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An analytical model is developed for theN-body largest Lyapunov exponent in the dilute plasma, an
it is shown that the Lyapunov exponent relates to the dielectric response function. The relation prov
a bridge between microscopic mechanical and macroscopic statistical quantities and it is expected t
be applicable for a weakly nonequilibrium system. In thermal equilibrium, the model shows that
Lyapunov exponent of dilute one component plasmas is of the same order as the plasma frequenc
independent of the Coulomb coupling constant. These results agree fairly well with three dimensi
particle simulations. [S0031-9007(97)04053-2]
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Recently, there has been a great deal of research dev
to finding relations between the Lyapunov exponent a
macroscopic statistical quantities [1–6]. The Lyapuno
exponent is the rate at which knowledge of an initial sta
in phase space is lost. In previous works [1–3,5], sy
tems that are determined only by short range forces a
or small degrees of freedom were mainly considered.
this paper, we consider a Coulomb many body syste
whose dynamics is determined by long range forces.
short range force systems, the Lyapunov exponent is
pected to be proportional to the collision frequency [1
The proportionality of the Lyapunov exponent to the co
lision frequency is obtained from the assumption that t
interaction time is much shorter than an interval of co
lisions. In Coulomb systems the interaction time can
approximated by a duration that a particle with a therm
speedyth sT  my

2
thd travels a distance of a Debye lengt

lD ;
p

Ty4pne2 because the Coulomb force of individ
ual particles is shielded beyond a Debye sphere, but
within a Debye sphere. Heree, m, n, and T represent
charge and mass of a particle, number density, and te
perature in energy units, respectively. In addition to th
within the duration a particle interacts with many surroun
ing particles of the order ofnl

3
D which is very large in a

dilute Coulomb system. Therefore, the Lyapunov exp
nent in the Coulomb many body system is expected to
different from that in short range force systems. We ha
investigated the dependence of the Lyapunov exponen
the Coulomb coupling constant ofG , 1 with the use of
the three dimensional particle codeSCOPE[6,7]. As will
be shown below, the magnitude of the Lyapunov expone
is found to be of the same order as the plasma freque
v21

p  lDyyth in this range, which is very large compare
with the collision frequency for such dilute plasmas.

In the previous papers, many analytical formulas for t
Lyapunov exponent were proposed. For example, Kryl
[1] reported that the Lyapunov exponent is expected to
proportional to the collision frequency; Gaspard and Nic
0031-9007y97y79(12)y2249(4)$10.00
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lis [2] related the diffusion coefficient of a Lorentz ga
with its positive Lyapunov exponent and the Kolmogoro
entropy; Sekiet al. [3] and Barnettet al. [4] presented re-
lations between the Lyapunov exponent and the diff
sion coefficient; Chaudhuriet al. [5] found a formula
for a driven nonlinear oscillator and related the Lya
punov exponent to a correlation of the second ord
derivative of the potential. We will also find a simila
relation between the Lyapunov exponent and the se
ond spatial derivative of the Coulomb potential for
many body system. We will then derive an analytic
model which gives a relation between the Lyapuno
exponent and the dielectric response function [8].

In this paper, we consider a one component plasm
The one component plasma is characterized only by
Coulomb coupling constantG ; e2yaT , wherea is the
particle sphere radius, i.e.,4pa3y3 ; 1yn. In the case of
G ø 1, a plasma can be regarded as a dilute plasma, wh
a plasma withG . 1 is regarded as a strongly couple
plasma. Figure 1 shows the dependence of the Lyapun

FIG. 1. Dependence of the Lyapunov exponents normaliz
by plasma frequency on the Coulomb coupling constant. Op
and closed circles are data in the previous [4,6] and pres
works, respectively. Solid, broken, and dashed lines a
obtained by a least-squares method with the observed data
the dilute, liquid, and solid plasmas, respectively.
© 1997 The American Physical Society 2249
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exponents normalized by the plasma frequency on
Coulomb coupling constantG, obtained by molecular
dynamics simulations using the three dimensional part
code SCOPE [6,7]. A Lyapunov exponent is defined in
a long time limit as an exponential expansion rate
a separation distance between two adjacent trajecto
in a 6N phase space. In the particle simulations, w
consider two independent systems, reference and displ
systems, and both consist of 500 charged particles w
uniform background charge and with a periodic bounda
condition. In the displaced system, initial positions a
momenta of the individual particles are displaced fro
their corresponding values in the reference system.
displacement is given by a normal distribution with the ro
mean squares of5.0 3 1023 a in position coordinates and
5.0 3 1023 myth in the momentum space, respectivel
The Lyapunov exponents in Fig. 1 are worked out by t
conventional rescaled method [9], namely, by taking tim
average of the instantaneous expansion rates with res
to the displacement. The details of the simulation meth
are described in Ref. [6]. It is found that the Lyapuno
exponent normalized by the plasma frequency,lyvp, is
independent ofG for G , 0.05, proportional toG22y5

for 1 , G , 150, and to G26y5 for G . 170. These
states correspond to the dilute gas, dense liquid, and s
plasmas, respectively. The large jump of the Lyapun
exponent atG , 170 corresponds to the phase transitio
from liquid to solid state [10].

In the previous work [6], we explained qualitativel
the simulation results of the dependence of the Lyapun
exponent on the Coulomb coupling constant in liquid a
solid states on the analogy of a rigid body particle mod
and a weakly nonlinear lattice model, respectively. If t
rigid body particle model [1,6] is applied for the dilut
plasma, both the Lyapunov exponent and the collis
frequency are expected to be proportional tovpG3y2.
However, as shown in Fig. 1, for the dilute plasmasG # 1d
the magnitude of the Lyapunov exponent is of the sa
order as the plasma frequency, namely, much larger t
the collision frequency.

To construct a model for the Lyapunov exponent, w
derive basic equations for the trajectory instability in t
one component plasma. A classical three dimensio
system ofN particles has3N momenta,p, and3N position
coordinatesq. Lsp, qd represents a6N-dimensional phase
space point. In the one component plasma, particle mo
can be described with a HamiltonianH as follows:

ÙL ;

√
Ùp
Ùq

!


√
2≠Hy≠q
≠Hy≠p

!
; GsLd , (1)

where

H 
NX

i1

p2
i y2m 1

NX
i1

NX
jfi1

e2y2jqi 2 qjj
2250
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and the subscripts “i” and “j” denote, respectively, theith
andjth particles. To obtain the Lyapunov exponent, w
need an equation of motion for a perturbed trajectory in
6N phase space. Equation (1) is linearized as follows:

Ùd ;

√
d Ùp
d Ùq

!


≠GsLd
≠L

d 

µ
0 2Vqiqj

std
m21 0

∂
d

; TsLd d , (2)

where

Vqiqj std ; sij

NX
,fii

ci,std 2 s1 2 sijdcijstd

and

ci,std ; ≠2se2yjqistd 2 q,stdjdy≠qi≠qi .

In Eq. (2),dp anddq are the perturbed3N-dimensional
momentum and position coordinate, respectively, a
sij , m21, and 0 are Kronecker’s delta, diagonal tenso
whose components arem21, and zero matrix, respectively
ci, represents the second order spatial derivative of
Coulomb potential induced by the,th particles. Thus,P

,fii ci,dqi presents the difference of forces on theith
particle and a fictitious particle at nearby position of whic
distance from theith particle isdqi. This difference of
the forces determines the expansion speed of the ne
trajectories, i.e., Lyapunov exponent. In a short ran
force system, the difference of the acceleration appe
only at the time when collision takes place, and no acc
eration on particles at an interval of collisions. Thus it
believed that the Lyapunov exponent is related to collisi
frequency. However, in a dilute plasma, because of a lo
range force of the Coulomb interaction, the difference
the acceleration appears even at an interval of collisio
along a nearly ballistic trajectory. Namely, thermal flu
tuations of surrounding particles within a Debye sphe
may cause a difference of the acceleration on the partic

The largest Lyapunov exponent is defined as the ma
mum eigenvalue of the time dependent matrixTsLd in
Eq. (2). However, the matrix elements are functions
time and as a result the Lyapunov exponent cannot be
rectly calculated from Eq. (2). The treatment of van Kam
pen [11] for stochastic differential equations is adopted
solve Eq. (2). Namely,Vqq is assumed to have a finite
autocorrelation timetc, in the sense that for any two time
pointst1 andt2 such thatjt2 2 t1j . tc, Vqqst1d is statisti-
cally independent ofVqqst2d. We also introduce a statisti
cal averagedd with respect to the zeroth order trajectorie
which satisfy Eq. (1). The time derivative of the statistic
averagedd is then given byk Ùdil 

P
jkTijl kdjl, where
kTijl 

0BB@ 2
R`

0 dt

µ
t

m

∂2
*

NP
,1

Vqiq,
s0dVq,qj

s2td

+ R
`

0 dt
t

m

*
NP

,1
Vqiq,

s0dVq,qj
s2td

+
m21 0

1CCA , (3)
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and the bracket denotes an ensemble average. In ge
the leading term of the matrix elements is given by t
integrated time-correlation function ofVqiq,

in a form
of

R`
0 dtk

P
Vqiq,

s0dVq,qj s2tdl [11]. It should be noted,
however, that only the potential ofjqi 2 qjj

21, such as
Coulomb and gravity potentials, results in the first ord
moment with respect to time as the leading term as sho
in Eq. (3).

We can reduce the rank of the matrixkTijl by assuming
that the correlation time betweenVqiq,

s0d andVq,qj s2td
for j fi i in Eq. (3) is much shorter than that fo
j  i. The cross terms

P
jfiikTijl kdjl can then be

neglected. This assumption can be verified at least
the dilute plasma. The calculationk Ùdil 

P
jkTijl kdjl is

then approximated tok Ùdil  kTiil kdil.
In the matrix of kTiil, the upper left elementc11

and the upper right elementc12 are the second and
first order moments with respect to time, respective
Since the autocorrelation timetc is short for the dilute
plasmas,c11 is small compared with

p
c12ym, as will be

confirmed later. Then, the largest Lyapunov expon
is approximated to bel ,

p
c12ym. For the sake of

convenience for calculation, we divide the elementc12

into two terms,c12  c121 1 c122, where
c121

m
;

Z `

0
dt

t

3m2
Tr

*
NX

,fii

ci,s0dc,is2td

+
,

c122

m
;

Z `

0
dt

t

3m2
Tr

*
NX

,fii

ci,s0d
NX

,fii

ci,s2td

+
,

(4)

where the factor of13 comes from the assumption of a
isotropic system. From the definition ofci,, as discussed
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before, Eq. (4) indicates that the Lyapunov exponent
given by the square root of the first moment with respe
to time for the autocorrelation function of the acceleratio
difference. The termsc121 andc122 are similar, but since
ci,  c,i , the termc122 consists of

P
,fii ci,s0dc,is2td

and
P

,1fiisci,1 s0d
P

,2fii,,1
ci,2 s2tdd. The correlation be-

tweenci,1 and ci,2 s,2 fi ,1d cannot be neglected even
for the dilute plasma. In fact, it will be shown tha
c122  2c121 at least in thermal equilibrium systems. Th
time correlations inc121 andc122 are calculated by assum
ing a ballistic motionqis2td  qis0d 2 pis0dtym as the
zeroth order trajectory. This assumption might be va
for the dilute plasma because the collisions are rare.

First, we derive a formula of the Lyapunov expone
as a function of the dielectric response function. Th
termsc121 andc122 are calculated in different ways. From
the assumption of the ballistic motion,ci,s2td can be
written as

ci,s2td  s2pd23s4pe2d
Z Z

d3ktsktktyk2
td

3 eiktsqi2q,d

3 e2iktspi2p,dtym

through the Fourier transformation. Since each partic
cannot be distinguished, the summation with respect to”
and ensemble average can be exchanged and the sum
tion

P
,fii is replaced bysN 2 1d. The ensemble average

with respect to the zeroth order trajectories of theith and
,th particles are obtained by multiplying momentum distr
bution functionsfspd and taking the average with respec
to momentum and position coordinates. The termc121 can
then be approximated as
c121  sN 2 1d
Z `

0
dt

t

3m

Z Z
d3pid

3p,fspidfsp,d

3

µ
n
N

∂2 Z Z
d3qid

3q,
s4pe2d2

s2pd6

Z Z
d3k0d3kt

sk0 ? ktd2

k2
0k2

t

eisk01ktd sqi2q,de2iktspi2p,dtym. (5)
ge

on
In
tic
Integrating Eq. (5) in the following order, with respect t
position coordinates (qi andq,), momentum (pi andp,),
and time (t), Eq. (5) can be written as follows:

c121

m


µ
vp

3p

∂2 Z `

0
skad2dskad

3
Z `

0

dt

t

(Z `

2`

dv

vp
Ref´sk, vd 2 1geivt

)2

,

(6)

where´sk, vd is the dielectric response function and w
have used the following relation in the integration:Z `

2`
dp3fspdeikspymdt 

1
2v2

pt

Z `

2`
dt

3 h´sk, vd 2 1je2ivt . (7)

Since the termc122 has the product of two summation
over in Eq. (4), the ensemble average cannot be e
changed with the summation. However, since the seco
x-
nd

order spatial derivative of potential is related to the char
density fluctuation, dnsq, td ;

P
dsssq 2 qistdddd 2 n,

through the Poisson equation, the correlation of
P

,fii ci,

can be replaced by that of the density fluctuations,

Tr

*
NX

,fii

ci,s0d
NX

,fii

ci,s2td

+
 s4pe2d2

3 kdnsssqs0d, 0ddd

3 dnsssqs2td, 2tdddl .

The space-time correlation of the density fluctuati
should be taken along the trajectory of a particle.
a similar way as we derived Eq. (5), assuming ballis
motion, the termc122 can be expressed as

c122 
s4pe2d2

3s2pd3

Z `

0
dt

t

m

Z `

2`

dp3fspd
Z `

2`

dk3

3
Z `

2`

dv Ssk, vdeissskspymd2vdddt , (8)
2251
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where

Ssk, vd ;
Z `

2`
dq3dtkdns0, 0ddnsq, tdle2isk?q2vdty2p

is the dynamic form factor which represents the pow
spectrum of the density fluctuations. The dynamic for
factor is related to the dielectric response function´sk, vd
through the fluctuation-dissipation theorem [8]. Using th
fluctuation-dissipation theorem and the integration wi
respect to momentum Eq. (7), the termc122 can be ex-
pressed as
c122

m
 2

µ
vp

3p

∂2µlD

a

∂2 Z `

0
skad4dskad

3
Z `

2`

dv

v

Imf´sk, vdg Ref´sk, vd 2 1g
j´sk, vdj2

. (9)

By using Eqs. (6) and (9), the Lyapunov exponentl p
sc121 1 c122dym can be calculated. It is thus show

that the N-body largest Lyapunov exponent general
related to the dielectric response function, although t
relation contains the integration with respect tok, v,
and t. The relation may be applicable for a weakl
nonequilibrium system, wherein the dielectric respon
function is defined meaningfully. It should be note
that in Coulomb systems, the upper limit of the wav
number in the integration in Eqs. (6) and (9) must b
generally replaced by a certain finite value ofkmax to
avoid meaningless divergence of the integration caus
by lack of information of pair correlation for short rang
interaction.

Finally, let us estimate the Lyapunov exponent for
thermal equilibrium plasma from Eqs. (6) and (9). Usin
a Maxwellian distribution function in the relation o
Eq. (7), Eq. (6) can be analytically integrated and writte
as follows:

c121

m
,

8ne4

3m

Z kmax

0
dk k2

Z `

0
dt

t

m
exp

∑
2

t

t0

∏2


v2

pe2

3pT

Z kmax

0
dk , (10)

where t0 ; sk
p

Tym d21 represents the correlation time
which depends on the wave number. In Eq. (9), t
integration with respect tov can be calculated by
using the approximate formula of the plasma dispersi
function [12] for its small and large argumentsZ ;
sklDd21svyvpd. The leading term arises from smallZ
and Eq. (9) can then be approximated as follows:

c122

m
, 4

µ
vp

3p

∂2µlD

a

∂2 Z kmax

0
skad4dskad

3
Z `

0

r
p

2
h1 1 sklDd2j22e2 Z2

2 dZ

,
2v2

pe2

3pT

Z kmax

0
dk . (11)
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Since the Landau lengthe2yT  aG [8] in the dilute
plasma gives the closest distance that two particles
approach with repulsive Coulomb force, the maximu
wave number may be approximated by a reciprocal
Landau length. Substitutingkmax  2pyaG in the terms
c121 and c122, we obtain c121ym  v2

pGakmaxy3p 
2v2

py3 and c122ym  2v2
pGakmaxy3p  4v2

py3. The
elementc11 is calculated in the same way as the eleme
c12. It is found that the elementc11 is proportional to
G3y2 lns1yGd and thusc11 can be neglected in the dilute
plasma. As a result,l 

p
c12ym 

p
2 vp is obtained.

The estimation indicates that the Lyapunov exponent is
the order of the plasma frequency.

In summary, we have constructed an analytical mod
for the largest Lyapunov exponent in the dilute plasm
limit. The model indicates that the Lyapunov expone
is of the same order as the plasma frequency and is
dependent of the Coulomb coupling constant. The res
is in good agreement with simulation data for the dilu
plasmas. We have also shown that the Lyapunov ex
nent relates to the dielectric response function through
integration with respect tok, v, andt.
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