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Rigid-Rotor Vlasov Equilibrium for an Intense Charged-Particle Beam Propagating
through a Periodic Solenoidal Magnetic Field
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A new rigid-rotor Vlasov equilibrium is obtained for an intense, axisymmetric charged-particle
beam with uniform density in the radial direction propagating through a periodic solenoidal focusing
field. The beam envelope equation is derived, and examples of periodically focused rigid-rotor Vlasov
equilibria are presented. Statistical properties and possible applications of the present beam equilibrium
are also discussed. [S0031-9007(97)03530-8]

PACS numbers: 29.27.Bd, 41.75.—i, 41.85.—p

A fundamental understanding of the kinetic equilibrium solenoidal focusing field. The applied solenoidal focus-
and stability properties of an intense charged-particleng field inside the thin beam can be approximated by
beam in periodic electric and magnetic fields is important
to the development of advanced particle accelerators and B*'(r,s) = B.(s)e, — L Bl(s)e,, 1)
advanced coherent radiation sources for a wide range of 2
applications [1-3]. Until this paper, the Kapchinskij- where s = z is the axial coordinater = (x2 + y?2)!/2
Vladimirskij (KV) equilibrium [4] has been the only is the radial distance from the beam axi,(s + S) =
known collisionless (Vlasov) equilibrium for continuous B.(s) is the axial magnetic field§ is the fundamental pe-
intense charged-particle beams propagating through eith@bdicity length of the focusing field, and prime denotes
an alternating-gradient quadrupole magnetic focusing fielderivative with respect ta. Here,S > r;, is assumed,
[4,5] or a periodic solenoidal focusing field [5,6]. Studieswherer, is the characteristic radius of the outer beam en-
of the KV beam equilibrium and its stability properties velope. To determine the self-electric and self-magnetic
[1-7] have contributed significantly to the physics offields of the beam self-consistently, we assume that the

intense charged-particle beams. density profile of the beam is uniform, i.e.,

A large body of literature exists on the Vlasov equi- 5
librium and stability properties of rotating nonneutral ny(r,s) = {N/T”b(s)’ 0=r<ns), 2)
charged-particle beams propagating parallel tendorm 0, r>rp(s),

solenoidal focusing fiel#oe. [8], whereBy = const, dat-  wherer,(s) = r,(s + S) is the equilibrium beam radius,
ing back to the original work of Davidson and Krall gnd N = 27 f;; dr rny(r,s) = const is the number of
[9]. In the present paper, it is shown that there eXistarticles per unit axial length. In the paraxial approxi-
a rigid-rotor Vlasov equilibrium for an intense charged- mation, the Budker parameter of the beam is assumed to
particle beam with uniform density in the radial direction pe small, i.e.g2N/mc? < y,, and the transverse kinetic
propagating through geriodic solenoidal focusing field. energy of a beam particle is assumed to be small com-
In the present analysis, the beam is assumed to havepred with its axial kinetic energy. Here,is the speed
uniform density profile in the radial direction, and a rigid- of |ight in vacugq v, is the relativistic mass factor, and
rotor angular flow velocity in addition to a constant axial and are the particle charge and rest mass, respectively.
velocity B, c. As special limiting cases, the present analy-From the equilibrium Maxwell equations, we find that the

sis includes both the familiar KV equilibrium for an self-electric and Self-magnetic ﬁeldgier andBéee, are
intense beam propagating through a periodic solenoidajiven by

focusing field [6,8], and the familiar uniform-density

rigid-rotor Vlasov equilibrium in a uniform solenoidal Ei(r,s) = By 'Bi(r,s) = 2‘21Nr 3)
field [10]. The beam envelope equation is derived and " ry(s)

used to determine the axial dependence of the outer beaj the beam interio0 < r =< r,). It is convenient to

radius. Statistical properties and possible applications Oéxpress the self-fields in terms of the scalar and vector

the present beam equilibrium are also discussed. potentials defined fod < r =< ry(s) by
We consider a thin, continuous, axisymmetd¢oo = 5
0), intense charged-particle beam propagating with con- O(r,s) = By AN(r,5) = _gNr (4)
b Z b

stant axial velocityB,ce, through an applied periodic ri(s)’
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where A*(r,s) = Ai(r,s)e;, E}(r,s) = —o®*/dr, and It can be shown that the transverse motion for an
By(r,s) = —0A$/dr. Furthermore, we choose the vec- individual particle in the combined fieldB*'(r,s) +

tor potential for the applied periodic solenoidal field By(r,s)ey and E:(r,s)e, is described by the normal-
to be A=Y(r,s) = (r/2)B,(s)es with B*'(r,5) = V X ized perpendicular HamiltonianA, = Hl/ybﬁﬁ X

A (r, ). mc? [6]
|
N PN 1| 4 A — K
AL,y P Pros) = P+ WG E + [Py = i F = =5 (2 45 (5)
b
A A - . . |
Here, (x, P,) and (y, P,) are canonical conjugate pairs, H(X,Y, Py, Py,s) = > X2+ Y2+ P} +P}).
VK. (s) = ¢B.(s)/2y, Bymc? is the normalized Larmor 2w3(s)

frequency, K = 2¢>N/vi Bimc* is the self-field per- (11)
veance [1],y, = (1 — B3)""/? is the relativistic mass Because A2 = X2 + P2, A2 =Yy2+ P, and the
factor, and the normalized transverse canonical momentanonical angular momentunPe = XPy — YPy are
tumP, = (P,, P,) is related to the transverse mechanicalexact single-particle constants of the motion for the
momentump_ by P, = (y,Bsmc) '(pL + gAT'/c).  Hamiltonian in Eq. (5), we define a possible choice of
It is useful to introduce the canonical transformation fromviasov equilibrium distribution function by

the Cartesian canonical variablesy, P,, P,) to the new

canonical variablesX, Y, Px, Py) in the Larmor frame N
defined by [6] mer

fr(X,Y,Px, Py) = 8[X* + Y* + P% + P}

x = wXcos¢ + wYsing, — 2w,(XPy — YPy)
y = —wXsing + wY cosé, - (1 = wper], (12)
P. = w'Py + w'X)cose wheredf,/ds = 0 = df,/ds, er = const> 0 is an ef-
Py + w'Y)sing (6)  fective emittances(x) is the Diracé function, and the
Wty W ’ rotation parametew, = const is allowed to be in the
P, = —(w Py + w'X)sing range—1 < w, < 1 for radially confined equilibria. As

shown below, Eg. (12) is consistent with the assumed
d density profile in Eq. (2). Whilef, is defined in terms
of a 6 function, it should provide a very good descrip-
tion of a well-matched beam equilibrium in experimental
applications.

It is readily shown that the beam equilibrium described
5 — (7) by the distribution functionf;, in Eq. (12) has the fol-
) _r,,(_s) ) w3(s) lowing statistical properties. First, the beam has the
and prime denotes Qerlvgtlve with respect sto The uniform-density profilen,(r,s) = w=2(s) [ f» dPx dPy
canonical transformation in Eqg. (6) can be obtained by rescribed by Eq. (2), provided,(s) = 8,}r/zw(s)_ In

: L . . b
successive a~ppl|~cat|ons of the generat-lng fgncﬂons other words, the outer equilibrium radius of the beam
F>(x,y; Py, Py,s) = (xcOS¢p — ysing)P,

N rp(s) = rp(s + S) obeys the familiar envelope equation
+ (xsing + ycos¢)P,, (8)

[1,6]
Fy(%,§; PxPy,s) = (kPx + §Py)/w d?
— rp(s) + K, (s)rp(s) — - =
@ ). @ de W TR TS T o
It follows from Eq. (8) thatt = xcos¢ — ysing and  second, in dimensional units, the average (macroscopic)

y = xsing + ycos¢. The Hamilton equations for the transverse velocity of the beam equilibrium described by
perpendicular motion in the Larmor frame can be ex-gq. (12) is given in the Larmor frame by

pressed as

+ W 'Py + w'Y)cosg .
In Eq. (6), ¢(s) = [, ds/x.(s) is the accumulate
phase of rotation of the Larmor frame of reference
relative to the laboratory frame, the periodic function
w(s) = w(s + S) solves the differential equation

WIGs) + | kels) = =2 wls) =

K 8%

0. (13)

o O _ P Vi) = Do) 6)1 [ 901y dpy ay
P wi(s)’
(10) rh(s) s
p = _9H X = Brcré, + Q,(s)reg, (14)
9X w2(s)’ rp(s)
whereX = (X, Y), P = (Py, Py), and the new Hamilton- where Q,(s) = Vy(r,s)/r = erw»Bpc/ri(s). Note

ian is defined by
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is proportional to the average (normalized) canonical d” Q) B

angular momentum in the Larmor framé&?,) (r,s) = ds? rp(s) Bl [Q5(s) + Qes)]rp(s)

[ny(r, s)W(s)]"! [ Pofy dPx dPy = erwpr?/ri(s). In K &2

the laboratory frame, the-dependent average transverse - = -=0, (22)
flow velocity and angular rotation velocity of the beam ro(s)  rp(s)

equilibrium described by Eq. (12) can be expressed as whereQ.(s) = ¢B;(s)/y,mc is the relativistic cyclotron
frequency including its sign.

Vi (r,s) = [np(r, )w(s)] ! f v, fp dPx dPy The periodically focused rigid-rotor Vlasov equilibrium
has two limiting cases which are well known. It recov-
rp(s) ers the familiar KV beam equilibrium [4—6] by setting the
" ) Bocre, + Qp(s)rey, (15)  rotation parametew, = 0. It also recovers the familiar
constant-radius, uniform-density rigid-rotor Vlassov equi-
O,(s) = STZIBbC wp — qB:(s) , (16) librium [10] by taking the limit of a uniform magnetic
i, (s) 2ypmc field with B,(s) = By = const.

respectively. Because the beam rotates macroscopically as /& Now illustrate with examples of periodically focused
a rigid body at a rate that is a periodic function of the axial/@9id-rotor Viasov equilibria in a periodic solenoidal fo-
propagation distance we refer to the Vlasov equilibrium €USINg channel wnh step-f_unctlon Iatt_lce'. Flgurg 1 shows
described by Eq. (12) aseriodically focused rigid-rotor plots of the normalized axial magnetic field (solid curve),

Vlasov equilibrium As a third statistical property, the 2€am radius (dashed curve), and average angular velocity

beam equilibrium described by Eq. (12) has the effective” the laboratory frame (dotted curve) defined in Eq. (16)

transverse temperature profile (in dimensional units) ~ V€rsus the axial propagation distancéor a rigid-rotor
Vlasov equilibrium in a periodic solenoidal focusing chan-

Ti(r,s) = [np(r,s)w(s)]™! nel defined by the ideal periodic step function
Ypm 2 — _
x]—(vi — V.)°fp dPx dPy /_:{\/KZ()—COI’]SI n/2=s/S <n/2,
2 w:(s) =1, n/2=<s/S<1-m/2.
2
= T.(0,5) [1 - = } (17) (23)
s (s) Here, n is the so-called filling factor. In Fig. 1, the
where beam radius and average angular velocity are determined
250 using Egs. (13) and (16), respectively, for the choice of
T.0,5) = (1 — w?) myBhc”er (18)  system parameters correspondingigizo = 3.162, n =

2rp(s) 0.2, SK/er = 10, andw;, = 0.9; the variables, v/ (s),
Note from Eq. (18) that the product.(0,s)ri(s) is a  7»(s), and Q(s) are scaled by the multipliers™, §,
conserved quantityd/ds = 0) as the beam is axially (erS)~/?, and S/B,c, respectively. The vacuum and
modulated. As a fourth property, thens emittance of

the beam equilibrium described by Eq. (12) is given in the 4 . . .
Larmor frame by - i ) |
e = ((B)(F?) — GFP)V2 = (GHG? — (552 51 N ey, [ S
= e7/4, (19) <}
where statistical averages are defined in the usual manner ,_—:-"0
by (---y = N~! [(---)f, dX dY dPx dPy. Note that the |< — Field
definition of 7 in Eq. (19) includes directed transverse 201 T iﬁ‘l‘gﬁ‘{’e
motion as well as motion relative to the mean. Defining - Velocity b
the thermalemittance of the beam by % : . .
- , . 1. 1. 2.
en = 4(B0) [0 (v, — VD2, (20) o » R > °
it is readily verified that FIG. 1. Plots of the normalized axial magnetic field (solid
27,(0 S)rz(s) curve), beam radius (dashed curve), and average angular
et = (1 — w)er = —= 2b ) (21)  velocity (dotted curve) versus the axial propagation distance
myyp, By c? for a periodically focused rigid-rotor Vlasov equilibrium in an

2 2 22 applied magnetic field described by the periodic step-function
It follows from Eq. (21) thater = sin + wjer, Where |5tice in Eq. (23). Here, the choice of system parameters

the wﬁ term corresponds to the average azimuthal motioorresponds taS /K0 = 3.162, 7 = 02, SK/er = 10, and

in the Larmor frame. Making use of Egs. (16) and (21),w, = 0.9. The variables, \/«,(s), r,(s), andQ,(s) are scaled
the envelope equation (13) can also be expressed as by the multipliersS !, S, (e75)~"/?, andS/B,c, respectively.
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space-charge-depressed phase advances of the particle 1.20
betatron oscillations averaged over one lattice period are
evaluated to ber, = e7 [3 ds/rky(s) = 86.6° ando =

er [ ds/ri(s) = 12.8°, respectively. Here,ry(s) =
rpo(s + S) is the outer equilibrium beam radius when
K =0.

To illustrate the influence of rotation on the periodi-
cally focused rigid-rotor Vlasov equilibrium, we plot the
relative equilibrium beam radius,(0)/rXV(0) ats = 0
versus the rotation parameter, in Fig. 2, as obtained 1.00
by solving the envelope equation (22) numerically for the -1.0 0.5 0.0 0.5 1.0
case of the step-function lattice defined in Eq. (23). Here, @y
ri ¥ (0) is the outer beam radius for the KV equilibrium FIG. 2. Plots of the relative equilibrium beam radiug0)/
(wp, = 0) ats = 0,5,2S,.... The choice of system pa- rSV(0) at s =0 versus the rotation parametes, as ob-
rameters corresponds t9,/x;o = 3.162, n = 0.2, and tained from Eq. (22) for the step-function lattice defined in
SK/eq = 10, whereey, is the thermal emittance. It is Eq,%S_)- I?ere,ri‘ov)(O)Tiﬁ thﬁ Quterf beatm radius fontr the KV

H i H ilikvri H H equiiorium(w, = 0). € cnoice Or system parameters corre-
;\/ilrﬁii;nljtn;nvffllg.l’lz thEtOthe equilibrium beam radius is asgonds tOS\/KLZo _3 162 1 = 09, anéI/SK/sg 0 where

, Wp = (strongest mf'alg_netlc focusing), ey is the thermal emittance.
and increases rapidly d&,| — 1. This is because the

centrifugal force associated with the beam rotation is dege stability properties of the present equilibrium is an im-
focusing, thereby resulting in a larger beam radius. portant area for future investigation.
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