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An analytical cone-jet solution for the electrohydrodynamic atomization of liquids has been f
for an asymptotic model assuming an infinitely long and thin emitted jet. Universal expres
for the emitted electric current, jet shape, charge distribution, surface charge, and other es
electrohydrodynamic quantities are obtained as functions of the liquid properties and the emitted
flow rate. The agreement with published experiments is good. [S0031-9007(97)03566-7]

PACS numbers: 47.65.+a, 47.55.–t
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In this Letter we report a successful analytical approa
to the complex and multidisciplinary problem of th
electrohydrodynamic spraying of liquids. For sufficient
large electrification levels [1,2], this spraying method us
the strong, local electric forces appearing at a char
liquid-gas interface to provoke liquid ejections in th
form of capillary liquid threads from the tip of conelik
protrusions, giving rise to extremely fine charged aeros
with vast applications in science and technology. He
we consider the most relevant regime, the so-cal
cone-jet mode [3] (see Fig. 1), achieved when a coni
liquid meniscus is formed at the tip of an electrifie
capillary needle for a range of electric potentials [1–
A steady, thin but robust liquid thread with a typic
diameter from several microns to nanometers (wh
eventually breaks up into remarkably homogeneous s
droplets) is emitted from the apex of the conical menisc
when a steady constant liquid flow rateQ is supplied
through the needle. Briefly outlined, our model approa
consists of a basic electrostatic conical solution p
an infinitely long and thin jet issuing from its apex
The electrohydrodynamic process of liquid and char
emission is solved, and the emitted electric current,
shape, charge distribution, etc. are, for the first tim
analytically determined. Except for the notation, th
reader mostly interested in applications may skip t
following up to theResultsparagraph.

Basic electrostatic solution.—In the absence of liquid
emission (no jet), Taylor [2] obtained an exact, infini
electrostatic solution in spherical coordinatessR, ud (see
Fig. 1) consisting of an infinite, perfectly conical equilib
rium shape with semiangleuT ­ 0.860 274 32 . . . . The
electric potential outside this electrified cone is given b

FT sR, ud ­

√
2g

´0

!1y2

D0Q1y2sudR1y2, (1)

where

D0 ­ ftansuT dQ0
1y2suT dg21y2, (2)

g, ´0, and Q1y2 stand for the liquid-surrounding ga
surface tension, electrical permittivity of vacuum, an
0031-9007y97y79(2)y217(4)$10.00
ch

y
s

ed

ls
re
ed
al

].
l
h

ize
us

h
s

.
e

et
e,
e
e

e

-

d

Legendre modified function of order1y2, respectively.
The symbol0 means derivative respect tou. The liquid
dielectric constant́ i is absent in this result since it deal
with an electrostatic solution of a perfectly conductin
liquid, for which the inner electric field is null.

Electric cone-jet model.—Consider now a very thin
and very long charged liquid jet issuing from the tip o
Taylor’s cone. Even in the case of aleaky dielectric(not
perfectly conducting) liquid [5], if it moves slowly enough
to allow for electric relaxation, i.e., in time scales larg
as compared to the electric relaxation timete ­ ´iyK
(where K stands for the liquid electrical conductivity)
the liquid bulk is quasineutral and the charges stay at
surface [5–8]. The electric field in the liquidEi is then
very small compared to the outer oneE. We call this a
“quasielectrostaticyperfectly conducting”(QEPC) limit,
for which the surface chargess ­ ´0En 2 ´iEi

n can be
expressed simply asss . ´0En, where En and Ei

n are
the normal components ofE andEi , respectively, at the
liquid surface. The role of́ i is then negligible.

In our QEPC limit, Taylor solutionFT for the outer
field is modified by the appearance of a new term, s
FG , owing to the jet. As long as our geometry allow
superposition, sufficiently far away from the pointR ­ 0,
we can search for a solution of the problem asF ­
FT 1 FG . We will use the natural representation of th
electric field in spherical coordinates, given in terms

FIG. 1. Steady cone-jet configuration and spherical coor
nates system.
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Legendre functions, to writeFG as a series of the form

FGsR, ud ­
X
n

DnfQnsud 1 CnPnsudgRn , (3)

where Qn and Pn stand for the Legendre functions o
ordern, andhnj is a certain infinite sequence of numbe
which satisfies the requirements of completeness of
series. This sequence will be consistently found, a
Dn and Cn will be solved as part of the problem. Th
representation in spherical coordinates is useful to de
relations at the cone. Let us write the cone surface
u ­ uT 1 z , wherez is a function ofR representing the
departure from Taylor’s conical shapeu ­ uT owing to
the presence of the jet (space charge effect). First,
x

u

n
a

c-
-

w

n
ti
u

218
s
he
d

ve
as

he

potential decay along the cone surface is several ord
of magnitude smaller than the one at the jet, owing
the large transversal section of the cone [8,9]. Therefo
its surface can be considered equipotential. Seco
surface tension must be balanced by the electrost
force. Assumingz ø uT , one can linearize these two
conditions aroundu ­ uT and obtain, after some algebra
the expression

z ­ 2
X
n

√
´0

2g

!1y2

Dn

QnsuT d 1 CnPnsuT d
Q0

1y2suT d
R21y21n ,

where
Cn ­ 2

2Q0
nsuT d

tanuT
2 fsn 2 1y2d sn 1 3y2d 1 bgQnsuT d

2P0
nsuT d

tanuT
2 fsn 2 1y2d sn 1 3y2d 1 bgPnsuT d
ly
iar
e.,
and

b ­
1 1 tan2 uT

tan2 uT
1

2Q00
1y2suT d

tanuT Q0
1y2suT d

­ 0.259 648 3 . . . .

(4)
Furthermore the jet surface, located around the a

u ­ p , can be represented asj ­ sp 2 udR, wherej

stands for the local radius of the jet assumingj ø R
is

(Fig. 1). The local geometry of the jet is then a very slow
varying cylinder. This suggests the use of more famil
expressions of the electric fields at the jet surface [i.
whenu ! p in expression (3)]. In fact, one may define

An ­ 2

µ
cossnpd 1

2Cn

p
sinnp

∂
Dn , (5)
Bn ­ 2

µ
cossnpd 1

2Cn

p
sinsnpd

∂
Dn

¡ ∑
fgE 1 Csn 1 1d 2 ln 2g

µ
cossnpd 1

2Cn

p
sinsnpd

∂
2

p

2
sinsnpd

1 Cn cossnpd
∏

(6)
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in terms ofDn and Cn (wheregE and C are the Euler
constant and the digamma function, respectively). Th
the seriesAsRd ­

P
n AnRn andBsRd ­

P
n BnRn allow

one to write expressions for the electric fieldssEn, Esd at
the jet surface (as in cylindrical coordinates) simply as

En ­ Ayj , (7)

Es ­ ET 1
d

dR
fA lnsjyRd 1 Bg , (8)

for j ø R, where

ET ­

√
2g

´0

!1y2
pD0

4
R21y2. (9)

FunctionsAsRd and BsRd represent a charge distributio
located at the axis of symmetry and the nonsingular p
of the correction to Taylor’s solution, respectively.

Jet hydrodynamics.—Since there is a tangential ele
tric field Es pointing in the axial direction, there is a mo
mentum exerted by the electric stress on the surface
valuets ­ ssEs. In the limit of an “infinitely” thin jet,
this momentum is rapidly diffused in the radial directio
by viscous stresses throughout the jet transversal sec
and the velocity profile becomes almost flat with val
y ­ Qyspj2d [7,8,10]. In this limit, the liquid momen-
s,

rt

ith

on,
e

tum balance can be expressed as

d
dR

∑
P 1

1
2

r
Q2

p2j4

∏
­

2ts

j
, (10)

whereP stands for the liquid pressure. Since the press
jump across the jet surface is in a large extent balan
by surface tension (in addition to the electrostatic a
the polarization forces [8]) its value is of the order
gyj. Therefore,P , gyj can be neglected vs the kineti
energyrQ2ys2p2j4d for very thin jetsj ! 0 [8]. The
capillary equation can be henceforth excluded from
analysis.

Finally, the electric current is driven by both the surfa
charge motion and the bulk electric conduction [7,8]:

I ­ 2pjss
Q

pj2 1 Kpj2Es . (11)

Notice that while the first term becomes dominant dow
stream along the jet, where the jet radiusj becomes very
small, the second one is dominant close to the cone a
where the jet is thicker. In particular, bulk electric co
duction is several orders of magnitude larger than the s
face electric convection at the cone, where a very sm
radial electric field in the liquid bulk provokes the charg
migration towards the apex [9].
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Universal scaling.—First, using the parameter
hr, K, g, ´0j one can define several characteristic qua
tities: a characteristic flow rateQ0 ­ rKg21´

21
0 , an

electric current I0 ­ ´
1y2
0 gr21y2, a distance d0 ­

sp22g´
2
0r21K22d1y3, and an electric field E0 ­

s2g´
21
0 d21

0 d1y2. For a given liquid, it has been shown th
Q0, d0, and I0 are actually of the order of theminimum
flow rate, jet diameter, and emitted electric curre
respectively, that can be obtained by electrospray
[6,11,12]. Introducing the nondimensional flow ra
Q ­ QyQ0, and the numberL0 ­ ln Q1y2, let us define
(i) a typical jet radiusR0 ­ d0Q

1y2, (ii) an axial distance
L0 ­ d0QL0, (iii) a typical value of the normal field a
the jet surfaceEn0 ­ E0L

21y2
0 , (iv) the same for the axia

field, Es0 ­ E0sQL0d21y2, and (v) a typical potential
variation along the jetF0 ­ E0L0. Note that in the
asymptotic limitQ ¿ 1, the characteristic axial length o
the jet L0 is very large as compared to the jet radiusR0.
In addition,L0 becomes a large number.

With these definitions, one can write Eqs. (8), (10
and (11) as a rather simple system of nondimensio
universal equations in terms of the nondimension
quantities z ­ RyL0, f ­ jyR0, a ­ AysEn0R0d ­
AysEs0L0L

21
0 d, es ­ EsyEs0, andes0 ­ sET 1 ÙBdyEs0,

with the nondimensional currentI ­ Iy
≥
8I2

0 QyL0

¥
1y2:

es ­ es0 2 Ùa, Ùf ­ 22af3es ,

esf2

2
1

pa
f2 ­ I . (12)

Terms of the orderL 21
0 and smaller have been neglecte

in system (12).
When z ! ` (i.e., close to the jet breakup), surfac

charge advection becomes dominant (i.e.,payf2 ! I ),
since the liquid jet must eventually break up and t
liquid domain is no longer continuous. In addition, th
tangential electric field at the surfacees approacheses0
since the potential decay in the radial direction from t
surface, of the orderEn0R0, is negligible as compared to
the potential decay owing to the external field, of the ord
Es0L0. When such conditions atz ! ` are imposed, the
asymptotic solution of system (12) is given by

f` ­
z21y8

s4I D0d1y4 , a` ­
I 1y2z21y4

2pD
1y2
0

,

es` ­
p

4
D0z21y2. (13)

The solution of system (12) forz , Os1d is now consis-
tently found in terms of power series of the form

k ­ k`

√
1 1

X̀
n­1

anz23ny4

!
, (14)

where k stands for f, a, or es. The potential FG

is then given by expression (3) withhnj ­ h1y2 2

3ny4jsn­1,2,...,`d. System (12), together with expression
(4) allow the complete and consistent calculation of t
series by solving the termshanjf,a,es as functions of the
eigenvalueI , the nondimensional electric current.
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Electric problem aroundz ­ 0.—Series (14) are abso
lutely convergent outside a sphere of radiusRp (which is
a function ofI ) around the originz ­ 0, and diverges in-
side. The charge distributionaszd at the axis of symmetry
inside that sphere, univocally determined from the valu
of the electric field and potential at the convergence
dius, can be represented in terms of positive powers oz
such asa ­

P`
n­0 gnzn. This series is solved using th

overlapping region of absolute convergence of both
ries. Linearizing the expressionF ­ FT 1 FG around
u ­ uT and invoking (3) and (4), one obtains that th
value of the potential at the cone surface is equal to
Since the solution at the jet’s side is regular atz ­ Rp,
while the cone turns into a cusp close to the converge
radius of the outer series [see Fig. 2(a)], Eqs. (12) are
valid inside the sphere from the jet’s side up to the po
wheref ! `. Thus, the solution of the problem is give
by the value ofI for which the potential becomes 0 whe
f goes to` inside the sphere. One findsI . 1.5, after

FIG. 2. (a) Cone-jet shape, and charge distributionaszd at the
axis. Also plotted, the Taylor cone (- - -). (b) Jet shape, surfa
advection current, and potential decay along the jet.
219
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FIG. 3. (a) Scaling of the measured current for three repres
tative liquids from [6], and data from [11] forQyQ0 $ 30.0.
The asymptotic universal scaling is given by a solid lin
(b) Scaling of the experimentally measured droplet diame
for the same liquids from [6], and for water-sucrose solutio
given in [12]. The theoretical universal scaling for the drop
diameter given by a solid line.

integrating Eqs. (12) with a convergence radius of theout-
sideseriesRp . 12.5. The inner solution gives the tran
sition from the jet to the cone, and shows how the elec
current changes from dominant Ohmic conduction at
cone to surface charge advection at the jet [8].

Results.—The nondimensional charge distribution
the axis of symmetryaszd and the shape of the cone a
given in Fig. 2(a). Other results of interest, for examp
the jet shapef, the surface advection current, and t
potential decay at the jet axis, are plotted in Fig. 2(b).

In terms of physical quantities, the total electric curre
and droplet diameter given by our model are

I ­ 4.25

"
QKgy ln

√
Q
Q0

!1y2#1y2

­ 4.25

√
QKg

L0

!1y2

,

220
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e

t

d ­ 2 3 1.89R0fb ­ 3.78p22y3Q1y2

√
r´0

gK

!1y6

fb ,

(15)
fb being the nondimensional radius of the jet at the break
point. 1.89 stands for the Rayleigh most probable jet
droplet relationship, valid for electrospray [3]. Howeve
droplet size cannot be exactly obtained from this analy
sincethere is no breakup regionin the asymptotic model.
In reality, the jet breaks up in most cases at a point l
cated roughly fromz , 10 to z , 100 depending on the
liquid viscosity. Since the jet shape changes as slow
as z21y8, one may estimate an average valuefb . 0.6
within maximum errors of the order of 25%, even below
the experimental uncertainties in some cases. These
versal asymptotic scalings are compared with results fro
some experimental studies [6,11,12], using many diffe
ent liquids with permittivities spanning froḿi ­ 1.9´0

to ´i ­ 111.0´0. The electric current and droplet diame
ter are given in Figs. 3(a) and 3(b), respectively.

The present analytical results suggest that both t
electric current and the droplet diameter areindependent
of the liquid polarity. Liquids with large polarities
usually present large conductivities too, resulting in larg
experimentalQyQ0 values, which might have led to
attribute to the liquid polarity the role actually played b
L0 ­ ln QyQ0 in the experimental correlations [6,11,12]
The present analytical results also explain why the charg
to-mass ratioQyI shows a power law approximately
inversely proportional tod, noted by many authors (see
[12]) but unexplained before. Finally, this analytica
model serves as a local solution close to the apex
a real electrified cone, where the emission takes pla
While this region is local enough, the influence of th
needle-electrode potential difference in the emitted curre
and droplet size is small, as shown in most publish
experiments [6,11,12].
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