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Ordering Kinetics in the Two-Dimensional Classical Coulomb Gas of Half-Integer Charges
on a Square Lattice: Temperature Dependent Growth and Roughening Transition
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The ordering kinetics in the Coulomb gas (CG) of half-integer charges is investigated via Monte
Carlo simulations. Because of the long range Coulomb interaction, the phase ordering of this system
is governed by an activation energy barrier with a logarithmic dependence on the domain size. This
results in a genuine temperature-dependent growth and a roughening transition of the domain-wall
morphology abovd; = 0.09 = 0.01. An analytical argument with numerical verification indicates that
the classical CG of half-integer charges belongs to a new universality class from the viewpoint of Lai
et al’s classification of ordering kinetics [Phys. Rev.38, 9481 (1988)]. [S0031-9007(97)03761-7]

PACS numbers: 05.70.Ln, 05.50.+q, 64.60.Cn, 64.60.My

The subject of phase ordering kinetics of statisticalgrowth kinetics such as a temperature-dependent growth
systems, which deals with the approach to equilibriumexponent and finite temperature roughening transition of
under a rapid thermal quench from a disordered phase the domain-wall morphology, thus raising a possibility of
a low temperature ordered phase, has attracted researihding a new class of ordering kinetics. But this simula-
interest for several decades [1-3]. tion could not provide a definitive answer to the question

One of the important questions in the ordering kineticsas to whether the temperature dependence of the growth
of statistical systems is the effect of thermal fluctuationsexponent is truly genuine or is merely apparent due to
and identification of a universality class of the orderingthe limitation of simulation time scale. Another related
kinetics, which was first addressed by Lai, Mazenko, anapen question is the role of long range interaction between
Valls (LMV) [4]. According to LMV, an important crite- point defects present in FFXYM and its competition with
rion is the domain size dependence of the activation barthe thermal fluctuations.
rier. The class | system is characterized by no activation In the present Letter, in order to answer these questions,
barrier and therefore systems in this class show no freezve have performed a direct Monte Carlo simulation of
ing at zero temperature, i.e., thermal fluctuation is irrelethe 2D Coulomb gas (CG) of half-integer charges, which
vant in the ordering dynamics. In class Il systems, a locaéxplicitly contains logarithmic long range interaction
energy barrier exists for growth of a domain, where the7]. We have found the phase ordering kinetics of
magnitude of the energy barrier is independent of the sizthe CG retains basically the same features as that of
of the domain. These systems exhibit freezing in the limitFFXYM. We also find through a numerical calculation
of zero temperature, and at finite temperature the averagbat the CG of half-integer charges is characterized by an
domain sizeL(r) behaves ad.(f) = Ly + A[t/7(T)]? activation energy barrier that hésgarithmic dependence
with the activated time scalsT) = 19 exp(Ey/T), where on the domain size. An analytic argument shows that
Lo, A, and 7y are weakly temperature dependent, d@hd this type of activation barrier leads to @mperature
is an activation energy determined by the local barriersdependengrowth exponent. Furthermore, it also explains
Here L, is related to the average size of frozen domainghe finite temperature roughening transition in the domain-
atT = 0. Lastly, class lll and IV systems are character-wall morphology via a Kosterlitz and Thouless (KT)-
ized by energy barriers depending on the domain size aslke argument on the one-dimensional domain wall. All
positive power law, resulting in growth laws (at finite these results are nicely confirmed by our simulation
temperature) of logarithmic power form(s) ~ (In7)™.  results. Therefore, we can view the CG of half integer
Each of these systems exhibitseanperature-independent charges (and FFXYM) as belonging to a new universality
growth law (growth exponent). class of ordering dynamics with continuously varying

This LMV scheme is of course not exhaustive, but it(temperature dependent) growth exponents.
turns out that this scheme is quite general, making it dif- General 2D CG on a square lattice is described by the
ficult to find a new universality class which is not in- following Hamiltonian that can be mapped from the uni-
cluded in the LMV classification. In connection with this formly frustratedXY model via Villain transformation [8],
issue, a recent simulation study [5] on the phase order- |
ing kinetics of the two-dimensional (2D) fully frustrated = — - N, —

XY model (FFXYM) [6] revealed interesting features of Hes 2 ,Z,-:(nl PGlrip) (nj = £ @)
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wheren; = 0,1, =2, ... corresponds to the integer vor- two-point equal-time correlation function of the Ising or-
ticity of the phase angle at sitedual to theXY lattice. The der paramete€(r, ) = % > {oi(t)oi (1)), where(---)
charge at sité is defined ag; = n; — f wheref iscalled represents the average over different random initial con-
the frustration parameter andf can be considered as a figurations. We also measure the total length of Ising do-
negative uniform background charge distribution. The CGnain walls, and the total number of the corners of the

of half-integer charge corresponds to the casg ef 1/2.  Ising domain walls to examine a morphological change.
The lattice Green functiot(r;;) solves the equation For the case of zero-temperature quench, we find
AZG(rl-j) = 275, o ) that the system is driven into a metastable state [10],

) ] ] ] . preventing further ordering. Similar freezing behavior has
where A? is the discrete lattice Laplacian. By Fourier also been observed in the FFXYM on a square lattice
transforming (2) for a square lattice of linear si¥ewith 151 This can be contrasted with the case of exchange
periodic boundary condition, one obtains dynamics of the nearest neighbor antiferromagnetic Ising
. T ek’ model in a square lattice, which is known to show no
G(r) = ﬁz 5 _ cos(lz 3 — COS(,; - 5) 3) freezing at zero temperature [11]. This freezing behavior
ke o Y is simply due to the additional long range interaction
where the summation is over all wave vectdis = \yhich gives rise to activation barriers.
{(F)b1 + (F)ba} with my,my = 0,1,2,...,N — 1 con- For finite temperature quenches, we try to collapse the
sistent with periodic boundary conditions, aftd, b2} =  |sing order parameter correlation functiog§r, ) with
{273,279} the basis vectors of the reciprocal lattice. a length scale.(r), which is extracted fromC(r, 1), for
Equation (3) diverges for = 0, which reflects the infinite  example, a<C[r = L(r),t] = 1/2 for a given timet. A
self-energy of a point charge. To remove this self-energgood data collapse for a given quenching temperature,
term and keep the CG energy finite, we impose the neutraks demonstrated in the inset of Fig. 1, indicates that a
ity condition) ; ¢; = >.;(n; — f) = 0,i.e.,>;n; = Nf.  simple dynamic scaling of the for@(7,r) = F[r/L(t)]
Since the self-energy term exactly cancels in the neuis satisfied for the equal time Ising correlation functions.
tral system, we can use the nonsingular potei@@@F) =  The length scaleL(r) shows a power law growth in
G(F) — G(¥ = 0) in (1), which is evaluated numerically time L(r) ~ ¢ but the growth exponentp shows a
by using (3) for a given lattice siz€. For large separation temperature dependence, as seen in Fig. 1. Note that it
r,G'(F) = —In|7|. has a linear temperature dependence at low temperatures
For the case of = 1/2, charges with lowest magni- ¢(T) = T with the slopea = 8.57.
tude arel/2 and —1/2. The ground state is a configu-  Figure 2 shows the snapshots of the configurations
ration of charges A2 and—1/2 forming a checkerboard of the Ising order parameter (staggered charge variable)
pattern with the same symmetry as an Ising antiferromagfor quenches to the temperaturds= 0.04 and 0.1,
net [9]. Since the continuous spin degree of freedom has
been left out in the duality mapping, the ground state of
the model now possesses only twofold disciétsymme- 06 ——— —— ,
try. This model system can have two types of excitations.
One is a charge pair excitation involving the interchange
of a given+1/2, —1/2 pair separated by a distanee
The other is an Ising-like domain excitation, originating
in the formation of oppositely ordered Ising domains. 04 |
To investigate the ordering kinetics of the model, we
carry out Monte Carlo simulations on a square lattice
of linear sizeN = 64 with periodic boundary conditions.
We have also done some simulations with a bigger system
size of N = 80, but found no essential difference in the 02 L
results. Restricting the charges to have the lowest mag-
nitude +1/2 or —1/2 only, we update the initial disor-
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randomly selected nearest neighbor pairs according to the ° P
standard Metropolis algorithm. The presented results are 0 L L1 L !
averages over 20 to 40 different random initial configu- 000 002 004 006 008 010 012

rations. We stress here that we are dealing with a non-

conserved order parameter, namely the staggered charGt®: 1. The temperature dependence of various exponents
. . o i ti .. . ., and¢. Error bars are at most twice the size of symbols.
variable defined asr; = 2(—1)"""g¢;, (i, i,) being the

) : . 4 Solid lines are guides to the eye. Inset: Scaling collapse of the
integer coordinate of a lattice sitg although the net equal-time correlation functions for the Ising spinZat= 0.06
charge is conserved. The main quantity of interest is thevith L(r) ~ t¢ where¢ = 0.48.
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respectively, where we can see a morphological transitioners and domain walls and thus slow down the decay rate
from low temperaturefaceted domain walls to rough of these defects, resulting in smaller valuesvpfand v,
domain walls at high temperatures. as the temperature increases.

In order to locate the temperature at which the morpho- As for the temperature dependence of the growth ex-
logical transition takes place, we calculate the time deponent¢ at low temperatures, we may argue as follows.
pendence of the total number of domain-wall corn@fs) (At zero temperature, there exists freezing in the order-
and the total length);) of the Ising domain walls. These ing process. At low but nonzero temperature, we expect
gquantities are expected to decay in time toward their equithe ordering proceeds via activated processes, where the
librium values with power law, i.e.N.(t) — N.() ~ domain walls tunnel across energy barriers. Since we ob-
t~7 and N;(t) — N;(») ~ %, Figure 1 shows these serve faceted domain walls at low temperatures, we begin
exponents. We observe that is greater thany, for  with a square-shaped domain 6f1) staggered charge
T =Tg =0.09 * 001, whilev, = v, forT > Tz. As variable with dimensiorL X L within an infinite back-
can be shown by a simple argument [5], the low temperaground sea of opposite+(1) staggered charge variable
ture regime T < Tg) corresponds to faceted domain-wall [see inset (a) of Fig. 3]. Suppose that our domain with
morphology and high temperature regime to rough do{—1) staggered charge variable is represented by charge
main walls (see Fig. 2). The decrease of the exponentsonfiguration beginning with- + — + — + ... at the
v. and v; with increasing temperature at higher tempera+op left-end corner of the domain. It is easy to see that the
tures (for T > 0.08) can be attributed to the effect of first step in reducing the size of a domain with minimal
thermal fluctuations that are competing with the orderingenergy cost is to exchange thd /2 and+1/2 charges in
process. These thermal fluctuations can create more cahe leftmost corner of the top row of the domain. Corre-

spondingly, the domain will be reduced as shown in inset

(b) of Fig. 3. This may be viewed as creating a pair of
b T m corners (we will call this atep excitatiopin the domain
wall, which will cost some positive energy. The next step
will be to exchange again the leftmost charge pairs in the
top row. Repeating these processes again and again, we
reduce the total length of the domain wall Bylattice
units. At this point, the energy of the system will now be
lower than the initial energy. A question is, what is the
maximum height of the energy barrier during these series
of domain-wall motions delineated above?
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FIG. 2. The snapshots of configurations for Ising domains aFIG. 3. The energy barrieAE versus the linear sizé of a

(& T =0.04 and (b)T = 0.1. In each set, figures represent square shaped domain. Insets (a) and (b): The configuration
the snapshots taken at= 20, 80, and 320, respectively, from of Ising domains. Open and filled circles represent negative
top to bottom. and positive fractional charges, respectively.
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Since each of the created corners can also be consideratbrphological quantities. More rigorous treatment should
as a charge excitation of magnitudig4 [12] interacting include the effect of screening of other charges, which
logarithmically with other charges separated by a lengttwill lower the transition temperature that will probably
scale of ordetl (the domain size), we expect the energygive closer agreement.
barrier to behave adE = EyIn(L/Ly) where E; is a In summary, we presented simulation results on the
constant andL, is a length scale of the order of the ordering dynamics of the 2D classical CG of half-integer
lattice unit corresponding to the average size of the frozecharges on a square lattice. The phase ordering in this
domains atT = 0. In order to confirm this argument, system is governed by the activation energy barrier with
we numerically calculated the domain-size dependenclgarithmic dependence on the domain size, resulting
of the energy barrier using the Hamiltonian (1) and thein the temperature dependent growth exponent and a
domain size ranging from-L = 4-20 on a square lattice roughening transition of the domain walls at a finite
of size as large a®% = ~64-400. We found that the temperature. This kind of low temperature ordering was
maximum barrier appears when the step excitation reachemt considered in the LMV classification. The present
near the centeri(/2) of the domain wall or slightly study strongly indicates that the CG with= 1/2 and the
beyond the center. Figure 3 shows a semi-log plot oFFXYM offer a new universality class of phase ordering
the calculated energy barrier versus the linear domain sizéynamics.
which gives a very nice fit to a logarithmic behavior with  This work was supported in part by the Korea Re-
Ey = 0.11 = 0.01 andLy = 1.25 = 0.05. search Foundation (J.-R.L.), the Basic Science Research

If we suppose that the ordering proceeds via arinstitute under Grant No. BSRI 97-2412 (S.J.L., B.K,,
activated process with the barrier having logarithmicl. C.), the Ministry of Education, Korea, and by the Korea
dependence on the domain size as above, then the tingcience and Engineering Foundation through RCDAMP
t taken for annihilation of a square domain of sizex L  at Pusan National University (I.C.).
would bet = rgexpAE/T) = toexdEgIn(L/Ly)/T] =
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