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Ordering Kinetics in the Two-Dimensional Classical Coulomb Gas of Half-Integer Charges
on a Square Lattice: Temperature Dependent Growth and Roughening Transition
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The ordering kinetics in the Coulomb gas (CG) of half-integer charges is investigated via Monte
Carlo simulations. Because of the long range Coulomb interaction, the phase ordering of this system
is governed by an activation energy barrier with a logarithmic dependence on the domain size. This
results in a genuine temperature-dependent growth and a roughening transition of the domain-wall
morphology aboveTR . 0.09 6 0.01. An analytical argument with numerical verification indicates that
the classical CG of half-integer charges belongs to a new universality class from the viewpoint of Lai
et al.’s classification of ordering kinetics [Phys. Rev. B37, 9481 (1988)]. [S0031-9007(97)03761-7]

PACS numbers: 05.70.Ln, 05.50.+q, 64.60.Cn, 64.60.My
e
a

ic
n

n

a
i

l
c
h
i

a

r
in

a
e

t

-
is

d

th
of
f
-
n

wth
to
d
en
h

ns,
f
h

f
of

n
an

at

s
in-
-
ll
n

er
ty
g

he
i-
The subject of phase ordering kinetics of statistic
systems, which deals with the approach to equilibriu
under a rapid thermal quench from a disordered phas
a low temperature ordered phase, has attracted rese
interest for several decades [1–3].

One of the important questions in the ordering kinet
of statistical systems is the effect of thermal fluctuatio
and identification of a universality class of the orderin
kinetics, which was first addressed by Lai, Mazenko, a
Valls (LMV) [4]. According to LMV, an important crite-
rion is the domain size dependence of the activation b
rier. The class I system is characterized by no activat
barrier and therefore systems in this class show no fre
ing at zero temperature, i.e., thermal fluctuation is irre
vant in the ordering dynamics. In class II systems, a lo
energy barrier exists for growth of a domain, where t
magnitude of the energy barrier is independent of the s
of the domain. These systems exhibit freezing in the lim
of zero temperature, and at finite temperature the aver
domain sizeLstd behaves asLstd ­ L0 1 AftytsTdgf

with the activated time scaletsT d ­ t0 expsE0yT d, where
L0, A, andt0 are weakly temperature dependent, andE0
is an activation energy determined by the local barrie
Here L0 is related to the average size of frozen doma
at T ­ 0. Lastly, class III and IV systems are characte
ized by energy barriers depending on the domain size
positive power law, resulting in growth laws (at finit
temperature) of logarithmic power formLstd , sln tdm.
Each of these systems exhibits atemperature-independen
growth law (growth exponent).

This LMV scheme is of course not exhaustive, but
turns out that this scheme is quite general, making it d
ficult to find a new universality class which is not in
cluded in the LMV classification. In connection with th
issue, a recent simulation study [5] on the phase ord
ing kinetics of the two-dimensional (2D) fully frustrate
XY model (FFXYM) [6] revealed interesting features o
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growth kinetics such as a temperature-dependent grow
exponent and finite temperature roughening transition
the domain-wall morphology, thus raising a possibility o
finding a new class of ordering kinetics. But this simula
tion could not provide a definitive answer to the questio
as to whether the temperature dependence of the gro
exponent is truly genuine or is merely apparent due
the limitation of simulation time scale. Another relate
open question is the role of long range interaction betwe
point defects present in FFXYM and its competition wit
the thermal fluctuations.

In the present Letter, in order to answer these questio
we have performed a direct Monte Carlo simulation o
the 2D Coulomb gas (CG) of half-integer charges, whic
explicitly contains logarithmic long range interaction
[7]. We have found the phase ordering kinetics o
the CG retains basically the same features as that
FFXYM. We also find through a numerical calculatio
that the CG of half-integer charges is characterized by
activation energy barrier that haslogarithmic dependence
on the domain size. An analytic argument shows th
this type of activation barrier leads to atemperature
dependentgrowth exponent. Furthermore, it also explain
the finite temperature roughening transition in the doma
wall morphology via a Kosterlitz and Thouless (KT)
like argument on the one-dimensional domain wall. A
these results are nicely confirmed by our simulatio
results. Therefore, we can view the CG of half integ
charges (and FFXYM) as belonging to a new universali
class of ordering dynamics with continuously varyin
(temperature dependent) growth exponents.

General 2D CG on a square lattice is described by t
following Hamiltonian that can be mapped from the un
formly frustratedXYmodel via Villain transformation [8],

HCG ­
1
2

X
ij

sni 2 fdGsrijd snj 2 f d , (1)
© 1997 The American Physical Society
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whereni ­ 0, 61, 62, . . . corresponds to the integer vor
ticity of the phase angle at sitei dual to theXYlattice. The
charge at sitei is defined asqi ; ni 2 f wheref is called
the frustration parameter and2f can be considered as
negative uniform background charge distribution. The C
of half-integer charge corresponds to the case off ­ 1y2.
The lattice Green functionGsrijd solves the equation

D2Gsrijd ­ 22pdrij ,0 , (2)

where D2 is the discrete lattice Laplacian. By Fourie
transforming (2) for a square lattice of linear sizeN with
periodic boundary condition, one obtains

Gs$rd ­
p

N2

X
k

ei $k?$r

2 2 coss $k ? x̂d 2 coss $k ? ŷd
, (3)

where the summation is over all wave vectorsh $kj ­
hs m1

N d $b1 1 s m2

N d $b2j with m1, m2 ­ 0, 1, 2, . . . , N 2 1 con-
sistent with periodic boundary conditions, andh $b1, $b2j ­
h2p x̂, 2p ŷj the basis vectors of the reciprocal lattic
Equation (3) diverges for$k ­ 0, which reflects the infinite
self-energy of a point charge. To remove this self-ene
term and keep the CG energy finite, we impose the neut
ity condition

P
i qi ­

P
isni 2 f d ­ 0, i.e.,

P
i ni ­ Nf.

Since the self-energy term exactly cancels in the n
tral system, we can use the nonsingular potentialG0s$rd ;
Gs $rd 2 Gs $r ­ 0d in (1), which is evaluated numerically
by using (3) for a given lattice sizeN . For large separation
r , G0s $rd . 2 ln j$rj.

For the case off ­ 1y2, charges with lowest magni
tude are1y2 and 21y2. The ground state is a configu
ration of charges 1y2 and21y2 forming a checkerboard
pattern with the same symmetry as an Ising antiferrom
net [9]. Since the continuous spin degree of freedom
been left out in the duality mapping, the ground state
the model now possesses only twofold discreteZ2 symme-
try. This model system can have two types of excitatio
One is a charge pair excitation involving the interchan
of a given 11y2, 21y2 pair separated by a distancer.
The other is an Ising-like domain excitation, originatin
in the formation of oppositely ordered Ising domains.

To investigate the ordering kinetics of the model, w
carry out Monte Carlo simulations on a square latti
of linear sizeN ­ 64 with periodic boundary conditions
We have also done some simulations with a bigger sys
size of N ­ 80, but found no essential difference in th
results. Restricting the charges to have the lowest m
nitude 11y2 or 21y2 only, we update the initial disor-
dered random configuration by exchanging the charge
randomly selected nearest neighbor pairs according to
standard Metropolis algorithm. The presented results
averages over 20 to 40 different random initial config
rations. We stress here that we are dealing with a n
conserved order parameter, namely the staggered ch
variable defined assi ­ 2s21dix 1iy qi , six , iyd being the
integer coordinate of a lattice sitei, although the net
charge is conserved. The main quantity of interest is
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two-point equal-time correlation function of the Ising or
der parameterCsr, td ­

1
N2

P
iksistdsi1r stdl, wherek· · ·l

represents the average over different random initial co
figurations. We also measure the total length of Ising d
main walls, and the total number of the corners of th
Ising domain walls to examine a morphological change

For the case of zero-temperature quench, we fi
that the system is driven into a metastable state [1
preventing further ordering. Similar freezing behavior h
also been observed in the FFXYM on a square latti
[5]. This can be contrasted with the case of exchan
dynamics of the nearest neighbor antiferromagnetic Is
model in a square lattice, which is known to show n
freezing at zero temperature [11]. This freezing behav
is simply due to the additional long range interactio
which gives rise to activation barriers.

For finite temperature quenches, we try to collapse t
Ising order parameter correlation functionsCsr , td with
a length scaleLstd, which is extracted fromCsr, td, for
example, asCfr ­ Lstd, tg ­ 1y2 for a given timet. A
good data collapse for a given quenching temperatu
as demonstrated in the inset of Fig. 1, indicates tha
simple dynamic scaling of the formCs$r , td ­ FfryLstdg
is satisfied for the equal time Ising correlation function
The length scaleLstd shows a power law growth in
time Lstd , tf but the growth exponentf shows a
temperature dependence, as seen in Fig. 1. Note tha
has a linear temperature dependence at low temperat
fsTd ­ aT with the slopea . 8.57.

Figure 2 shows the snapshots of the configuratio
of the Ising order parameter (staggered charge variab
for quenches to the temperaturesT ­ 0.04 and 0.1,

FIG. 1. The temperature dependence of various exponentsnl ,
nc, andf. Error bars are at most twice the size of symbol
Solid lines are guides to the eye. Inset: Scaling collapse of
equal-time correlation functions for the Ising spin atT ­ 0.06
with Lstd , tf wheref . 0.48.
2173



VOLUME 79, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 22 SEPTEMBER1997

ti

h
d

e
u

r
l

d
n

ra
f

in
c

n

ate

x-
s.
er-
ect
the

ob-
gin

ith
rge

he
al

e-
et

of

p
he
, we

e
e
ies

tion
ive
respectively, where we can see a morphological transi
from low temperaturefaceted domain walls to rough
domain walls at high temperatures.

In order to locate the temperature at which the morp
logical transition takes place, we calculate the time
pendence of the total number of domain-wall corners (Nc)
and the total length (Nl) of the Ising domain walls. Thes
quantities are expected to decay in time toward their eq
librium values with power law, i.e.,Ncstd 2 Ncs`d ,
t2nc and Nlstd 2 Nls`d , t2nl . Figure 1 shows these
exponents. We observe thatnc is greater thannl for
T # TR . 0.09 6 0.01, while nc . nl for T . TR. As
can be shown by a simple argument [5], the low tempe
ture regime (T , TR) corresponds to faceted domain-wa
morphology and high temperature regime to rough
main walls (see Fig. 2). The decrease of the expone
nc andnl with increasing temperature at higher tempe
tures (for T . 0.08) can be attributed to the effect o
thermal fluctuations that are competing with the order
process. These thermal fluctuations can create more

FIG. 2. The snapshots of configurations for Ising domains
(a) T ­ 0.04 and (b)T ­ 0.1. In each set, figures represe
the snapshots taken att ­ 20, 80, and 320, respectively, from
top to bottom.
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ners and domain walls and thus slow down the decay r
of these defects, resulting in smaller values ofnc and nl

as the temperature increases.
As for the temperature dependence of the growth e

ponentf at low temperatures, we may argue as follow
At zero temperature, there exists freezing in the ord
ing process. At low but nonzero temperature, we exp
the ordering proceeds via activated processes, where
domain walls tunnel across energy barriers. Since we
serve faceted domain walls at low temperatures, we be
with a square-shaped domain ofs21d staggered charge
variable with dimensionL 3 L within an infinite back-
ground sea of opposite (11) staggered charge variable
[see inset (a) of Fig. 3]. Suppose that our domain w
s21d staggered charge variable is represented by cha
configuration beginning with2 1 2 1 2 1 . . . at the
top left-end corner of the domain. It is easy to see that t
first step in reducing the size of a domain with minim
energy cost is to exchange the21y2 and11y2 charges in
the leftmost corner of the top row of the domain. Corr
spondingly, the domain will be reduced as shown in ins
(b) of Fig. 3. This may be viewed as creating a pair
corners (we will call this astep excitation) in the domain
wall, which will cost some positive energy. The next ste
will be to exchange again the leftmost charge pairs in t
top row. Repeating these processes again and again
reduce the total length of the domain wall by2 lattice
units. At this point, the energy of the system will now b
lower than the initial energy. A question is, what is th
maximum height of the energy barrier during these ser
of domain-wall motions delineated above?

FIG. 3. The energy barrierDE versus the linear sizeL of a
square shaped domain. Insets (a) and (b): The configura
of Ising domains. Open and filled circles represent negat
and positive fractional charges, respectively.
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Since each of the created corners can also be consid
as a charge excitation of magnitude1y4 [12] interacting
logarithmically with other charges separated by a leng
scale of orderL (the domain size), we expect the energ
barrier to behave asDE ­ E0 lnsLyL0d where E0 is a
constant andL0 is a length scale of the order of the
lattice unit corresponding to the average size of the froz
domains atT ­ 0. In order to confirm this argument
we numerically calculated the domain-size dependen
of the energy barrier using the Hamiltonian (1) and th
domain size ranging from,L ­ 4 20 on a square lattice
of size as large asN ­ ,64 400. We found that the
maximum barrier appears when the step excitation reac
near the center (Ly2) of the domain wall or slightly
beyond the center. Figure 3 shows a semi-log plot
the calculated energy barrier versus the linear domain s
which gives a very nice fit to a logarithmic behavior wit
E0 ­ 0.11 6 0.01 andL0 ­ 1.25 6 0.05.

If we suppose that the ordering proceeds via
activated process with the barrier having logarithm
dependence on the domain size as above, then the t
t taken for annihilation of a square domain of sizeL 3 L
would bet ­ t0 expsDEyT d ­ t0 expfE0 lnsLyL0dyTg ­
t0sLyL0dE0yT . That is, we get for the domain sizeLstd ­
L0styt0dTyE0 , where t0 is the time scale for reaching
the average domain sizeL0. Thus, we see that the
growth exponentf is proportional to the temperature
T . Indeed, we can compare1yE0 ­ 9.09 6 0.90 with
the linear coefficienta ­ 8.57 6 0.38 that is extracted
from the linear temperature dependence of the grow
exponents forT ­ 0.01 , 0.06 (see Fig. 1), which shows
a reasonable agreement.

At higher temperatures, we no longer can assume t
the ordering proceeds via activated dynamics alone,
proliferation of step excitations due to thermal fluctuatio
will make the domain walls become rough atT . TR.
This roughening transition will occur at the temperatu
for which an isolated step excitation on an infinitely lon
domain wall will cost no extra free energy. We can e
timate this temperature roughly by matching the barr
energy for a step excitationDE ­ E0 lnsLyL0d as the
energy contribution of an isolated step excitation (
roughening excitation) withT lnsLyL0d as the entropic
contribution to the free energy. At the transition, w
should haveE0 lnsLyL0d . TR lnsLyL0d, i.e.,TR . E0 .
0.11. Taking the crudeness of our estimation into consi
eration, this gives a reasonable agreement with the va
of TR . 0.09 6 0.01 obtained from direct calculation of
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morphological quantities. More rigorous treatment shou
include the effect of screening of other charges, whi
will lower the transition temperature that will probably
give closer agreement.

In summary, we presented simulation results on t
ordering dynamics of the 2D classical CG of half-intege
charges on a square lattice. The phase ordering in t
system is governed by the activation energy barrier w
logarithmic dependence on the domain size, resulti
in the temperature dependent growth exponent and
roughening transition of the domain walls at a finit
temperature. This kind of low temperature ordering w
not considered in the LMV classification. The prese
study strongly indicates that the CG withf ­ 1y2 and the
FFXYM offer a new universality class of phase orderin
dynamics.
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