
VOLUME 79, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 22 SEPTEMBER1997

France
Fluctuation-Dissipation Theorems and Entropy Production in Relaxational Systems
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We show that for stochastic dynamical systems out of equilibrium the violation of the fluctuation-
dissipation equality is bounded by a function of the entropy production. The result applies to a much
wider situation than “near equilibrium,” comprising diffusion as well as glasses and other macroscopic
systems far from equilibrium. For aging systems this bounds the age-frequency regimes in which
the susceptibilities satisfy the fluctuation-dissipation theorem in terms of the rate of decay of theH
function, a question intimately related to the reading of a thermometer placed in contact with the system.
[S0031-9007(97)04030-1]
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Many systems encountered in nature have slow dyna
ics but are not “near equilibrium” in any obvious sens
Typical examples are (i) glassy systems a long time a
the preparation procedure has finished, e.g., long afte
temperature quench; (ii) domain growth and phase sep
tion; (iii) systems that can be kept “far” from equilibrium
by asmallexternal power input done by stationary nonco
servative forces and/or periodically time-dependent forc
and (iv) diffusion in noncompact spaces.

A slow, persistent, out of equilibrium regime is possib
because in the thermodynamic limit the ergodic time
very large compared to the experimental time scales
this is the case of the first three examples—or due to
absence of confining potentials in the case of diffusio
Indeed, in contrast with the usually studied situation [1,
none of the cases we mentioned can be viewed as a s
perturbation about equilibrium such that the systems wo
return quickly to equilibrium as soon as the perturbation
removed.

Moreover, these systems may not be regarded in gen
as “metastable.” Specifically, one cannot consider a gl
or a system undergoing domain growth to be complet
equilibrated within a fixed sector of phase space, as in
case of, e.g., diamond, because the probability distribu
in phase space changes continually. Indeed, by measu
two-time correlation or response functions one can at a
time determine the age of a glass [3–6].

Bearing this in mind, a relevant question is wheth
some specifically equilibrium properties are also pres
in these systems. In this paper we concentrate on
study of the fluctuation-dissipation theorem (of the “fir
kind,” FDT [1]). A physical interpretation of this FDT is
that its validity is a necessary condition for a thermome
in contact only with the system to register the bath
temperature [7].

Working with dissipative dynamics, we show that th
violations of the fluctuation-dissipation equalities vani
with a quantity that can be identified with the entrop
production rate.
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This leads us to suggest that there are unifying featu
in situations with small entropy production rate, whatev
its origin (aging, work done by nonconservative and/
time-dependent forces, temperature gradients, etc). T
comprises a much wider class of systems than the conv
tionally studied linear regime.

Let Cst, t0d  kAstdBst0dl be a correlation between ob-
servablesA and B, Rst, t0d  dkAstdlydhst0djh0 the as-
sociated response to a field conjugate toB, andxst, t0d ;Rt

t0 Rst, sd ds the integrated response. The “differential
violation V of FDT at st, t0d is

V st, t0d ;
≠C
≠t0

2 TR  f1 2 Xst, t0dg
≠Cst, t0d

≠t0
, (1)

which also defines the “fluctuation-dissipation ratio
Xst, t0d [4]. Here, and in what follows,t $ t0. A stronger
and more physical form of the violation is the integrate
versionIst, t0d ;

Rt
t0 V st, sd ds:

Ist, t0d  Cst, td 2 Cst, t0d 2 Txst, t0d . (2)

The static (zero-frequency) violation isIv0 ; limt!` 3

Ist, t0d. We can now be more precise about what is mea
by far from equilibrium. In the systems we conside
Ist, t0d is (very) different from zero for certain larget, t0

even in the limit of vanishing entropy production and, i
particular, static susceptibilities donot coincide with their
equilibrium value (Iv0 fi 0) [4,5,8,9].

We assume a Langevin dynamics with an inertial term

mẍi 1 g Ùxi 1 ≠xi E 1 fi  Gi , (3)

wherei  1, . . . , N . fi are velocity-independent noncon
servative or time-dependent forces.Gi is a delta-correlated
white noise with variance2gT . This relation between
the friction coefficient and the noise correlation is th
“fluctuation-dissipation relation” (or FDT of the “second
kind”); it expresses the fact that the bath itself is and sta
in equilibrium. We encodexi in anN vectorx. For sim-
plicity, we have set the Boltzmann constantkB  1 and
all massesmi to be equal tom. We briefly describe the
© 1997 The American Physical Society
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massless case at the end of this Letter. We shall not c
sider purely Hamiltonian systems withg  0, for reasons
which will become evident.

The probability distribution at timet for the process
(3) is given byPsx, y, td  T exps

Rt
o LK dPsx, y, 0d with

T denoting time ordering andLK the Kramers operator
given by [10]

LK  2≠xi
yi 1

1
m

≠yi

µ
gyi 1 ≠xi

E 1 fi 1 g
T
m

≠yi

∂
,

(4)

where we have used the summation convention. AnH
function may be defined as [1,2]

Hstd 
Z

dx dy P

µ
T ln P 1 Esxd 1

my2

2

∂
(5)

and may be interpreted as a “generalized free energy.”
Using the equation forP and some integrations by parts

one finds

ÙHstd  2k f std ? ystdl 2
X

i

gistd , (6)

where the first term is the power done by the forcesf and
gi are the entropy production terms

gistd  g
Z

dx dy
smyiP 1 T≠yi

Pd2

m2P
$ 0 . (7)

Equations (6) and (7) imply that in the purely relaxationa
f  0 case with bounded energy,Hstd is monotonically
decreasing (and constant ifg  0—Liouville’s theorem
for Hamiltonian dynamics) and its time derivative mus
tend to zero since the equilibrium free energy is finite
They also imply that astationary( ÙH  0) driven system
does negative external work on average.

We describe below a number of situations in which th
differential FDT violationV vanishes and the integral FDT
violation I , which can be finite, takes a restricted form.

(i) Purely relaxational systems [5] as the total entrop
production rate tends to zero whent0 ! `. This can be
satisfied intwo ways,depending on the large-times sec
tor we consider. For infinitely separated times, “agin
regime,” one may haveXst, t0d fi 1 and ≠t0C ! 0. In-
stead, in the regime of smaller time separationsXst, t0d !

1 and≠t0C fi 0 (more like ordinary FDT). We also show
that the asymptotic rate of decay ofHstd determines the
extent of both regimes.

(ii) Stationary driven systems withÙH  0 in the limit
of small driving powerk f ? yl ! 0. For time separations
that are larger for smaller driving powers one can have [1
V st 2 t0d ! 0 with Xst 2 t0d fi 1 and ≠t0Cst 2 t0d !

0, while for time differences that remain finite in the
weak driving limitV st 2 t0d ! 0 with Xst 2 t0d ! 1 and
≠t0Cst 2 t0d fi 0.

(iii) Periodically driven systems of periodt that have
achieved a stationary (periodt) regime [12] in the limit of
vanishing work per cycle. The FDT violation over a cyclRt01t

t0 ds V st, sd vanishes with
Rt01t

t0 dsk f ssd ? yssdl.
n-

l

t
.

e

y

-
g

1]

In these three casesX can be different from one precisely
for pairs of times such that the correlation evolves slowly
The fact that for large, widely separated times one ca
(and often does [4]) haveX fi 1 is crucial, because it
ultimately leads to the violation of the integral form of
FDT: Ist, t0d fi 0 in certain large-time sectors.

(iv) Diffusion (with or without nonconservative forces)
[13] for times such that the root mean squared displac
ment at later timet times the entropy production rate at
the earlier timet0 vanishes.

Derivation.—We prove the result for macroscopic cor-
relations and responses constructed as follows. LethAisxdj
and hBisxdj be two sets of operators. We assume tha
each Ai (Bi) depends only upon the subsetC

A
i (C B

i )
of the degrees of freedom of the system. We deno
CAi ,Bi st, t0d the correlation,RAi ,Bi st, t0d the response ofAi

to a field conjugate toBi in the energyandVAi ,Bi st, t0d ;
≠t0CAi ,Bi

2 TRAi ,Bi
the corresponding FDT violation. We

calculate the total FDT violationVABst, t0d associated with
NCAB ;

PN
i CAi ,Bi andNRAB ;

PN
i RAi ,Bi .

Using Eq. (4), one can easily show that

VAi ,Bi st, t0d 
X

l

usl, id
Z

dx dy dx0 dy0 Aisx0d

3 Psx0, y0, tjx, y, t0d≠xl Bisxd

3

µ
T
m

≠yl 1 yl

∂
Psx, y, t0d , (8)

where Psx0, y0, tjx, y, t0d ; kx0, y0jT e
Rt

t0
LK

jx, yl. We
have made explicit the nonzero terms by introducin
usl, id  1 if l [ C

B
i and zero otherwise.

Identifying each term on the right askFiljCill ;R
dx dy dx0 dy0 FilCil with

Fil ; Aisx0dP1y2sx0, y0, tjx, y, t0dP1y2sx, y, t0d≠xl
Bisxd

and using the Cauchy-Scwhartz inequalityjkFil jCillj #p
kFil jFill kCiljCill one can bound separately each inte

gral in (8) as

jkFiljCillj # kA2
i std s≠xl Bid2st0dl1y2g

1y2
l st0dusl, id (9)

with glst0d given by Eq. (7).
The “macroscopic” FDT violation is

NVABst, t0d ;

É X
i

VAi ,Bi
st, t0d

É
. (10)

The Cauchy-Schwartz inequality applied on the sum
yields

NVABst, t0d #
X
il

jkFiljCillj

#
p

N DABst, t0d

√X
i0l0

gl0st0dusl0, i0d

!1y2

, (11)
2169
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where we have definedDAB through

p
N DABst, t0d ;

√X
il

kA2
i std s≠xl

Bid2st0dlusl, id

!1y2

.

The last factor is
P

l0 gl0st0d
P

i0 usl0, i0d 
P

l0 gl0st0dNl0 ,
whereNl0 is the number of differentAi0 that depend on
xl0 . Assuming all theNl to be finite, we can again bound
the last factor usingNl # N ; maxl Nl . If in addition
C

A
i has a finite number of elements,DAB is Os1d. Thus

VABst, t0d #
p

N DABst, t0d

√
1
N

X
i

gist0d

!1y2

. (12)

Both sides of the inequality areOs1d. This is the basic
result of this Letter. We shall explore its consequenc
below.

For a purely relaxational system, this yields

VABst, t0d #
p

N DABst, t0d
µ
2

1
gN

dHst0d
dt0

∂1y2

. (13)

Note that this proof breaks down in the nondissipati
limit g  0.

For stationary nonconservative systems we have

VABst 2 t0d #
p

N DABst 2 t0d
ø

y ? f
N

¿1y2

, (14)

while for a “stationary” periodically driven system suc
thatHstd  Hst 1 td,Z t01t

t0

ds VABst, sd #

√
N

Z t01t

t0

ds D2
ABst, sd

!1y2

3

√
W
N

!1y2

.

W st0d ;
Rt01t

t0 dskyssd ? f ssdl is the work per period.
These results can be generalized to establish a r

tion for multiple point correlations between operatorsAk
i

depending on the coordinates inCi at timest1 . · · · .

tk , C
1,...,k
i ; kA1

i . . . Ak
i l, and the corresponding response

R
1,...,k
i to a perturbation applied toAk

i at timetk .
Applications.—As a particular simple case of Eq. (13

we obtain a bound for the variation of a single-tim
quantity in a relaxational case. SettingAi  1 and taking
a single operatorB, RAB  0 and we obtainÉ

dkBl
dt

É
#

√
NX
i

ks≠xi Bd2l

!1y2√
2

1
g

dHstd
dt

!1y2

. (15)

Another typical application of the formulas above
when xi are lattice variables, withi denoting the site.
The fluctuation-dissipation theorem associated with t
two-point correlationCsr, t, t0d and responseRsr , t, t0d is
obtained by puttingBi  xi and Ai  xi1r . Similarly,
one can study the energy-energy correlationsCEsr , t, t0d
with Bi  Ei 2 kEil andAi  Ei1r 2 kEi1r l, provided
2170
es

e

la-

s

)
e

s

e

that the energyEi of site i depends on a finite number o
neighbors (and henceN is finite).

One can extend the derivation to the calculation of tot
correlations if the corresponding spatial dependencies
fast enough. For example, for the energy

1
N

kEstdEst0dl 2
1

N2 kEstdl kEst0dl 
X

r
CEsr , t, t0d ,

(16)

one can use the bounds obtained previously provided o
can cut off the sum at some maximum distancermax.

Another interesting bound is obtained by writing
k f sxd ? yl 

R
dx dy f sxd ? sy 1 T≠ydP and by pro-

ceeding as from Eq. (8) to Eq. (11):

k f ? yl2 # kj f j2l
X

i

gi . (17)

Integrated bounds for purely relaxational systems.—In
glassy systems it is known [4,5,9] that the integral for
of FDT is violated in certain two (large) time sectors. W
can bound the extent of these sectors as follows.

Assuming that the factorDAB is finite for all times,
DABst, t0d , K, on integrating (13) and applying once
again Cauchy-Schwartz, we obtain

jIABst, t0dj # K
Z t

t0

µ
2

1
N

dHssd
ds

∂1y2

ds ,

where IABst, t0d  CABst, td 2 CABst, t0d 2 TxABst, t0d.
Hence, there can be no integral violation of FDT forany
long times ifH falls faster thant21. Interestingly enough,
if Hstd can be written as an average over exponential p
cessesHstd 

R
dt rstd exps2tytd, this result implies

that there can be FDT violation at large times only ifktl
diverges [14].

For H falling slower than or ast21, we can still bound
the region in which FDT holds. First of all, we have
that for t0 ! ` andt 2 t0  Os1d FDT will always hold.
More generally, consider the limitt0 ! ` with t 2 t0 
Ost0ad with 0 , a , 1. A simple calculation gives

jIABst, t0dj # K

µ
2

1
N

dHst0d
dt0

∂1y2

t0a.

If Hstd  H` 1 kt2a , then there will be no FDT violation
in the time sectors defined bya provided2a , sa 1 1d.
In particular, ifH falls as any inverse power of a logarithm
FDT holds fort 2 t0 , Ost01y2d.

Massless case.—One can treat the case withm  0
(i.e., without inertial term) in the same way. One define
an H function as in (5), without the kinetic term and
with Psx, td depending only on space. Using the Fokke
Planck equation, one may derive an expression for t
fluctuation-dissipation violation analogous to (8), whic
can be bounded in terms of the entropy production, whi
in this case reads

gi 
Z

dx
fP≠xi Esxd 1 T≠xi Pg2

P
$ 0 . (18)
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Diffusion.—A simple application of the massless cas
is to Brownian motion inD dimensions, if we set the
diffusion constant to be equal to a temperatureT , and take
Ai  Xi andBi  Xi The application of the inequality for
the massless case yields

jV st, t0dj # s2DTtd1y2fTDys2t0dg1y2  TDstyt0d1y2.

Note that hereDABst, t0d  2Dt and is therefore not
bounded. Since in this case neitherR nor ≠t0 C are
small, this equation tells us that FDT can be violate
[15]. The exact calculation givesV st, t0d  TD; hence
the inequality is clearly obeyed but with equality only a
t  t0.

A more interesting example of the applications of o
study is to the problem of Sinai diffusion in one dimensio
[13,16,17]. If one assumes thatHstd scales in the same
way as the energyEstd, then one may deduce the scalin
of the energy via the Arrhenius lawt , t0 expfcEsXtdg,
with c and t0 constants and? representing an average
over disorder. In this problem the particle is subject to
white noise force and therefore is diffusing in a Brownia
potential; henceEsxd , x1y2. From this one deduces the
resultskX2

t l , log4std and Hstd , Estd , logstd (where
we emphasize the relation betweenE and H is justified
only on the grounds of physical intuition). We therefor
obtain jV st, t0dj # c log2stdy

p
t0, which implies that the

integrated form of FDT must hold at least up to tim
differences scaling ast 2 t0 , ct01y2.

In conclusion we have shown that there is a direct co
nection between FDT violations and entropy production
systems with stochastic dynamics. This connection allo
one to obtain results even in the interesting cases in wh
in the limit of small entropy production the systems a
still far from equilibrium, as may happen in macroscop
(or diffusive) systems. It is important, though probab
tougher, to extend these results to deterministic syste
with a thermostat [18] in the thermodynamic limit; i
would be surprising if these results did not carry throug
to this case.
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