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Is Compressibility Important in the Thermodynamics of Polymer Mixtures?
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The effect of compressibility on the static scattering from polymer mixtures is critically evaluated
through a general thermodynamic analysis. We find that compressibility plays an important role for
blends comprised of chains with disparate chemical structures, and that it is effectively irrelevant for
blends with similar chemical structures. [S0031-9007(97)04029-5]

PACS numbers: 61.41.+e

The mixing thermodynamics of polymers are usuallyof ysans [6] and will be referred to as “linear” blends.
described by Flory-Huggins theory [1], according to The origin of the unexpected composition dependence of
which the Helmholtz energy per unit volume/vg, for  xsans iS an unresolved issue. Some of the various pro-

binary mixtures is posed possibilities—non-mean-field effects, nonrandom
a_ _ ¢ Ing + 1—-¢ In(1 — &) mixing, compressibility effects—have been reviewed re-
voRT  Njv; Nrv, cently [5,7,8]. The role of compressibility has been con-
X troversial. It has been argued by various groups that it is
+ v_0¢(1 — ). (1) either an important variable [8—11] or irrelevant [12].
Here ¢ is the volume fraction of component &; and It appears generally accepted that current methods for

v; are the degree of polymerization and molar volumethe extrapolation of coherent scattering data to the zero
of monomer unitS, respective|y' of ComponénR is the wave vector ||m|t, such as the Ornstein-Zernike methOd,
gas constant] is the temperature, and, is the volume remain valid even in the case of compressible systems [8].
of a mole of lattice sites. In the context of this model Further, the neutron contrast factay, is relatively unaf-

X, the interchange energy parameter, is a pair-specifitected by system compressibility for mixtures of typical
function of temperature, and depends neither on the blen@olymer liquids. Consequently, the quantit{0) derived
composition,#, nor on the chain lengths. Values fgr ~ from scattering techniques contains only thermodynamic
can be obtained, for example, from small angle neutrofnformation of the mixture of interest.

scattering (SANS) data. The experimentally determined Here, a generally applicable thermodynamic approach
zero wave vector limit of the static structure fact®(0) is utilized to critically evaluate the role of compressibility
[2] is related toy through the incompressible Flory model 0n $(0), and hence on the composition dependence of the

expression fors(0) [2], interaction parametefsans- A dimensionless parameter,
1 1 [ 02a } which identifies the importance of compressibility effects,
= is derived without resort to a specific model. Through

UOSincomp (0) RTvg 8(1)2 T P d

this approach we show that the finite compressibility
_ 1 n 1 _ X @) of polymers plays a significant role in determining the
Nivi¢ Novy(1 — @) v static structure factor for linear blends. However, it is
whereS(0) = [1(0)].on/ky, in which I(0) is the coherent effectively irrelevant in the case of quadratic mixtures.
SANS intensity extrapolated to zero wave vector, apd While these results rationalize and explain our recent
is the SANS contrast factor. numerical findings [13] based on the lattice fluid model
Contrary to the model, values gfans obtained in this  [14], it is important to stress that the model presented
way are found to vary significantly with blend composi- here is general and contains the lattice fluid and other
tion [3-7]. The systems showing these effects have beegompressible models as special cases.
tentatively classified into two categories [8]. Isotopic mix- The zero angle scattering from compressible binary
tures [3,6], or saturated hydrocarbon mixtures [5,7], whichmixtures,Scom, (0), was derived in the 1940s [15],

show a parabolic dependence gfans on ¢, will be re- (b)? 92(g/RT) T
ferred to in this work as “quadratic” blends. Other blends, Scomp(0) = —— (RT p*«r) + [pv0]3[72:| )
which are generally comprised of chains with dissimilar vokn 9x T.p
chemical structures, show a linear composition dependence 3)
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Here 7 is the isothermal compressibility of the mixture, about the experimental state, which is characterized by a
p is the monomer densityy, = /v v, is a reference volumew,
volume, andv; is the molar volume of pure component

i [16]. (b) = bix + by(1 — x) is the average scattering aw’) = a(v) — P,(v' — v) — [ﬁ}

length of the sample, andy = (2> — ¥)* is the scat- ! dv Ir

tering contrast factor, wherg; is the scattering length (v — v)?

of speciesi. Note that we have considered experimen- X T, 4)

tally relevant isothermal-isobaric conditions, and herce

the mole fraction of monomers of species 1, andhe where P, and dP/dv]r are evaluated at experimental
Gibbs free energy of mixing per mole of monomers, areconditions [17]. To isolate the role of compressibility
the natural variables. The first term on the right side ofwe setv’ = v*, the system volume in the incompressible
Eq. (3) derives directly from density fluctuations, and islimit, i.e., P — «. We stress that this Taylor series is con-
one manifestation of system compressibility. Since thisvergent and appropriate to extrapolate from atmospheric
term is typically 100—1000 times smaller thdp,,,(0)  pressure to the incompressible limit as can be illustrated,
[8], it is ignored in the analysis that follows. The con- for example, by adopting the Sanchez-Lacombe lattice for-
tribution of system compressibility to the second term inmalism [14]. After rearranging we obtain

Eqg. (3), which is purely thermodynamic in origin, is then

the primary focus of this analysis. ¢(v) = a(v®) + Pyv* + [ﬁ} X @ —v +
We begin with the identity (v) = a(v) + Pv, where ov Ir 2
P and v are the pressure and the volume per mole of (5)

monomers, respectively, aadv) is the Helmholtz energy
per mole of monomers. Consider a Taylor expansioa of Sincev* = xv + (1 — x)v} it follows that

(L)) _[fe) L MeomoGlowE L) L) L

dx2 9x2 VKT KT v/1—xL ox

where the Gibbs-Duhem relationship has been utiIiZE;d.| [2,12], it is clear that the second term does not vanish
andv; are the partial molar volume and hard core volume gxcept in the special case whétg — v,) = (v — v3).
respectively, of componerit and 7 is the isothermal Consequently, the scattering obtained from a system where
compressibility of the experimental system. Note that themixing occurs under additive volume conditions is not,
first term on the right-hand side corresponds to the resulh general, equivalent to that obtained in the hypothetical
obtained from an incompressible system, such as the oriecompressible limit [2,12].

considered by Flory-Huggins theory. The remainingterms To more quantitatively assess the importance of com-
describe the contribution of compressibility to scattering pressibility we define a parametek, which is derived

To emphasize the role of compressibility consider the casfom Eqs. (6) and (1) [18],

where the system is characterized by zero excess volume | 1

on mixing. The third term in Eq. (6) would be equal =
to zero. Even in this situation, which is traditionally Seomp(0)  Sincomp (0)
considered to be equivalent to the incompressible limitvhere

X (1 +A), @)

A

{ 1 _ 1} + Sincomp(o) 1
pilxv; + (1 — x)va P pkrRT (pvo)?

S R

The magnitude ofA determines the importance of conL of a polymer mixture can be described by the empirical re-
pressibility. If A < 1 then compressibility is irrelevant lation [8],v = (vix + vo[l — x]) X [1 + ad(1 — ¢)]

to the analysis of scattering data, and hence the conwhere¢ = xv,/(xv; + [1 — x]v;). The absolute value
position dependence ofsans, While the opposite con- of « is of order 10~* for quadratic blends [8], while
clusion arises ifA =~ 1. To obtain estimates o\ of it is =102 for linear blends [19]. From here the par-
typical polymer blends it is necessary to quantify the partial molar volumes can be readily derived; = v[1 +

tial molar volumes of the mixture components. As a con-a(l — ¢)?]. For many typical systems [4,5] the dimen-
venient approximation we assume that the molar volumsionless value oficomp(0), as defined in Eq. (1), is of
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order 1¢, pvy = 1, andpk7RT = 0.1 [8]. Therefore, 2
—v)— (v — V)P ey, T=83'C
A = 10° X {[(Ul vi) — (2 UZ)} ol oy, T=83'C
v
U*
+ 2ap4v%v§<l - —> + } (9) 18t
v

o

Note that the first term on the right-hand side of Eq. (8), E
which is of ordera, is ignored since it is much smaller ¢
than the other terms in the expansion. Further, the partial =
molar volumes in the second and third terms on the right- 14|
hand side of Eg. (8) have been replaced by the molar
volumes with negligible errors. 12l

Let us now consider a few specific examples. For
quadratic blends, such as hydrocarbon polymer mixtures ‘ . ‘ .
or isotopic blends, if one utilizes a typical equation 90 02 0.4 0.6 0.8 1.0

of state, such as the one derived by Sanchez [14], Xprg

*

(v],v*),(vz,vz*) —~ -3 v

= W2 107" Further, - =~ 09 £8]' and  FiG 1. y y for a “quadratic” system. The data correspond
the termp*viv; = 1. ConsequentlyA =~ 107°. Since to a hydrocarbon polymer blend, which is denoted as HD&®
the typical uncertainties in scattering experiments arg5]. Lines are guides to the eye.

of the order of 5%, it is clear that the contributions

of compressibility are within these uncertainties. Inthe)( parameter varies linearly with compositiog is

fr?;ttr(?osrtntcr)eggskfili\{vogk [i?éél?’i;};n\gfe;h?;?r?{ﬁeCS:SIS%(;eeffectively composition independent. Consequently, in
P y by P lIhis case, the introduction of compressibility significantly

composition dependence ofsans for these “weakly Effects the composition dependence of the interaction

16 |

interacting (or quadratic) systems. For linear blends, suc arameter.

as PGPVME [4], viitv) o 0.04, suggesting that | 3 qualitative sense these results can be understood as
A =1 in this case. Thus, compressibility can play anfollows. In the case of quadratic blends, the components
important role in the scattering obtained from these morgpssess similar molar volumes and compressibilities.
strongly interacting systems. o Consequently, the free volume, which can be viewed as
In this context we stress that the contribution of theg nonselective solvent, does not contribute significantly
last term in Eq. (9), which reflects the role of excessig the scattering. In the case of linear blends, the molar
volumes on mixing, is comparable in magnitude to theyglume and the compressibility change with composition.
first term in this equation. Consequently, the assumptiofyther, past work of Sanchez [14] has shown that

of additive volumes is not appropriate when one assess@ympressibility intimately affects the thermodynamics of
the importance of compressibility effects on the scattering

from polymer mixtures.
To verify these order of magnitude analyses we have 5.0

performed numerical calculations using the Sanchez- o—ey, T=120"C

. . pr 0

Lacombe theory [13]. There was one mixture specific un- G © X°TT=113,20(‘]’CC
. . . 00 L I—IX, .

known quantity,e,, the energy of interaction between a G o T=130°C

monomer of type 1 and one of type 2, which was fit sepa-
rately at each composition to experimental SAN®)
data. These results are compared to the composition de=
pendentysans values obtained from fitting the incom- :o
pressible Flory model to the same data. To facilitate the=2 -100}
comparison of the two models, in the case of the com-

pressible formalism we define a paramejgy, analogous - e N =

50 F

-
to the Flory x, xo = % (2e12 — &11 — €22), wherez LR *@--e—--@\@j """"""""""" N
is the lattice coordination number. In Fig.1 we com- 777 O
pare they and y, for a quadratic blend. Both curves 00 , ) , ,
show virtually identical composition dependences sug- 700 0.2 0.4 0.6 0.8 1.0
gesting that the introduction of compressibility does not Xpps

affect the composition dependence gfans in this case g5 o v and yo for a “linear’ blend at three different

[20]. We also compare the incompressilgléo the yo for  temperatures. The data correspond to a polystyrene and
the case of a linear blend in Fig. 2. It is clear that, whilepolyvinylmethylether blend [4]. Lines are guides to the eye.
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