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Relation between Lyapunov Exponent and Dielectric Response Function
in Dilute One Component Plasmas
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An analytical model is developed for thé-body largest Lyapunov exponent in the dilute plasma, and
it is shown that the Lyapunov exponent relates to the dielectric response function. The relation provides
a bridge between microscopic mechanical and macroscopic statistical quantities and it is expected to also
be applicable for a weakly nonequilibrium system. In thermal equilibrium, the model shows that the
Lyapunov exponent of dilute one component plasmas is of the same order as the plasma frequency and
independent of the Coulomb coupling constant. These results agree fairly well with three dimensional
particle simulations. [S0031-9007(97)04053-2]

PACS numbers: 05.45.+b, 02.50.Ey, 52.20.—j, 52.65.-y

Recently, there has been a great deal of research devotksl [2] related the diffusion coefficient of a Lorentz gas
to finding relations between the Lyapunov exponent andvith its positive Lyapunov exponent and the Kolmogorov
macroscopic statistical quantities [L—6]. The Lyapunoventropy; Seket al. [3] and Barnetet al. [4] presented re-
exponent is the rate at which knowledge of an initial statdations between the Lyapunov exponent and the diffu-
in phase space is lost. In previous works [1-3,5], syssion coefficient; Chaudhuret al.[5] found a formula
tems that are determined only by short range forces andor a driven nonlinear oscillator and related the Lya-
or small degrees of freedom were mainly considered. Ipunov exponent to a correlation of the second order
this paper, we consider a Coulomb many body systenderivative of the potential. We will also find a similar
whose dynamics is determined by long range forces. Imelation between the Lyapunov exponent and the sec-
short range force systems, the Lyapunov exponent is exand spatial derivative of the Coulomb potential for a
pected to be proportional to the collision frequency [1].many body system. We will then derive an analytical
The proportionality of the Lyapunov exponent to the col-model which gives a relation between the Lyapunov
lision frequency is obtained from the assumption that theexponent and the dielectric response function [8].
interaction time is much shorter than an interval of col- In this paper, we consider a one component plasma.
lisions. In Coulomb systems the interaction time can berhe one component plasma is characterized only by the
approximated by a duration that a particle with a thermalCoulomb coupling constarft = ¢?/aT, whereaq is the
speedvy, (T = mvd,) travels a distance of a Debye length particle sphere radius, i.et77a®/3 = 1/n. In the case of

Ap = /T /4mne* because the Coulomb force of individ- I' <« 1, aplasma can be regarded as a dilute plasma, while
ual particles is shielded beyond a Debye sphere, but n& plasma withI" > 1 is regarded as a strongly coupled
within a Debye sphere. Here, m, n, andT represent plasma. Figure 1 shows the dependence of the Lyapunov
charge and mass of a particle, number density, and tem-
perature in energy units, respectively. In addition to this,
within the duration a particle interacts with many surround-
ing particles of the order of A}, which is very large in a
dilute Coulomb system. Therefore, the Lyapunov expo-
nent in the Coulomb many body system is expected to be
different from that in short range force systems. We have
investigated the dependence of the Lyapunov exponent on
the Coulomb coupling constant &f < 1 with the use of
the three dimensional particle codeopPE[6,7]. As will
be shown below, the magnitude of the Lyapunov exponent
is found to be of the same order as the plasma frequency
w[jl = Ap/vy inthis range, which is very large compared
with the collision frequency for such dilute plasmas. FIG. 1. Dependence of the Lyapunov exponents normalized
In the previous papers, many analytical formulas for theY plasma frequency on the Coulomb coupling constant. Open

L t d F le. Krvl and closed circles are data in the previous [4,6] and present
yapunov exponent Were proposed. For example, try O\(/vorks, respectively. Solid, broken, and dashed lines are

[1] reported that the Lyapunov exponent is expected to b@ptained by a least-squares method with the observed data in
proportional to the collision frequency; Gaspard and Nico-the dilute, liquid, and solid plasmas, respectively.
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exponents normalized by the plasma frequency on thand the subscripts™and “;” denote, respectively, thih
Coulomb coupling constant’, obtained by molecular and jth particles. To obtain the Lyapunov exponent, we
dynamics simulations using the three dimensional particl@eed an equation of motion for a perturbed trajectory in the
code SCOPE[6,7]. A Lyapunov exponent is defined in 6N phase space. Equation (1) is linearized as follows:

a long time limit as an exponential expansion rate of

a separation distance between two adjacent trajectories 5 _ (515> ~IG(A) 5 — < 0 —Vq,-qj(t)>6

. . . . - . - - _1

in a 6N phase space. In the particle simulations, we 5q dA m 0

consider two independent systems, reference and displaced  _ T(A) S )
systems, and both consist of 500 charged particles with ’
uniform background charge and with a periodic boundar)(Nhere

condition. In the displaced system, initial positions and

momenta of the individual particles are displaced from N

their corresponding values in the reference system. The Voo, (1) = 05 D ie(t) — (1 — 03 (1)
displacement is given by a normal distribution with the root CFi

mean squares 6f0 X 1073 « in position coordinates and
5.0 X 1073 mvy, in the momentum space, respectively.
The Lyapunov exponents in Fig. 1 are worked out by the

conventional rescaled method [9], namely, by taking time Yie(r) = 0%(e*/lai(1) = qe())/oqioq;
average of the instantaneous expansion rates with respect . .
to the displacement. The details of the simulation method? Ed- (2). 8p andaq are the perturbedN-dimensional

are described in Ref. [6]. It is found that the Lyapunovmomerltlum and position coor’dlnate, regpectlvely, and
exponent normalized by the plasma frequentyw,,, is oy, m™, and0 are Krglneckers delta, 'dlagonal tensor
independent ofl" for I" < 0.05, proportional toI'~%/> whose components are ', and zero matrix, re_spe_ctlvely.
for 1 <T < 150, and to T~ for ' > 170. These e represents the second order spatial derivative of the

states correspond to the dilute gas, dense liquid, and Sol%oulomb potential induced by théth particles. Thus,

plasmas, respectively. The large jump of the Lyapunov=¢{7! Yiedd; presents the (;Ilf'ference of forcgg on th .
exponent af” ~ 170 corresponds to the phase transitionpartlcle and a fictitious particle at nearby position of which

from liquid to solid state [10]. distance from the&th particle iséq;. This difference of

In the previous work [6], we explained qualitatively the forces determines the expansion speed of the nearby

the simulation results of the dependence of the Lyapun?tfajecmnes’ .e., Lyapunov exponent. In a short range

exponent on the Coulomb coupling constant in liquid an orce system, the difference of the acceleration appears

solid states on the analogy of a rigid body particle modePnIy. at the time when coII!S|on takes plac.e’ and no aqc_el-
eration on particles at an interval of collisions. Thus it is

and a weakly nonlinear lattice model, respectively. If the . . o
rigid body particle model [1,6] is applied for the dilute believed that the Lyappnov exponent is related to collision
plasma, both the Lyapunov exponent and the coIIisiorIrequenCy' However, |nad|IL_|te plas_ma, becaL_Jse ofalong
frequency are expected to be proportional d‘;gl"3/2. range force qf the Coulomb interaction, the dlﬁerengg of
the acceleration appears even at an interval of collisions

However, as shown inFig. 1, for the dilute plasha= 1) long a nearly ballistic trajectory. Namely, thermal fluc-
the magnitude of the Lyapunov exponent is of the sam 9 y ; jectory. Mamely,
ations of surrounding particles within a Debye sphere

order as the plasma frequency, namely, much larger tha . . .
the collision frequency. may cause a difference of the acceleration on the particles.

To construct a model for the Lyapunov exponent, Weer:eeI?rgﬁ\f;tyap??ﬁg E;;por:jenteli dderl:ltnrii%xt;einma)(l_
derive basic equations for the trajectory instability in the @) 9 Howeveero the matr?x eelgmenets are functions of
one component plasma. A classical three dimension g ). ’

system ofV particles ha8N' momentap, and3N position Ime and as a result the Lyapunov exponent cannot be di-

coordinateg. A(p, q) represents AN-dimensional phase rectly calculated from_ Eq_. (2). T_he treatment_of van Kam-
space point. In the one component plasma, particle motioRe" [11] for stochastic differential equations is adopted to

can be described with a Hamiltoni&h as follows: solve Eq. (2.)' I\_lamel)_/,qu is assumed to have a ﬁf“te
p ( —0H/oq autocorrelation timer., in the sense that for any two time

A= ( T = =G(A), (1)  pointst; andr, suchthatr, — 11| > 7., Vgq(11) is statisti-

and

q 9H /op cally independent oVyq(72). We also introduce a statisti-
where v NN cal average@ with respect to the zeroth order trajectories
H = 2/2m + 220q — qil which satisfy Eq. (1). The time derivative of the statistical
,-zzlp / ,:ZI J; /2lai —q | averaged is then given byé;) = > (T;;)(6;), where
. N\ N w /N
Ty=1|" Jo dT(E) > V44, (0)Vg,q,(—7) fo dr o ( 2 V4,4 (0)Vg,q;(=7) (3)
t =1 =1 s
m~! 0
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and the bracket denotes an ensemble average. In genergfore, Eq. (4) indicates that the Lyapunov exponent is
the leading term of the matrix elements is given by thegiven by the square root of the first moment with respect
integrated time-correlation function d¥yq, in @ form  to time for the autocorrelation function of the acceleration
of [o d7(>. Vq,q,(0)Vq,q,(—7)) [11]. It should be noted, difference. The terms;»; andeys» are similar, but since
however, that only the potential ¢§; — q;|~', such as ;, = i, the termc2, consists of> ,_.; tie(0)ihei(—7)
Coulomb and gravity potentials, results in the first orderand}’, .;(i¢,(0) >.¢,+; ¢, ¥ie,(—7)). The correlation be-
moment with respect to time as the leading term as showtween ¢, and ;¢, (€2 # €1) cannot be neglected even
in Eq. (3). B for the dilute plasma. In fact, it will be shown that
We can reduce the rank of the mat(iR;;) by assuming ¢y, = 2¢;»; at least in thermal equilibrium systems. The
that the correlation time betweéw, 4, (0) and Vq,q,(—7)  time correlations ircj2; andcy,, are calculated by assum-
for j # i in Eq.(3) is much shorter than that for ing a ballistic motiong;(—7) = q,;(0) — p;(0)7/m as the
j=1i. The cross terms} ;.,(T;;){6;) can then be zeroth order trajectory. This assumption might be valid
neglected. This assumption can be verified at least fofor the dilute plasma because the collisions are rare.
the dilute plasma. The calculatida;) = Zj<T,~j><6j> is First, we derive a formula of the Lyapunov exponent
then approximated t65;) = (T;;)(8:). as a function of the dielectric response function. The
In the matrix of (T;;), the upper left element;, t€rmsciz; andciy, are calculated in different ways. From
and the upper right element;, are the second and the assumption of the ballistic motiog;¢(—7) can be
first order moments with respect to time, respectively Writtén as
Since the autocorrelation time. is short for the dilute _
plasmasc;; is small compared with/c;»/m, as will be Yie(=7) = (2m) 3(47Tez)j fd3k7(k7k7/k§)
confirmed later. Then, the largest Lyapunov exponent
is approximated to bex ~ +/c;»/m. For the sake of
convenience for calculation, we divide the elemeit X ¢ K-pimpo)7/m

into two termsm,clg =t where through the Fourier transformation. Since each particle
C T . - . - . i} 13
121 _ fo dr s Tr Z ¢i€(0)¢€i(_7)>, cannot be distinguished, the summation with respect’to
4)

X ¢ik-(4i—q0)

m oy and ensemble average can be exchanged and the summa-

o N N tion > o, is replaced byN — 1). The ensemble average
a2 _ f dr L2 Tr<z ie(0) > ¢i€(—7)>, with respect to the zeroth order trajectories of ttieand
m 0 3m t#i t#i £th particles are obtained by multiplying momentum distri-

bution functionsf (p) and taking the average with respect
to momentum and position coordinates. The tefm can
then be approximated as

where the factor of; comes from the assumption of an
isotropic system. From the definition ¢f,, as discussed|

ciar = (N — 1)[0 dTSLm [ fd3pid3pef(pi)f(pe)

2 2\2 2
n (4me*) (ko - k,)* Ca ik (b —
% | = a3 id3 ffdsk d3kT—T i(ko+K;) (4i —q0) , —ik-(pi—pe)T/m 5

<N> ] ] G PSE 0 kK2 ¢ ¢ 5)

Integrating Eqg. (5) in the following order, with respect {o order spatial derivative of potential is related to the charge
position coordinatesq( andq¢), momentum g, andp¢),  density fluctuation, &n(q.t) = > 8(q — q:(¢)) — n,

and time ¢), Eq. (5) can be written as follows: through the Poisson equation, the correlatior>of.; ¢
c121 o\ (7, can be replaced by that of the density fluctuations,
—_— = <3—> f (ka)*d(ka) N N
" L 2 Tr<z $ie(0) Z ¢i€(—7')> = (4me?)?
y fw dr| [~ d—wRe[g(k w) — 1] (#i C#i
R ’ ’ X (3n(q(0),0)

(6) X &n(q(—7), —7)).
wheres(k, @) is the dielectric response function and Wethe gpace-time correlation of the density fluctuation
have used the following relation in the integration: should be taken along the trajectory of a particle. In

]w dp f(p)e'®/mT — 1 ]” dr a si_milar way as we derived Eg. (5), assuming ballistic
—o 2057 J - motion, the ternt,, can be expressed as

—ioT 2)2 ® o0 ©
Since the term,y, has the product of two summations 3(2m) 0 m J—w —®
over ¢ in EqQ. (4), the ensemble average cannot be ex- *

. X . i(k(p/m)—w)
changed with the summation. However, since the second X ]_m dow S(k, @)e P, (8)
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where Since the Landau lengte?/T = aI [8] in the dilute
e ik plasma gives the closest distance that two particles can
Sk, w) = f,m dq’di(5n(0,0)3n(g, e "4 2 approach with repulsive Coulomb force, the maximum
is the dynamic form factor which represents the powewave number may be approximated by a reciprocal of
spectrum of the density fluctuations. The dynamic formLandau length. Substitutinkmax = 27 /al’ in the terms
factor is related to the dielectric response functith, o) cia1 and c¢jp, we obtain cjp/m = w,z,rakmax/377 =
through the fluctuation-dissipation theorem [8]. Using the2w?/3 and ciz/m = 203T akna/37 = 403 /3. The
fluctuation-dissipation theorem and the integration withelementc; is calculated in the same way as the element
respect to momentum Eq. (7), the teum, can be ex- c¢j,. It is found that the element;; is proportional to

pressed as I'*/2 In(1/T) and thusc;; can be neglected in the dilute
e _ (@) 2(/\_0 2 x(k (k) plasma. As aresul = \/c;o/m = V2w, is obtained.
m 37 a 0 4 a4 The estimation indicates that the Lyapunov exponent is of
o the order of the plasma frequency.
dw | k Ree(k -1 .
X j do Imls( ’wl)](k e[s)(lz, ©) ] (9) In summary, we have constructed an analytical model
—w W elk,w

for the largest Lyapunov exponent in the dilute plasma
limit. The model indicates that the Lyapunov exponent
is of the same order as the plasma frequency and is in-
dependent of the Coulomb coupling constant. The result
§ in good agreement with simulation data for the dilute
plasmas. We have also shown that the Lyapunov expo-

and 7. _Th.e relation may be _appllcaple for_ a weakly hont rejates to the dielectric response function through the
nonequilibrium system, wherein the dielectric resPonS‘?ntegration with respect t, w, and-.

function is defined meaningfully. It should be noted \yva thank Dr. M. Murakami. Dr. J.G. Wouchuk. and
that in Coulomb systems, the upper limit of the wavep g |shizaki for useful comments. We also thank

number in the integration in Egs. (6) and (9) must bep ytessor K. Mima and Professor S. Nakai for their

gengrally re'placed by a certain finite .value ]Q'f‘ax 0 interest and encouragement throughout this work.
avoid meaningless divergence of the integration caused

by lack of information of pair correlation for short range
interaction.

Finally, let us estimate the Lyapunov exponent for a
thermal equilibrium plasma from Egs. (6) and (9). Using  *Present address: Advanced Photon Research Center,

By using Egs. (6) and (9), the Lyapunov expongnt
v (c121 + c122)/m can be calculated. It is thus shown
that the N-body largest Lyapunov exponent generally
related to the dielectric response function, although th
relation contains the integration with respect &p w,
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