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It is proposed that an unconstrained quantum system is completely specified by its configuration space
C and its group of symmetrieG. It is then shown that the theory of projective unitary representations
of G on a certain Hilbert space determined 6yand G leads to a definitive resolution of supposed
ambiguities relating to superselection rules, choice of wave functions, topological propertesaraf
C, anomalies, etc. [S0031-9007(97)04114-8]

PACS numbers: 03.65.Fd, 02.20.—-a, 11.30.—j

The word quantization generally signifies a procedurebe replaced ultimately by a formulation using exclusively
which starts with a classical description of a dynamicalconcepts and methods appropriate to quantum physics.
system and seeks its exact quantum generalization. In iSuch an autonomous formulation of the general principles
most practical form, Schrédinger quantization, it consistof quantum theory is put forward and justified in this
in taking the state spac# to be a Hilbert space of square- Letter.
integrable complex functions on the configuration mani- There already exists a full fledged program of a strictly
fold C and the observables to be self-adjoint operators ogquantum formulation of quantum theory of great general-
H determined, by some prescription, from real functionsity: the algebraic quantum theory based on an axiomatiza-
of the local coordinates of and their time derivatives tion of the notion of observables [1] due to Haag and his
(functions on the tangent bundle ¢f). From time to collaborators. The present proposal is less ambitious in its
time, this procedure has been found not to result in a suffiscope and very different in technical detail. The key role
ciently detailed or accurate description of quantum phehere is played by the symmetry groGpof a given system
nomena, or to reflect certain perceived subtleties of théG forms part of the “data” defining the system). How to
classical description, arad hocmodifications prescribed proceed from the knowledge @f to a complete working
accordingly. Examples which come to mind include theout of quantum kinematics and dynamics is first concisely
occurrence and origin of superselection (SS) rules, the redescribed below in an inductive manner and finally for-
alization of SS sectors as spaces of (multivalued) wavenulated as a precise postulate. This order of presentation
functions, the fixing of boundary conditions, the interpre-serves well as a guide to the physical motivation as well
tation and treatment of anomalies, the role of the topologys to show that, technically, little needs to be added to the
of C, and the use of the universal covering groups (equivaexisting body of the quantum theory of symmetry. The
lently, the Lie algebras) of Lie groups of symmetries, etctheoretical framework that emerges, being very concrete
These or similar ambiguities affect other quantization pro-and system specific, will be seen to provide clear answers
cedures—e.g., canonical quantization (and its modern rigo the sort of problems raised in the introductory paragraph.
orous version, geometric quantization) and path-integrarhough it does not encompass the very broad horizons of
methods—as well. the theory of observables, it is general enough to handle

Logically, it should cause no surprise that any approaclany properly specified system. The present account, how-
to defining the fundamental principles governing the exacever, confines itself to unconstrained nonrelativistic sys-
(quantum) reality starting from an approximate (classicalfems, postponing a treatment of the generalization required
description might require occasional tinkering. Equally,to deal with relativistic quantum fields, including gauge
such a procedure is necessarily of tentative validity, tdields and the concomitant constraints, to a sequel.
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The foundations of the theory of quantum symmetriesc,, = 0. (This is almost evident; for the elementary proof
were laid in the work of Weyl [2], Wigner [3], and see [6].) Such a vector cannot represent a state gihce
Bargmann [4]. This will be our starting point. Given must act projective unitarily on all states. A superselection
that a state of a system is a ray of some complex Hilbertule separates the sectdi®#,,}, and there is no linear
spaceH (as follows from the superposition principle space containingll states as rays arall of whose rays
[5]), a symmetry of the system is a one-to-one magpare states.
of the projective spac®JH into itself fixing absolute There is a powerful general method of dealing simulta-
values of scalar products idH [3]. From Wigner's neously with all SS sectorsja the notion of the universal
theorem, any group of symmetries is representefifiroy  central extensio of G. G is a group from which there
a projective unitary representation (PUR). (We disregards a homomorphisng.,: G — G, for everyn such that
circumstances leading to antiunitary representations.) Tha UR of G,,, on composing Wlthp,,, lifts to a UR of G;
first task is thus to classify the PURs of the grofip=  so every sector of is in some UR ofG [7]. For groups
{g,h,..} of all symmetries of the system, called simply of interest to usé is a unique nontrivial central extension
the symmetry group from now on. of G by the group>(G) = H*(G,U(1))*, the Pontryagin

A PUR U of G satisfiesU(g) U(h) = y(g,h) U(gh), dual (the group of characters) &f>(G,U(1)). (For the
wherey is a U(1)-valued function oG X G subject to general theory, see [7].)
the conditionsy(gh,k) v(g,h) = y(g, hk) y(h, k) and A UR H of G can be decomposed as a direct sum
y(g,1) = y(1,g) = 1, in other words, a 2-cocycle. If of subspacedH#,} corresponding to the characters
v is such thaty(g,h) = B(g)B(h)B(gh)~' for some of 3(G); n is indeed an element df*(G,U(1)) since,
function 8 on G, it is a coboundary and the correspondingby Pontryagin duality,>(G)* = H*(G,U(1)). In other
PUR is unitary equivalent to a UR. Hence PURSs fall intowords, 3 (G) decomposedH into SS sectors and the state
equivalence classes labeled by the elements of the quotiespace is a familfP 7, }, exactly as required.
of the Abelian group of 2-cocycles by its subgroup of The (Abelian) “superselection group2(G) plays a
coboundaries,Z%(G,U(1))/B*(G,U(1)) = H*(G,U(1)),  primordial role in all our considerations.
the second cohomology group 6f with coefficients in Since 2(G) acts on all ofH,, by the same character,
U(1). H*(G,U(1)) also classifies (equivalence classes of)it commutes with all operators mappir(,, into itself.
central extensions of; by U(1), i.e., groupsG having Defining an observable to be any self-adjoint operator
U(1) as a central subgroup such tt@,tu(l) G. The mapping states into states as required by the axiomatic
direct productG X U(1) is the trivial central extension demand [5] that an observation causes a transition to
and is the only extension having as a subgroup. An a state, it must necessarily map each sector into itself
extensionG,, corresponding toy € H?(G,U(1)) can be (otherwise its eigenvectors will span more than one
given concretely as the group of paigs a) for the group  sector and cannot represent states) and so commute with
law (g, a) (h,b) = (gh,v(g, h)ab), a, b € U(1), forany  3(G). Thus the SS structure, determined solely Gy
representative cocycle in the class ofp. It follows that  decides which operators are observables. The direction
if U is a UR of G, such that its restriction to the U(1) of implications here is the reverse of that in algebraic
subgroup is the natural charact®i(a) = a, U satisfies quantum theory in which, in a wider context, SS sectors
U(g,1) U(h,1) = y(g,h) U(gh, 1); i.e., the restriction of are obtained as certain special inequivalent representations
U to the subset of; of G,,, U(g, 1) = U(g), gives a PUR of the observable algebra [8]. (For the current status and
corresponding top. The converse is also true: Every for a complete bibliography of the subject, see [9].)

PUR of G lifts to a UR of some central extension 6fby Which specific URs ofG,,}—the irreducible URs and
U(1) with the property that it restricts to the central U(1) their multiplicities—constitute the sectors of the state
as the natural UR. Thus the determination of all PURs ofpace of a system? Equivalently, which UR @fis to

G is reduced to the determination of URs, restricting tobe chosen ag{ ? The answer suggested by the success
U(1) naturally (this property is henceforth understood),of the simplest version of Schrédinger quantization is the
of G, for everyn. In particular, ifH*(G,U(1)) = 0, G space of wave functions. We are led to assume therefore
has onIy trivial extensions and all its PURs are URs (orthat the system is specified by, besidesa second datum,
trivial PURS). the configuration spac€’, and thatG acts onC as a

From these well-known facts (for a systematic recentransformation group. ({, as the set of all “positions” of
account, see [6]), significant conclusions can already ba system, is a legitimate concept in the quantum context.)
drawn It H, and 3 for a fixed n carry URs of Suppose to begin with that*(G, U(1)) = 0. Schrodinger

G, then obviously so doe.'fi-[1 ® 5’-[2 if every vector quantization then identifies the state spadgwith L2(C),
in 5'-[1 and 5’-[2 represent states of a system with sym-the space of complex functions on C square integrable
metry groupG, the superposition principle holds without with respect to aG-invariant measure. G has a UR
restriction in H,) @ H . But for n; # n,, the linear on L*(C) given by (U(g)y) (x) = ¢(¢~' - x). In this
superposition lepm + Cpytby, € H,, ® H,, trans- generality (accommodating the possibility 6f or both
forms projective unitarily undeiG only if ¢,, =0 or G and C, being discrete), the decomposition bf(C)
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into irreducibles may not always be easy though fullythe topology ofG. (The topology ofC is always irrel-
determined in principle. An especially easy situationevant.) It is therefore permissible to replaGeby G (or
occurs whenG is a compact Lie group and is the Lie G) only if G is semisimple and, even then, only on
manifold of G on whichG acts by left translation.H,  imposing the SS structure and all its consequences. For
is then the regular representatifA(G) containing every instance, the rotation group is SO(3), not(@U= SO(3),
irreducible UR with multiplicity equal to dimension (Peter- and a rotation-invariant system will have URs of SU(2)
Weyl theorem). in #, but subject to the action of the univalence SS
For nontrivial sectors this ~procedure is inadequategroup 3(SQO(3)) = 71(SO(3)) = Z,. A nonsemisimple
In general, the only action of;,, on C that will pass example is SO(2)r(SO2)) = Z has nothing to do with
to the given action of the quotient group is the trivi-  3(S0(2)), which vanishes [4,6]. SO(2) has no PURs
ally extended one in which U(1) fixes all points Gf,  other than URs, implying that angular momentum in
ax = x implying U(l,a)y = ¢. This contradicts the R? is integral and ruling out the existence of anyons
requirement of natural central charactei(l, ) = ayy;  (defined as particle states having arbitrary real spins
so wave “functions” cannot be functions oi. A [11,12]). However, since th2 + 1 Lorentz groupL(2, 1)
purely representation-theoretic way of finding the necis semisimple, withH>(L(2,1),U(1)) = 7 (L(2,1))* =
essary generalization proceeds as follows. Assume firgj(1) = {0 = 6 < 27}, there do exist PURs of the + 1
that C = G and consider the regular representationPoincaré group having any real “Lorentz helicity” [6].
of G, L*(G X 3(G)) = H, on which G acts unitar- The corresponding free fields may legitimately be termed
ily by (U@, x) ") (", x") = ¢((x.x) - (x'.x)) = anyonic fields and the parametér identified with an
P((x - X, 0(x,x")xx') where w is the X(G)-valued Abelian character of the braid group, for arbitrary n
2-cocycle definings, x,x" € G = C,andy, ' € 2(G). just as, in3 + 1 dimensions, the spin-statistics connec-
Decomposing.?(G X X(G)) by the characters aE(G), tion identifiesH2(L(3, 1), U(1))* = Z, with the Abeliani-
we haveH = o, 3, with every n occurring in the zation of the permutation groug,/A, = Z,. (For a
sum. By the construction of;, each summandH,, is  study of PURs of the + 1 Galilei group and how they
a UR of G,. On a wave functiony,, € 7{,, we have embed URs of SO(2), see [13]; for the reconciliation of
W(X’)lzfn(x, x) = (0, x/):h)(x, X) = ‘Zn(x’ x'™H the_ exist_ence of anyonic fields with the absence of any-
using the fact thato(1,x) = 1. We may then define a Onic particles, see [6].) . o
function ¢, € L2(G) by ¢, (x, x 1) = n(x) iy (x,1) = We turn now to the correct formulation of dynamics in
n(x)¥y(x). In particular,H, = L*(G). nontrivial sectors, in brief résumé ([6] has an extensive
Even whenC # G, the above construction can be treatment). Itis most easily done, once again{or= G,
shown to be essentially correct: There exist functiondVith G a Lie group, assumed simply connected so that
w: G X C — 3(G) satisfying w(1,x) =1 such that the S_S structure is purely.alg.e.braic:. Th{é().}, a basis
G is unitarily represented i = L2(C x 3(G)) by for Lie G, has the dual significance of being both the
Uz, x)'9) (x, x) = §(g - x,w(g,x)xx"). Thus the cqnserved charges and _the.generallz_ed velocities. In the
wave functions inZH, form the subspace of the space trivial PUR U, of G, the kinetic energy is then an operator

of “sections of a3(G)-bundle overC” transforming by 10 = dij Uo(X:) Uo(X;) where d is a real symmetric
the charactem of 3(G). [The geometric nomenclature (so that To is self-aQJomt) nondege_nerat'e (there being
does not exclude the possibility 6, G, or 3(G) being NO constraints) matrix. _We may writh simply as the
discrete.] If one insists on thinking @f as a function of ~€lement;;X;X; of the universal enveloping algebita(G)
C, it is necessarily multivalued except fgr = 0. of Lie G and simultaneously identify it—since, by the
WhenG is indeed a (connected) Lie group, these genSymmetry ofd, X; andX; commute insidel, —with the
eral considerations can be reexpressed in more famiflassical kinetic energy. The matrik must in addition
iar terms. First, it is possible to defifg?(G,U(1)) in  be such thafT,, X;] = 0. By virtue of the Heisenberg
a way consistent with the algebraic theory so far in-€quation of motion, which is no more than the definition
voked such that, for every n and G are themselves of the Hamiltonian as the generator of time translations
Lie groups to which every continuous PUR of lits  (for the effect of adding a potential energy, see below),
as a continuous UR (for a simple and elegant accounthis condition expresses simultaneously theénvariance
see [7]). If G is also simply connectedd?(G,U(1))  ©Of 7o and the conservation of the chardes}. _ _
is canonically isomorphic to the Lie algebra cohomol- _ For 7 # 0, {X;} form only a vector space basis of Lie
ogy H%(Lie G,R) [4,7,10]. The SS structure is then G- Nevertheless, symmetric polynomials, in particular,
of strictly algebraic origin, independent of the topol- 7o, belong toU(G,) and can be algebraically manipu-
ogy of C. On the other hand, for a semisimpe, lated inU(G,) by defining the commutatdi;, X;], =
H*(Lie G,R) = 0 while H%(G,U(1)) = m(G)* [7]; so, [Xi,X;]lo + T';; where[, ], is the Lie bracket of Li&5 and
by duality, 3(G) = 7,(G) andG is the universal cover- FZ]’ and the central charges are the values of the Lie alge-

ing groupG. The SS structure then comes solely frombra 2-cocylel'” on pairs(X;, X;). An easy computation
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gives[Ty, X1, = —2I'"dX = a,X for any X € Lie G. s, of course, noE(2),, invariant forn # 0 and the anom-
The “anomaly’«,, is a linear operator on Li& as a vec- aly equation has the solutiay = 29J € Lie E(2) (J is
tor space which is zero if and only 7 is a cobound- the angular momentum), giving, = P;P; + 2nJ. The
ary. Thus the charges appear not to be conserved ikesulting equation of motion is then the Lorentz force equa-
time derivatives are computed i#/,, » # 0, using the tion for a particle of charge in a uniform magnetic field
G-invariant Hamiltonian ofH,. More pertinently,Ty is B = n/e. In fact, the entire Landau theory follows just
notG,, invariant—the anomaly reflects a mismatch of secfrom the symmetry (and without having to invoke a vector
tors. The correct Hamiltonian is given &y, = Ty + t,,  potential) [14,16]. The method can be readily adapted to
wherer,, is an element of Li& solving the anomaly equa- deal with discrete groups (periodic potentials) and/or dis-
tion [#,,X] = a,X, which just expresses th&, invari- crete configuration spaces (lattice§),= G = 72 [14],
ance ofT,,. (See [6] for details and the example below for C = R?, G = Z* [16].
illustration.) In conclusion, the relationship between constant mag-

To round off, here are some miscellaneous remarksetic filed problems and PURs of translation groups has
on dynamics. Adding a potential enerdy only re- a natural generalization covering Poincaré-invariant quan-
quires G to be replaced by its subgroup leavifgin-  tum U(1)-gauge field theory. The key to this lies in the
variant. The restrictioil = G can also be quite easily localizability property of certain (nontachyonic) PURs of
removed. (Topological SS structure requires more work.P(3, 1) [17], taking account of which requires a generali-
Discrete systems are amenable to the same general przation of the cohomological machinery used here. This as
cedure, keeping in mind that the Hamiltonian is then awell as a more general consideration of relativistic sym-
(nonunique) element of the group algebra{14]. metries will be taken up elsewhere.

With the evidence in hand, we are in a position to state
the general postulate:
. A constraint-fr_ee quantum system is specified by giV- .o tronic address: ppd@smi.ernet.in
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{125-[,,, n € H*(G,U(1))} where H,, is the subspace of (Dover edition of the English translation).
H = L2(C X H*(G,U(1))") on which the UR of the [3] E.P. Wigner,Group Theory and its Applications to the
universal central exter;siof? of G carried by it restricts ggim;lg‘sg'\;'e(?ha”'cs of Atomic Speci@cademic, New
as the charactem of H*(G,U(1))* C center G. Ry Bér manh Ann. Maths9. 1 (1954

All the phenomena treated In the main part of the paper{s% P.A. Mq Dirac’, Principles of buéntum)Mechani¢§laren-
follow from this postulate. It is unambiguous, expressed

. ! . don Press, Oxford, 1958).
in terms of well-defined physical concepts (namely, [6] P.P. Divakaran, Rev. Math. Phy8, 167 (1994).

andC) [15], and the consequences can be explored with[7] M. S. Raghunathan, Rev. Math. Phys.207 (1994).

clarity and precision. [8] S. Doplicher, R. Haag, and J. E. Roberts, Commun. Math.
As an example, consider the Euclidean-invariant mo- Phys.23, 199 (1971), and subsequent papers.

tion of a particle of mass= % in the planeC = R2,G = [9] A.S. Wightman, Nuovo Cimental10B, 751 (1995); see

E(2) = SO(2)XR?, the semidirect product of the rotation also R. Haaglocal Quantum Physic¢Springer-Verlag,

and translation groups. We have [4B}(E(2), U(1)) = Berlin, 1996), 2nd ed.

22 o . [10] V.S. VaradarajanGeometry of Quantum TheorfvVan
H*(R% U(1)) = R; equivalence classes of PURs/o2), Nostrand Reinhold, New York, 1970), Vol. II.

labeled by a real numben, are in one-to-one COMe- 1) ¢ wjilczek, Phys. Rev. Lettd8, 1144 (1982). The
spondence with those dk” and the central extensions statistics of anyons [J. M. Leinaas and J. Myrheim, Nuovo

are E£(2), = SOR2)XR?. The trivial sector accommo- Cimento.37B, 1 (1977); G.A. Goldin, R. Menikoff, and
dates the quantum mechanics of the free particle. The D.H. Sharp, J. Math. Phys. (N.Y32, 1664 (1981)] is
SS structure is purely algebraic. Fgr+# 0, the Heisen- not directly in question here, and a treatment of identical
berg groupﬁ?n is obtained by exponentiating its Lie al- particles from our viewpoint will be worthwhile. These
gebra[P;,P;] = ine;; of momenta (the generators of authors identify the possible statistics (in two dimensions)

space translations) and has a unique (up to equivalence) with the inequiva_lent Abelian URs of the fun_damental
irreducible UR. It can then be shown [14] that irre- ~ 9roup of the configuration space, properly defined; more

ducible URs ofE(2),, form a se{H,, ;, j € Z} in which
HH,.; for every j is the irreducible UR ofR? up to a

j-dependent equivalence whejeis the maximum an-

gular momentum in#{, ;. For eachn, the n sec-
tor is H, = L*(R?), having the decompositiotH,, =
®;H, ;. TheE(2)-invariant free Hamiltoniay = P;P;
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fundamentally, Goldinet al.show that this group is
the subgroup fixing an orbit of the diffeomorphism
group of the configuration space [see Goldin’s review in
Classical and Quantum Systeneslited by H. D. Doebner,
W. Scherer, and F. Schroeck (World Scientific, Singapore,
1993), p. 48]. It is not evident, and possibly not true,
that this is a group of symmetries in our sense. Our
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observation on “spin anyons” is meant mainly to highlight algebraic method to particle quantum mechanics. Despite
the physical consequences of the distinction between the its emphasis on the configuration space and groups
universal central extension and the universal cover. acting (transitively) on it, it has not much in common
[12] That is may be misleading to work with the Lie algebra of with our work, either in the basic hypothesis or in its
SO(2) was noted by R. Jackiw and A.N. Redlich, Phys. implementation.
Rev. Lett.50, 555 (1983). [16] P.P. Divakaran and A. K. Rajagopal, Int. J. Mod. Phys. B
[13] S.K. Bose, Commun. Math. Phy%69, 385 (1995). 9, 261 (1995).
[14] P.P. Divakaran, “Discrete Heisenberg Groups in the[17] A.S. Wightman, Rev. Mod. Phys34, 845 (1962), fol-
Theory of the Lattice Peierls Electron” (to be published). lowing up on T.D. Newton and E.P. Wigner, Rev. Mod.
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Rev. Math. Phys2, 45 (1990), on an adaptation of the
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