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Vortex Stability and Persistent Currents in Trapped Bose Gases
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We consider the stability of vortices in trapped dilute Bose gases. For weak coupling the v
is unstable to single-particle excitations: the Bose condensate cannot support persistent cu
and the gas is not superfluid. For stronger coupling the azimuthal symmetry of the rot
condensate is spontaneously broken, resulting in an off-center vortex that eventually spirals o
the trap. [S0031-9007(97)04034-9]

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj
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A dramatic series of experiments with cold, trappe
atomic gases has demonstrated Bose-Einstein conde
tion of a macroscopic number of particles into the sam
single-particle state [1]. The new condensates are sma
millions of atoms confined to clouds tens of microns
diameter—and, unlike liquid helium, are highly com
pressible. An important question remains: Are these co
densates superfluid?

Bulk superfluids are distinguished from normal fluid
by their ability to support dissipationless flow [2]. Suc
“persistent currents” are intimately related to the existen
of stable, quantized vortices. Here we consider the sta
ity of azimuthally symmetric quantized vortices in ha
monically confined dilute Bose gases. In such rotati
condensates, the macroscopically occupied single-part
wave functionCmsrd has azimuthal angular momentum
mh̄. We will see that these states are always unstab
When confinement effects dominate atom-atom intera
tions, the circulating flow decays completely. Althoug
the gas is Bose condensed, it cannot support persis
currents. In the strongly interacting limit we find that con
fined vortices undergo a spontaneous symmetry break
that displaces them off axis. For a fixed trap and atom
species, the relative importance of confinement vs int
actions can be varied by changing the total number
particles.

Stability.—There are two distinct concepts of stabilit
associated with rotating fluids. First, a rotating sta
may be produced by steadily driving the fluid wit
an asymmetric, time-dependent perturbation that rota
at angular velocityV about the z axis, relative to
the laboratory frame. The steady state of this driv
system can be viewed as a state of thermal equilibriu
in the corotating frame [3]. The (steady-state) angu
momentum in the lab frame then takes the value th
globally minimizesFsLz , T d 2 VLz , whereF is the free
energy in the lab frame. If≠2Fy≠L2

z is positive, this
rotating state will be thermodynamically stablein the
continued presence of the driving perturbation.

The steadily rotating states that are generated by s
an externally imposed rotation are not a manifestation
superfluidity—even classical fluids respond to an extern
0031-9007y97y79(12)y2164(4)$10.00
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rotation by acquiring angular momentum. A fluid is
“super” only if the circulating flow persistsin the absence
of a rotating drive. This stability is conceptually distinct
from thermodynamic stability, since it concerns a fluid
held in a static (rather than rotating) container.

Of course, in the absence of an imposed rotation th
global free energy minimum is always a nonrotating stat
States with persistent currents are therefore metastable
their (free) energy cannot be reduced by small changes
the state of the system. This “local” stability generally
implies the “thermodynamic” stability discussed above
but not vice versa.

For bulk superfluids, the criteria of thermodynamic an
local stability coincide. For example, consider a rotatin
container of liquid4He. At small angular velocity only
the normal component rotates. Above a critical angula
velocity, however, the steady state changes discontin
ously to a vortex whose superfluid component has qua
tized circulation [4]. When the rotation of the containe
is halted, the normal fluid eventually comes to rest, bu
the circulating superfluid current persists. The vortex i
locally stable because few-particle excitations which de
crease the angular momentum of the fluid cost free e
ergy. For a large system, this implies macroscopic ener
barriers between the metastable vortex and the nonrot
ing thermodynamic ground state.

We will show that condensation and persistent curren
are distinct features of mesoscopic Bose systems. F
weakly interacting gases, stable quantized vortices ex
only in a driven system, and become unstable whe
the imposed rotation is halted; the gas rapidly rever
to a nonrotating state. Such Bose condensates can
be considered superfluid. When interaction and tra
effects become comparable, however, we find interestin
symmetry-breaking instabilities that modify the vortex
core and induce precession about the axis of the trap.

Vortex states.—Consider a collection ofN identical
bosons of massM trapped in an axially symmetric har-
monic potentialV sr , zd at low temperature. We treat in-
teratomic scattering by a delta-function pseudopotential
strengthU ­ 4p h̄2ayM, wherea is the s-wave scatter-
ing length. A dimensionless measure of the interaction
© 1997 The American Physical Society
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relative to the level spacing of the trap is then

g ­
UN

s2pd3y2s3h̄v
­

s
2
p

Na
s

, (1)

where s ­ sh̄yMvd1y2 is the Gaussian width of the
single-particle ground state of the trap. Although w
specifically consider a spherically symmetric, harmon
trap, our qualitative results rely only on axial symmetry

Vortices in trapped gases can be established by driv
the system with a weak rotating perturbation. To study
local stability of a vortex, we must first determine the vo
tex condensate wave functionCm for a range of couplings
g. For the dilute Bose gas,Cm is accurately given by min-
imizing the total energy per particle [5–7]

E
N

­
Z

d3r

µ
CpT̂C 1 V̂trapjCj2 1

UN
2

jCj4
∂

, (2)

subject to the constraint thatCm varies aseimf. (Here
T̂ ­ 2h̄2=2y2M is the kinetic energy operator.) Dafolv
and Stringari [8] have performed extensive numeric
calculations of these states, which are thermodynamic
stable for sufficiently large driving angular velocityV.
Here we briefly recall the limits of small and largeg.

For weak coupling (smallg) the vortex condensate i
well approximated by

Cm ~ rmeimf exp

∑
2

1
2s2

µ
r2

S2
r

1
z2

S2
z

∂∏
, (3)

whereSr andSz are dimensionless variational paramete
Equation (3) is exact forg ­ 0, with Sr ­ Sz ­ 1. In
the strong-coupling limit (largeg) the vortex becomes
large. The radial and axial kinetic energies are then sm
and may be neglected [7]. In this Thomas-Fermi limitCm

is given by [8]

jCmj2 ­
1

UN

µ
2A 2

r2

s2
r

2
z2

s2
z

2
m2s2

r

r2

∂
, (4)

where Asgd is chosen to normalizeCm to unit density.
The Thomas-Fermi condensate vanishes insideRmin and
outsideRmax, which are defined by the zeros of Eq. (4
The radius of the trapped cloud is [7]Rmax , sg1y5.
The core radiusRmin is given [8] by mj, where j ­
s8pn0ad21y2 is the “healing length” of a homogenou
Bose gas of densityn0 , g2y5ys3, i.e., the peak density
of the trapped nonrotating Bose gas. Thenj , s2yRmax,
so that the core narrows as the cloud grows.

Quasiparticles.—We begin with the weak coupling
limit, where the appropriate theoretical framework
provided by the Hartree-Fock approximation. (We w
return to the strong coupling limit below.) Quasipartic
states are constructed by transferring one particle fr
Cm to an orthogonal single-particle statecsrd. The
Schrödinger equation satisfied byc is simply

T̂c 1 sV 1 2UN jCmj2 2 mmdc ­ ec , (5)

where mm ­ ≠Ey≠N is the energy gained by removin
a particle from the axially symmetric vortexCm, and e

is the quasiparticle excitation energy. Quasiparticle m
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tion is evidently governed by an effective Hartree pote
tial Veff ; Vtrap 1 2UNjCmj2 2 mm, which combines
attraction to the center of the trap with a mean repulsi
by the condensate. The factor of 2 accounts for exchan
WhenVtrap has a minimum near the origin, so doesVeff

(Fig. 1).
It is easy to see that quasiparticle states at the periph

of the trapped vortex all have positive energy, sinceVeff

is positive there. Core states, however, are localiz
near the minimum of the trap, and may in principl
have negative energy (relative tomm). If the core
supports such quasiparticle bound states, then collisio
with thermally excited particles and asymmetries of th
trap will drive particles from the condensate to the co
state, destabilizing the vortex. Since the quasipartic
of a Bose gas are themselves bosons, the core state
become macroscopically occupied [9].

Core states.—It is easy to see that the core quasipartic
state always has negative energy relative to the vorte
condensate forg ­ 0, since then the “core” state of (5)
is nothing but the ground state of the trap, whileCm is the
lowest energy state of angular momentummh̄. Treating
interactions perturbatively we find that the net energ
cost to transfer a particle from the vortex to the core
thene ­ 2mh̄vr 1 Osgd, which is always negative for
small g. The undriven vortexCm is therefore unstable.
This conclusion is independent of the details of the tra
potential.

As g increases, however, the core of anm ­ 1 vortex
becomes very narrow, and the zero-point motion of
particle confined to the cylindrical core exceedsmm. The
Schrödinger equation (5) then has no bound state, andCm

becomes stable with respect to single-particle excitatio
(Using a simple Gaussian variational calculation, th
bound state is lost forg * 5.) The strong coupling limit
will be discussed further below.

FIG. 1. The effective potentialVtrap 1 2UNjCmj2 is shown
as a function of radial distance forz ­ 0, for g ­ 5. Also
shown is a Gaussian variational core state.
2165
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For m $ 2 the centrifugal forces on the condensate a
larger than for the unit vortex, and the core radiusRmin
expands by roughly a factor ofm. The kinetic energy of
the core state therefore decreases by a factor of1ym2. It
is easy to see variationally that form $ 2 there are bound
core states forall g. An azimuthally symmetric vortex
with m $ 2 is thereforealwayslocally unstable.

Instability.— What is the fate of an unstable vortex? I
we prepare the Bose gas in an axially symmetric rotatin
state and then suddenly turn off the driving perturbatio
the gas is not in its lowest free energy state, and respon
by transferring particles from the vortex condensate to th
core [10]. For small core-state occupationNcore, we may
assume thatCm andccore are unchanged by this transfer
The total energy is then approximately

EfNcoreg ­ Ncoree 1
UN2

core

2

Z
d3rjccorej

4 , (6)

where we have neglected the contribution of the norm
gas at low temperature, and the last term accounts
quasiparticle-quasiparticle repulsion in the core. Equ
tion (6) is minimized for macroscopic core occupation:

xcore ;
Ncore

N
ø

jejs2
r sz

gh̄v
, (7)

where sr and sz are the radial and axial widths of
the bound state. When the core-state volumes2

r sz ,
j2Rmax , g21y5 is small,xcore is small. (Forg ­ 3, e.g.,
xcore is less than 10%.) The result is a vortex that coexis
with a smaller, nonrotating condensate trapped in its co
The properties of this unusual double Bose condensate
discussed below.

For smallg, Eq. (7) predictsNcore , N , and the assump-
tion thatCm andccore are unchanged by occupation of the
core state breaks down. They must instead be determin
self-consistently, including the force that the core particle
exert on those left behind inCm. These effects broaden
the core, further destabilizing the vortex condensate. U
timately, all the particles will be transferred to them ­ 0
core state, resulting in a nonrotating Bose condensate. W
can estimate the critical coupling for complete destructio
of the vortex by theg at whichxcore , 1y2 in Eq. (7). For
m ­ 1 we findgc1 , 1.3; for m ­ 2, gc2 , 1.8.

Symmetry breaking.—We have argued that above a crit
ical coupling g, a rotating, trapped Bose gas can exis
in a novel state with coexisting condensates of differin
angular momenta—a vortex condensateCm and a non-
rotating core condensateccore. In a perfectly symmetric
potential, Josephson tunneling between the two conde
sates is forbidden by angular momentum conservation, a
their phases are not coupled. Any weak asymmetry of t
trap, however, will initiate coherent Josephson scatterin
between the two condensates, inducing phase cohere
between them. The resulting many-body ground state
described by a macroscopically occupied state whose co
densate wave function is the superposition [11]

C ­
p

1 2 xcoreCm 1 eixp
xcoreccore . (8)

The relative phasex is discussed below. The induced co
2166
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herence between the two condensates is a finite respo
to an infinitesimal perturbation, and signals the spon
neous breaking of rotational symmetry, as we see next.

What kind of state is Eq. (8)? Consider them ­ 1
vortex plus its core. Without loss of generality we tak
x ­ 0. The core state is real and positive everywher
peaked near thez axis. The real part ofCm­1, however,
is positive forx . 0 and negative forx , 0. Superim-
posing these states [Fig. 2(a)], we see that the node of
m ­ 1 vortex is displaced away the trap axis. The ma
nitude of the displacement is comparable toRmin.

The displacement of the core has a simple physic
explanation. In the axially symmetric vortexCm, the
node passes through the minimum of the trap potent
By displacing the vortex core, the particle density in th
energetically desirable location is increased. The result
densityNjCj2 is asymmetrical, and the center-of-mass
the gas is not at the origin. (The on-center state can
stable only if the vortex core is “pinned” to the center o
the trap [4] by a locally repulsive trap potential [12].)

By Ehrenfest’s theorem, it follows that a displace
vortex will precess about the axis of the trap at the ba
trap frequencyv, so thatxstd ­ x0 1 vt. Abovegc1 in
a harmonic trap, we therefore expect to find a precessi
off-center vortex. At nonzero temperature, this precessi
vortex moves through normal fluid, and the resultin
dissipation [13] will cause the vortex to spiral outward.

A similar analysis can be carried out for them ­ 2
vortex, which is unstable for allg. Again, the core state
ccore is positive and peaked near the origin, whileCm­2

varies ase2if. Forx ­ 0, these two states constructively
interfere along thex axis, and destructively interfere along
the y axis [Fig. 2(b)]. The new condensate (8) then ha
two nodes, symmetrically placed on either side of th
origin along they axis at a distance comparable to th
naive core size. Again, they precess at frequencyv.
Similar reasoning applied to vortices withm . 2 yields a
ring of equally spaced unit [14] vortices precessing abo
the center of the trap. The splitting ofm $ 2 vortex cores
is the mesoscopic quantum analog of the hydrodynam
instability [13,15] of high angular momentum vortice
towards splitting into multiple “fundamental” vortices
with m ­ 1.

FIG. 2. Schematic ofCm (stippled) andccore (shaded) for
m ­ 1 (a) andm ­ 2 (b) in the XY plane. CombiningCm
andccore yields new states with nodes indicated by small ope
circles.
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Strong coupling.—We may consider the stability of an
axially symmetric vortex by another means. IfCm is a
local minimum of the Gross-Pitaevskii energy function
Eq. (2), then small variations of the formC ­ Cm 1 c

must increase its value. It is easy to show, however, th

dE ­
Z

d3rcpfT̂ 1 Veffgc 1 sUNy2d

3 fC2
mscpd2 1 sCp

md2c2g (9)

can be negative. In particular, the fact thatT̂ 1 V̂eff
has a (real) bound state implies thatdE is negative for
the corresponding variationccore. The axially symmetric
state Cm is thereforenot a local minimum of Eq. (2),
and we see again that the on-axis vortex is unstab
[The Schrödinger equation obtained by extremizing t
quadratic form (9) is distinct from, but closely related to
the Bogoliubov equations [12]. ]

Armed with this new interpretation of the instability
we return to the strong coupling limit. The vorte
condensate densityjCmj2 then has three distinct regimes
a core regionr & j, a broad plateau nearr , s, and
a gradual decline to the edge of the cloud atRmax.
From Pitaevskii’s original calculation [6] we know tha
the spectrum of a vortex in ahomogeneousBose gas
contains a zero-energy mode, a result which follows fro
translational invariance. The resemblance between
core and plateau regions of the trapped and homogene
vortices suggests that we use Pitaevskii’s zero mode
the homogeneous system as a variational state in
for r & s, with a suitably smooth spatial cutoff nea
r * s. It is then not difficult to show [12] that (9) can
be made negative for allg. Evidently, the instability
is a displacement of the core of the vortex, leaving t
far-field condensate unchanged [16]. Again, Ehrenfes
theorem implies precession, which is accompanied
dissipation.

Our analysis is supported by a reinterpretation of t
Bogoliubov spectrum of an axially symmetric vorte
obtained by Doddet al. [17]. In the weak coupling
limit (N ø 0) they find four excitations with energy
1h̄vr above them ­ 1 vortex. From the spectrum of
a single particle in a harmonic potential, however, w
know that there are onlythree such excited states for
g ­ 0. A fourth “excited” state is found atnegative
energy2h̄vr (i.e., our core state). It follows that the
excitation (with m ­ 0, 2) found by Doddet al. is in
fact the Bogoliubovantiparticle to our core mode [12].
Since this antiparticle energy is positive for allg, the core
mode itself always has negative energy. We conclude t
vortices in harmonic traps areneverlocally stable.

In conclusion, by considering the stability of vorte
states, we have argued that Bose condensates in
monically trapped Bose gases do not support persist
currents. Although rotating, quantized condensates c
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be produced in a steadily rotating trap, when the im
posed rotation ceases the vortex either decays by a sin
particle instability or precesses about the trap axis.
nonzero temperature the precessive motion of the vor
core through the normal fluid dissipates energy and an
lar momentum, which eventually brings the fluid to rest
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