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Vortex Stability and Persistent Currents in Trapped Bose Gases
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We consider the stability of vortices in trapped dilute Bose gases. For weak coupling the vortex
is unstable to single-particle excitations: the Bose condensate cannot support persistent currents,
and the gas is not superfluid. For stronger coupling the azimuthal symmetry of the rotating
condensate is spontaneously broken, resulting in an off-center vortex that eventually spirals out of
the trap. [S0031-9007(97)04034-9]

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj

A dramatic series of experiments with cold, trappedrotation by acquiring angular momentum. A fluid is
atomic gases has demonstrated Bose-Einstein condengatper” only if the circulating flow persistis the absence
tion of a macroscopic number of particles into the samef a rotating drive This stability is conceptually distinct
single-particle state [1]. The new condensates are small-from thermodynamic stability, since it concerns a fluid
millions of atoms confined to clouds tens of microns inheld in a static (rather than rotating) container.
diameter—and, unlike liquid helium, are highly com- Of course, in the absence of an imposed rotation the
pressible. Animportant question remains: Are these conglobal free energy minimum is always a nonrotating state.
densates superfluid? States with persistent currents are therefore metastable—

Bulk superfluids are distinguished from normal fluidstheir (free) energy cannot be reduced by small changes in
by their ability to support dissipationless flow [2]. Such the state of the system. This “local” stability generally
“persistent currents” are intimately related to the existencémplies the “thermodynamic” stability discussed above,
of stable, quantized vortices. Here we consider the stabibut not vice versa.
ity of azimuthally symmetric quantized vortices in har- For bulk superfluids, the criteria of thermodynamic and
monically confined dilute Bose gases. In such rotatindocal stability coincide. For example, consider a rotating
condensates, the macroscopically occupied single-particleontainer of liquid*He. At small angular velocity only
wave functionV,,(r) has azimuthal angular momentum the normal component rotates. Above a critical angular
mh. We will see that these states are always unstableelocity, however, the steady state changes discontinu-
When confinement effects dominate atom-atom interaceusly to a vortex whose superfluid component has quan-
tions, the circulating flow decays completely. Althoughtized circulation [4]. When the rotation of the container
the gas is Bose condensed, it cannot support persisteist halted, the normal fluid eventually comes to rest, but
currents. In the strongly interacting limit we find that con- the circulating superfluid current persists. The vortex is
fined vortices undergo a spontaneous symmetry breakingcally stable because few-particle excitations which de-
that displaces them off axis. For a fixed trap and atomicrease the angular momentum of the fluid cost free en-
species, the relative importance of confinement vs interergy. For a large system, this implies macroscopic energy
actions can be varied by changing the total number obarriers between the metastable vortex and the nonrotat-
particles. ing thermodynamic ground state.

Stability—There are two distinct concepts of stability =~ We will show that condensation and persistent currents
associated with rotating fluids. First, a rotating stateare distinct features of mesoscopic Bose systems. For
may be produced by steadily driving the fluid with weakly interacting gases, stable quantized vortices exist
an asymmetric, time-dependent perturbation that rotatesnly in a driven system, and become unstable when
at angular velocity() about the z axis, relative to the imposed rotation is halted; the gas rapidly reverts
the laboratory frame. The steady state of this driverto a nonrotating state. Such Bose condensates cannot
system can be viewed as a state of thermal equilibriunbe considered superfluid. When interaction and trap
in the corotating frame [3]. The (steady-state) angulaeffects become comparable, however, we find interesting
momentum in the lab frame then takes the value thasymmetry-breaking instabilities that modify the vortex
globally minimizesF(L.,T) — QL., whereF is the free core and induce precession about the axis of the trap.

energy in the lab frame. 1B2F/9L? is positive, this Vortex states—Consider a collection ofvV identical
rotating state will be thermodynamically stable the bosons of masa/ trapped in an axially symmetric har-
continued presence of the driving perturbation. monic potentialV(r, z) at low temperature. We treat in-

The steadily rotating states that are generated by suderatomic scattering by a delta-function pseudopotential of
an externally imposed rotation are not a manifestation otrengthU = 47 h%a/M, wherea is the s-wave scatter-
superfluidity—even classical fluids respond to an externaing length. A dimensionless measure of the interactions

2164 0031-900797/79(12)/2164(4)$10.00 © 1997 The American Physical Society



VOLUME 79, NUMBER 12 PHYSICAL REVIEW LETTERS 22 BPTEMBER1997

relative to the level spacing of the trap is then

UN 2 Na

tion is evidently governed by an effective Hartree poten-
tial Verr = Vigap + 2UN|¥,,|> = u,, Which combines
= = = (1) attraction to the center of the trap with a mean repulsion
Qm)2o’he g by the condensate. The factor of 2 accounts for exchange.
where o = (I/Mw)'/? is the Gaussian width of the WhenV,, has a minimum near the origin, so dogss
single-particle ground state of the trap. Although we(Fig. 1).
specifically consider a spherically symmetric, harmonic Itis easy to see that quasiparticle states at the periphery
trap, our qualitative results rely only on axial symmetry. Of the trapped vortex all have positive energy, siftg
Vortices in trapped gases can be established by drivingg positive there. Core states, however, are localized
the system with a weak rotating perturbation. To study théear the minimum of the trap, and may in principle
local stability of a vortex, we must first determine the vor-have negative energy (relative tp,). If the core
tex condensate wave functioh,, for a range of couplings supports such quasiparticle bound states, then collisions
y. For the dilute Bose ga¥,,, is accurately given by min- Wwith thermally excited particles and asymmetries of the
imizing the total energy per particle [5—7] trap will drive particles from the condensate to the core
E state, destabilizing the vortex. Since the quasiparticles
— of a Bose gas are themselves bosons, the core state can
N . become macroscopically occupied [9].
subject to the constraint thalt,, varies ase™?. (Here Core states—It is easy to see that the core quasiparticle
T = —h*V?/2M is the kinetic energy operator.) Dafolvo state always has negative energy relative to the vortex
and Stringari [8] have performed extensive numericakondensate foy = 0, since then the “core” state of (5)
calculations of these states, which are thermodynamically nothing but the ground state of the trap, whitg is the

Y
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stable for sufficiently large driving angular velocity.
Here we briefly recall the limits of small and large
For weak coupling (smally) the vortex condensate is
L (r z

well approximated by
2072 <S_% S_Zz>:| | ®)

whereS, andS, are dimensionless variational parameters
Equation (3) is exact foy = 0, with §, = S, = 1. In
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lowest energy state of angular momentumi. Treating
interactions perturbatively we find that the net energy
cost to transfer a particle from the vortex to the core is
thene = —mhw, + O(y), which is always negative for
small y. The undriven vortexV,, is therefore unstable.
This conclusion is independent of the details of the trap
potential.

" As vy increases, however, the core of mn= 1 vortex
becomes very narrow, and the zero-point motion of a

the strong-coupling limit (largey) the vortex becomes

large. The radial and axial kinetic energies are then smal

and may be neglected [7]. In this Thomas-Fermi lirhj
W =

is given by [8]
UN < > )

where A(vy) is chosen to normaliz&’,, to unit density.
The Thomas-Fermi condensate vanishes ingigg and
outsideR.x, Which are defined by the zeros of Eq. (4).
The radius of the trapped cloud is [Rmax ~ oy'/>.
The core radiusk,,;, is given [8] by mé&, where & =
(87rnga)~'/? is the “healing length” of a homogenous
Bose gas of density, ~ y%/°/a3, i.e., the peak density
of the trapped nonrotating Bose gas. TR o2/Rnax,
so that the core narrows as the cloud grows.
Quasiparticles—We begin with the weak coupling
limit, where the appropriate theoretical framework is
provided by the Hartree-Fock approximation. (We will
return to the strong coupling limit below.) Quasiparticle
states are constructed by transferring one particle from

article confined to the cylindrical core excegds. The

chrodinger equation (5) then has no bound statedand
becomes stable with respect to single-particle excitations.
(Using a simple Gaussian variational calculation, the
bound state is lost foy = 5.) The strong coupling limit
will be discussed further below.
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V¥, to an orthogonal single-particle staig(r). The

Schrddinger equation satisfied Byis simply T T )
A 2 3 4
Ty + (V + 2UN|V,> — wn)p = €, (5) radial distance

Where.,um = dE/oN is. the energy Qai”ed by removing g1 1. The effective potentiaVy.,, + 2UN|W,,|* is shown
a particle from the axially symmetric vorte¥,,, ande  as a function of radial distance far= 0, for y = 5. Also

is the quasiparticle excitation energy. Quasiparticle moshown is a Gaussian variational core state.
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Form = 2 the centrifugal forces on the condensate arénerence between the two condensates is a finite response
larger than for the unit vortex, and the core radRyg, to an infinitesimal perturbation, and signals the sponta-
expands by roughly a factor @f. The kinetic energy of neous breaking of rotational symmetry, as we see next.
the core state therefore decreases by a factayaf. It What kind of state is Eq. (8)? Consider the= 1
is easy to see variationally that far = 2 there are bound vortex plus its core. Without loss of generality we take
core states foall v. An azimuthally symmetric vortex y = 0. The core state is real and positive everywhere,
with m = 2 is thereforealwayslocally unstable. peaked near the axis. The real part o,,—,, however,

Instability— What is the fate of an unstable vortex? If is positive forx > 0 and negative forr < 0. Superim-
we prepare the Bose gas in an axially symmetric rotatingposing these states [Fig. 2(a)], we see that the node of the
state and then suddenly turn off the driving perturbationn = 1 vortex is displaced away the trap axis. The mag-
the gas is not in its lowest free energy state, and respondstude of the displacement is comparablerig, .
by transferring particles from the vortex condensate to the The displacement of the core has a simple physical
core [10]. For small core-state occupatidp,., we may explanation. In the axially symmetric vorte¥,,, the
assume tha¥,, andy.... are unchanged by this transfer. node passes through the minimum of the trap potential.
The total energy is then approximately By displacing the vortex core, the particle density in this

2 e 3 4 energetically desirable location is increased. The resulting
E[Neore] = Neore€ + Ty ] dr|tpeore]”™ . (6) densityN|¥|? is asymmetrical, and the center-of-mass of

where we have neglected the contribution of the normain€ gas is not at the origin. (The on-center state can be
gas at low temperature, and the last term accounts forti@ble only if the vortex core is “pinned” to the center of
quasiparticle-quasiparticle repulsion in the core. Equathe trap [4] by a locally repulsive trap potential [12].)

tion (6) is minimized for macroscopic core occupation: ~ BY Ehrenfest's theorem, it follows that a displaced
N le|s2s vortex will precess about the axis of the trap at the bare
core __ roz

Xeore = (7)  trap frequency, so thaty () = xo + wt. Abovewy,; in

N a harmonic trap, we therefore expect to find a precessing,
off-center vortex. At nonzero temperature, this precessing
the bound state. When the core-state volussie: ~  yorex moves through normal fluid, and the resulting

2 15 ; _ e X :
ERmax ~ v~ is smallxeore is small. (Fory = 3,e.9., dissipation [13] will cause the vortex to spiral outward.
Xeore IS l€Ss than 10%.) The resultis a vortex that coexists a gimilar analysis can be carried out for the = 2

with a small_er, nonr_otating condensate trapped in its COr&rtex, which is unstable for aly. Again, the core state
The properties of this unusual double Bose condensate alg . is positive and peaked near the origin, whilg, _

discussed below. , varies az?®. Fory = 0, these two states constructively
_ Forsmally, Eq. (7) predictsVeore ~ N, and the assump- inierfere along the axis, and destructively interfere along
tion thatW¥,, andy.... are unchanged by occupation of the the y axis [Fig. 2(b)]. The new condensate (8) then has
core state breaks down. They must instead be determingg,, nodes, symmetrically placed on either side of the
self-consistently, including the force that the core particle%rigin along they axis at a distance comparable to the
exert on those left behind i¥,,. These effects broaden naive core size. Again, they precess at frequency
the core, further destabilizing the vortex condensate. U'Similar reasoning applied to vortices with > 2 yields a

timately, all the particles will be transferred to the=0  ing of equally spaced unit [14] vortices precessing about
core state, resulting in a nonrotating Bose condensate. Wge'center of the trap. The splitting af = 2 vortex cores
can estimate the critical coupling for complete destructiong ine mesoscopic quantum analog of the hydrodynamic
of the vortex by they at whichxcoe ~1/2in Eq. (7). FOr  jngtapility [13,15] of high angular momentum vortices

m=1wefindy. ~13;form=2,y;,~138. _ towards splitting into multiple “fundamental” vortices
Symmetry breaking--We have argued that above a crit- yith ,, = 1.

ical coupling v, a rotating, trapped Bose gas can exist
in a novel state with coexisting condensates of differing
angular momenta—a vortex condensdtg and a non- et

vho ’
where s, and s, are the radial and axial widths of

rotating core condensatg..... In a perfectly symmetric '”
potential, Josephson tunneling between the two conden- s i
sates is forbidden by angular momentum conservation, and L
their phases are not coupled. Any weak asymmetry of the 71,9 ‘

trap, however, will initiate coherent Josephson scattering -z,
between the two condensates, inducing phase coherence ":'Lj};)‘jfﬁ-;’i“«.“f*" =
between them. The resulting many-body ground state is a) “““5a- oz
described by a macroscopically occupied state whose con-

densate wave function is the superposition [11] FIG. 2. Schematic of¥,, (stippled) andic. (shaded) for

N — i m =1 (a) andm = 2 (b) in the XY plane. Combining¥,,
W= V1 = xeore Wi + €' {/Xcore Peore - ®)  and Yeore Yields new states with nodes indicated by small open

The relative phasg is discussed below. The induced co- circles.
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Strong coupling—We may consider the stability of an be produced in a steadily rotating trap, when the im-
axially symmetric vortex by another means. W, is a posed rotation ceases the vortex either decays by a single-
local minimum of the Gross-Pitaevskii energy functionalparticle instability or precesses about the trap axis. At
Eqg. (2), then small variations of the forth = ¥, + nonzero temperature the precessive motion of the vortex
must increase its value. It is easy to show, however, thatore through the normal fluid dissipates energy and angu-

3 e lar momentum, which eventually brings the fluid to rest.

OE = [d r’[T + Verrlp + (UN/2) | thank D. Weiss, J.C. Davis, E. Cornell, W. Ketterle,
5 e e a R. Packard, and D.P. Arovas for exciting discussions.
X [V, () + (V) y7] (9 This work was supported by NSF PYI-91-57414, the UCB

can be negative. In particular, the fact tHAt+ Vg Committee on Research, and the Miller Institute for Basic
has a (real) bound state implies th&E is negative for Research.

the corresponding variatioth.... The axially symmetric
state ¥,, is thereforenot a local minimum of Eq. (2),
and we see again that the on-axis vortex is unstable.
[The Schrédinger equation obtained by extremizing the
quadratic form (9) is distinct from, but closely related to,
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