 2v, and¢ = & — &8 a A sufficiently different fromA,. In fact, the assumptions
behind model (2) are further confirmed by the agreement

(€0, (1)) = 2I8(x = X8 — 1), (4)  petween the d(iff)usion constant as dete?/mined gfrom the
This model is similar to the phenomenological equatiorevolution of A and from the behavior of the Fourier
introduced in Ref. [13] to study an equilibrium depinning modes of 4; and h, (with the approach described in
transition. In the statistically stationary regime, the av-[5]). When the two profiles are sufficiently close to one
erage interfacial thickness does not change, so that thgnother, the agreement is not obvious since a symmetry
average of Eq. (3) over the position along the interface breaking occurs as indicated by the nonzero velocity of
yields the relatioF) = u. the entire interface.

Addition of the two equations in (2) yields an evolution  We observed that botlh and the correlation length
equation for the mean profile which dependsfon The ¢ parallel to the interface diverge as the critical point
velocity v, of the mean profile may be determined from s approached. In view of the results presented above,
an average over and yieldsv; = (F) + (F2). we might expect that system properties will remain

In the subsequent analysis, we approximate the cou-
pling term by a linear function centered around the aver-
age value in the stationary regim@\) = Ay: F(A) =
F(Ag) — g(A — Ay), where g = F'(Ay) is a positive
constant. In this approximatio#'(Ag) = u. Accord-
ingly, Eq. (3) simplifies to

I A, 1) = DI — g(A — Ag) + £(x,1). (5)

By exploiting the periodic boundary conditions, the
above equation can be solved by Fourier transforming
in space, yielding an explicit expression for the space
correlation function. Fox < L, we find

Gaussian white noise with correlation function

r
Calr) = —+—(1 — e=/e/Dx), 6)
4\/Dg ( ) 1 L L
The purely exponential decay is in accord with numerical 0 50 100 t 150

simulations, where it is observed even for early timesgg, 4. Temporal correlation functiof's(¢) versust. Solid
The measurements of the decay ragg/D and of curve (simulation); dashed curve [Eq. (7)].
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invariant in the vicinity of the critical point provided all

nonlinearity [4]. This term may modify the critical

variables are suitably rescaled. Let us first perform thdehavior as shown in [14] for a directed percolation
scaling analysis with reference to a repulsive force of theoroblem. However, in our model, the coefficient of the

type F(A) = ¢/A™, since it is naturally scale invariant.
Moreover, the relevant control parametér — ») may
be replaced by the velocity since this also vanishes
linearly with (b. — b).

We assume that the basic quantities scale withs
follows: A = A'/u®, t = t'/u?, x = x'/uP. The scaled
equation is

WA = uP DI A+ ue /AT — u

+ u(z+5)/2§ .

(8)

nonlinear term turns out to be proportional to the average
velocity v, since the lateral and the forward growth of the
profile are both ruled by the very same mechanisms. This
feature follows from the isotropic growth of the profiles
observed in Ref. [5]. Accordingly, scaling analysis shows
that the nonlinear term vanishes a8 and is thus
irrelevant.

The analysis shows that the critical behavior of the
chaotic interfacial zone separating two phases of an
oscillation may be described by a set of coupled stochastic
equations for the two interfacial profiles that define

Requiring that the model (except for the force that will bethe zone. Complex interfacial dynamics combined with
considered separately) be invariant to this transformatiof'stabilities are features common to many chemical and

yields the following relations among the exponents:
28 —z=0,

l+a—2=0,

a—z/2+ B/2=0,

(9)

giving, « = 1/3, z = 4/3, B = 2/3. With these values

physical systems and the analysis presented here may find
application in other contexts.

Research of R. K. was supported in part by a grant from
the Natural Sciences and Engineering Research Council of
Canada.

of the critical indices, one also finds that the coefficient

of the force scales as’ = cu”/3~!. Accordingly, if

n > 3 the repulsive potential renormalizes to an infinitely

high barrier atA = 0, so that the entire equation (8)
is invariant under the renormalization transformation.

is obvious that forces decaying faster than algebraically[3]

yield the same scenario.
For n < 3, the force diverges, indicating that must
be larger than A3: the only physically consistent solu-
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