
PHYSICAL REVIEW

LETTERS

VOLUME 79 22 SEPTEMBER 1997 NUMBER 12

space
ns

d
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It is proposed that an unconstrained quantum system is completely specified by its configuration
C and its group of symmetriesG. It is then shown that the theory of projective unitary representatio
of G on a certain Hilbert space determined byC and G leads to a definitive resolution of suppose
ambiguities relating to superselection rules, choice of wave functions, topological properties ofG and
C , anomalies, etc. [S0031-9007(97)04114-8]
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The word quantization generally signifies a procedu
which starts with a classical description of a dynamic
system and seeks its exact quantum generalization. In
most practical form, Schrödinger quantization, it consis
in taking the state spaceH to be a Hilbert space of square
integrable complex functions on the configuration man
fold C and the observables to be self-adjoint operators
H determined, by some prescription, from real functio
of the local coordinates ofC and their time derivatives
(functions on the tangent bundle ofC ). From time to
time, this procedure has been found not to result in a su
ciently detailed or accurate description of quantum ph
nomena, or to reflect certain perceived subtleties of t
classical description, andad hocmodifications prescribed
accordingly. Examples which come to mind include th
occurrence and origin of superselection (SS) rules, the
alization of SS sectors as spaces of (multivalued) wa
functions, the fixing of boundary conditions, the interpr
tation and treatment of anomalies, the role of the topolo
of C , and the use of the universal covering groups (equiv
lently, the Lie algebras) of Lie groups of symmetries, et
These or similar ambiguities affect other quantization pr
cedures—e.g., canonical quantization (and its modern r
orous version, geometric quantization) and path-integ
methods—as well.

Logically, it should cause no surprise that any approa
to defining the fundamental principles governing the exa
(quantum) reality starting from an approximate (classic
description might require occasional tinkering. Equall
such a procedure is necessarily of tentative validity,
0031-9007y97y79(12)y2159(5)$10.00
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be replaced ultimately by a formulation using exclusive
concepts and methods appropriate to quantum phys
Such an autonomous formulation of the general princip
of quantum theory is put forward and justified in thi
Letter.

There already exists a full fledged program of a strict
quantum formulation of quantum theory of great gener
ity: the algebraic quantum theory based on an axiomati
tion of the notion of observables [1] due to Haag and h
collaborators. The present proposal is less ambitious in
scope and very different in technical detail. The key ro
here is played by the symmetry groupG of a given system
(G forms part of the “data” defining the system). How t
proceed from the knowledge ofG to a complete working
out of quantum kinematics and dynamics is first concise
described below in an inductive manner and finally fo
mulated as a precise postulate. This order of presenta
serves well as a guide to the physical motivation as w
as to show that, technically, little needs to be added to
existing body of the quantum theory of symmetry. Th
theoretical framework that emerges, being very concr
and system specific, will be seen to provide clear answ
to the sort of problems raised in the introductory paragrap
Though it does not encompass the very broad horizons
the theory of observables, it is general enough to han
any properly specified system. The present account, ho
ever, confines itself to unconstrained nonrelativistic sy
tems, postponing a treatment of the generalization requi
to deal with relativistic quantum fields, including gaug
fields and the concomitant constraints, to a sequel.
© 1997 The American Physical Society 2159
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The foundations of the theory of quantum symmetrie
were laid in the work of Weyl [2], Wigner [3], and
Bargmann [4]. This will be our starting point. Given
that a state of a system is a ray of some complex Hilb
spaceH (as follows from the superposition principle
[5]), a symmetry of the system is a one-to-one ma
of the projective spacePH into itself fixing absolute
values of scalar products inH [3]. From Wigner’s
theorem, any group of symmetries is represented inH by
a projective unitary representation (PUR). (We disrega
circumstances leading to antiunitary representations.) T
first task is thus to classify the PURs of the groupG 
hg, h, . . .j of all symmetries of the system, called simpl
the symmetry group from now on.

A PUR U of G satisfiesUsgd Ushd  gsg, hd Usghd,
whereg is a U(1)-valued function onG 3 G subject to
the conditionsgsgh, kd gsg, hd  gsg, hkd gsh, kd and
gsg, 1d  gs1, gd  1, in other words, a 2-cocycle. If
g is such thatgsg, hd  bsgdbshdbsghd21 for some
functionb on G, it is a coboundary and the correspondin
PUR is unitary equivalent to a UR. Hence PURs fall int
equivalence classes labeled by the elements of the quot
of the Abelian group of 2-cocycles by its subgroup o
coboundaries,Z2sssG, Us1ddddyB2sssG, Us1dddd  H2sssG, Us1dddd,
the second cohomology group ofG with coefficients in
U(1). H2sssG, Us1dddd also classifies (equivalence classes o
central extensions ofG by U(1), i.e., groupsG̃ having
U(1) as a central subgroup such thatG̃yUs1d  G. The
direct productG 3 Us1d is the trivial central extension
and is the only extension havingG as a subgroup. An
extensionG̃h corresponding toh [ H2sssG, Us1dddd can be
given concretely as the group of pairssg, ad for the group
law sg, ad sh, bd  sssgh, gsg, hdabddd, a, b [ Us1d, for any
representative cocycleg in the class ofh. It follows that
if Ũ is a UR of G̃h such that its restriction to the U(1)
subgroup is the natural characterŨsad  a, Ũ satisfies
Ũsg, 1d Ũsh, 1d  gsg, hd Ũsgh, 1d; i.e., the restriction of
Ũ to the subset ofG of G̃h, Ũsg, 1d ; Usgd, gives a PUR
corresponding toh. The converse is also true: Every
PUR ofG lifts to a UR of some central extension ofG by
U(1) with the property that it restricts to the central U(1
as the natural UR. Thus the determination of all PURs
G is reduced to the determination of URs, restricting
U(1) naturally (this property is henceforth understood
of G̃h for everyh. In particular, ifH2sssG, Us1dddd  0, G
has only trivial extensions and all its PURs are URs (
trivial PURs).

From these well-known facts (for a systematic rece
account, see [6]), significant conclusions can already
drawn. If H 1

h and H 2
h for a fixed h carry URs of

G̃h , then obviously so doesH 1
h © H 2

h ; if every vector
in H 1

h and H 2
h represent states of a system with sym

metry groupG, the superposition principle holds withou
restriction in H 1

h © H 2
h . But for h1 fi h2, the linear

superposition ch1 ch1 1 ch2 ch2 [ Hh1 © Hh2 trans-
forms projective unitarily underG only if ch1  0 or
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ch2  0. (This is almost evident; for the elementary proo
see [6].) Such a vector cannot represent a state sincG
must act projective unitarily on all states. A superselecti
rule separates the sectorshPHhj, and there is no linear
space containingall states as rays andall of whose rays
are states.

There is a powerful general method of dealing simult
neously with all SS sectors,via the notion of the universal
central extension̂G of G. Ĝ is a group from which there
is a homomorphismwh : Ĝ ! G̃h for every h such that
a UR of G̃h , on composing withwh, lifts to a UR of Ĝ;
so every sector ofG is in some UR ofĜ [7]. For groups
of interest to us,̂G is a unique nontrivial central extension
of G by the groupSsGd  H2sssG, Us1ddddp, the Pontryagin
dual (the group of characters) ofH2sssG, Us1dddd. (For the
general theory, see [7].)

A UR Ĥ of Ĝ can be decomposed as a direct su
of subspaceshHhj corresponding to the charactersh

of SsGd; h is indeed an element ofH2sssG, Us1dddd since,
by Pontryagin duality,SsGdp  H2sssG, Us1dddd. In other
words,SsGd decomposesĤ into SS sectors and the stat
space is a familyhPHhj, exactly as required.

The (Abelian) “superselection group”SsGd plays a
primordial role in all our considerations.

SinceSsGd acts on all ofHh by the same character
it commutes with all operators mappingHh into itself.
Defining an observable to be any self-adjoint opera
mapping states into states as required by the axiom
demand [5] that an observation causes a transition
a state, it must necessarily map each sector into its
(otherwise its eigenvectors will span more than o
sector and cannot represent states) and so commute
SsGd. Thus the SS structure, determined solely byG,
decides which operators are observables. The direct
of implications here is the reverse of that in algebra
quantum theory in which, in a wider context, SS secto
are obtained as certain special inequivalent representat
of the observable algebra [8]. (For the current status a
for a complete bibliography of the subject, see [9].)

Which specific URs ofhG̃hj—the irreducible URs and
their multiplicities—constitute the sectors of the sta
space of a system? Equivalently, which UR ofĜ is to
be chosen asĤ ? The answer suggested by the succe
of the simplest version of Schrödinger quantization is t
space of wave functions. We are led to assume theref
that the system is specified by, besidesG, a second datum,
the configuration spaceC , and thatG acts onC as a
transformation group. (C , as the set of all “positions” of
a system, is a legitimate concept in the quantum conte
Suppose to begin with thatH2sssG, Us1dddd  0. Schrödinger
quantization then identifies the state spaceH0 with L2sC d,
the space of complex functionsc on C square integrable
with respect to aG-invariant measure. G has a UR
on L2sC d given by sssUsgdcddd sxd  csg21 ? xd. In this
generality (accommodating the possibility ofG, or both
G and C , being discrete), the decomposition ofL2sC d
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into irreducibles may not always be easy though fu
determined in principle. An especially easy situati
occurs whenG is a compact Lie group andC is the
manifold of G on which G acts by left translation.H0
is then the regular representationL2sGd containing every
irreducible UR with multiplicity equal to dimension (Pete
Weyl theorem).

For nontrivial sectors this procedure is inadequa
In general, the only action of̃Gh on C that will pass
to the given action of the quotient groupG is the trivi-
ally extended one in which U(1) fixes all points ofC ,
ax  x implying Ũs1, adc  c. This contradicts the
requirement of natural central character,Ũs1, adc  ac ;
so wave “functions” cannot be functions onC . A
purely representation-theoretic way of finding the ne
essary generalization proceeds as follows. Assume
that C  G and consider the regular representati
of Ĝ, L2sssG 3 SsGdddd  Ĥ , on which Ĝ acts unitar-
ily by sssÛsx, xd21ĉddd sx0, x 0d  ĉssssx, xd ? sx0, x 0dddd 
ĉssssx ? x0, vsx, x0dxx 0ddd where v is the SsGd-valued
2-cocycle defininĝG, x, x0 [ G  C , andx, x 0 [ SsGd.
DecomposingL2sssG 3 SsGdddd by the characters ofSsGd,
we haveĤ  ©hHh with every h occurring in the
sum. By the construction of̂G, each summandHh is
a UR of G̃h . On a wave functionĉh [ Hh, we have
h sx 0dĉhsx, xd  sssÛs1, x 0dĉhddd sx, xd  ĉhsx, xx 021d
using the fact thatvs1, xd  1. We may then define a
function ch [ L2sGd by ĉhsx, x21d  hsxdĉhsx, 1d ;
hsxdchsxd. In particular,H0  L2sGd.

Even whenC fi G, the above construction can b
shown to be essentially correct: There exist functio
v: G 3 C ! SsGd satisfying vs1, xd  1 such that
Ĝ is unitarily represented inĤ  L2sssC 3 SsGdddd by
sssÛsg, xd21ĉddd sx, x 0d  ĉsssg ? x, vsg, xdxx 0ddd. Thus the
wave functions inHh form the subspace of the spac
of “sections of aSsGd-bundle overC ” transforming by
the characterh of SsGd. [The geometric nomenclatur
does not exclude the possibility ofC , G, or SsGd being
discrete.] If one insists on thinking of̂c as a function of
C , it is necessarily multivalued except forh  0.

WhenG is indeed a (connected) Lie group, these ge
eral considerations can be reexpressed in more fa
iar terms. First, it is possible to defineH2sssG, Us1dddd in
a way consistent with the algebraic theory so far
voked such thatG̃h for every h and Ĝ are themselves
Lie groups to which every continuous PUR ofG lifts
as a continuous UR (for a simple and elegant accou
see [7]). If G is also simply connected,H2sssG, Us1dddd
is canonically isomorphic to the Lie algebra cohomo
ogy H2sLie G, Rd [4,7,10]. The SS structure is the
of strictly algebraic origin, independent of the topo
ogy of C . On the other hand, for a semisimpleG,
H2sLie G, Rd  0 while H2sssG, Us1dddd  p1sGdp [7]; so,
by duality, SsGd  p1sGd and Ĝ is the universal cover-
ing groupG. The SS structure then comes solely fro
y
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the topology ofG. (The topology ofC is always irrel-
evant.) It is therefore permissible to replaceG by G (or
Lie G) only if G is semisimple and, even then, only o
imposing the SS structure and all its consequences.
instance, the rotation group is SO(3), not SUs2d  SÔs3d,
and a rotation-invariant system will have URs of SU(2
in Ĥ , but subject to the action of the univalence S
group SsssSOs3dddd  p1sssSOs3dddd  Z2. A nonsemisimple
example is SO(2):p1sssSOs2dddd  Z has nothing to do with
SsssSOs2dddd, which vanishes [4,6]. SO(2) has no PUR
other than URs, implying that angular momentum
R2 is integral and ruling out the existence of anyon
(defined as particle states having arbitrary real sp
[11,12]). However, since the2 1 1 Lorentz groupLs2, 1d
is semisimple, withH2sssLs2, 1d, Us1dddd  p1sssLs2, 1ddddp 
Us1d  h0 # u , 2pj, there do exist PURs of the2 1 1
Poincaré group having any real “Lorentz helicity” [6]
The corresponding free fields may legitimately be term
anyonic fields and the parameteru identified with an
Abelian character of the braid groupBn for arbitrary n
just as, in3 1 1 dimensions, the spin-statistics conne
tion identifiesH2sssLs3, 1d, Us1ddddp  Z2 with the Abeliani-
zation of the permutation group,SnyAn  Z2. (For a
study of PURs of the2 1 1 Galilei group and how they
embed URs of SO(2), see [13]; for the reconciliation
the existence of anyonic fields with the absence of an
onic particles, see [6].)

We turn now to the correct formulation of dynamics i
nontrivial sectors, in brief résumé ([6] has an extensi
treatment). It is most easily done, once again, forC  G,
with G a Lie group, assumed simply connected so th
the SS structure is purely algebraic. ThenhXij, a basis
for Lie G, has the dual significance of being both th
conserved charges and the generalized velocities. In
trivial PUR U0 of G, the kinetic energy is then an operato
T0  dij U0sXid U0sXjd where d is a real symmetric
(so that T0 is self-adjoint) nondegenerate (there bein
no constraints) matrix. We may writeT0 simply as the
elementdijXiXj of the universal enveloping algebraUsGd
of Lie G and simultaneously identify it—since, by the
symmetry ofd, Xi andXj commute insideT0 —with the
classical kinetic energy. The matrixd must in addition
be such thatfT0, Xig  0. By virtue of the Heisenberg
equation of motion, which is no more than the definitio
of the Hamiltonian as the generator of time translatio
(for the effect of adding a potential energy, see below
this condition expresses simultaneously theG invariance
of T0 and the conservation of the chargeshXij.

For h fi 0, hXij form only a vector space basis of Lie
G̃h. Nevertheless, symmetric polynomials, in particula
T0, belong toU sG̃hd and can be algebraically manipu
lated inUsG̃hd by defining the commutatorfXi , Xjgh 
fXi , Xjg0 1 G

h
ij wheref , g0 is the Lie bracket of LieG and

G
h
ij , and the central charges are the values of the Lie al

bra 2-cocyleGh on pairssXi , Xjd. An easy computation
2161
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gives fT0, Xgh  22GhdX ; ahX for any X [ Lie G.
The “anomaly”ah is a linear operator on LieG as a vec-
tor space which is zero if and only ifGh is a cobound-
ary. Thus the charges appear not to be conserved
time derivatives are computed inHh, h fi 0, using the
G-invariant Hamiltonian ofH0. More pertinently,T0 is
not G̃h invariant—the anomaly reflects a mismatch of se
tors. The correct Hamiltonian is given byTh  T0 1 th ,
whereth is an element of LieG solving the anomaly equa-
tion fth , Xg  ahX, which just expresses thẽGh invari-
ance ofTh. (See [6] for details and the example below fo
illustration.)

To round off, here are some miscellaneous rema
on dynamics. Adding a potential energyV only re-
quires G to be replaced by its subgroup leavingV in-
variant. The restrictionC  G can also be quite easily
removed. (Topological SS structure requires more wor
Discrete systems are amenable to the same general
cedure, keeping in mind that the Hamiltonian is then
(nonunique) element of the group algebra ofG [14].

With the evidence in hand, we are in a position to sta
the general postulate:

A constraint-free quantum system is specified by g
ing a configuration spaceC and a group of symme-
tries G acting on C as a transformation group. Its
state space is the family of projective Hilbert spac
hPHh , h [ H2sssG, Us1ddddj whereHh is the subspace of

Ĥ  L2sC 3 H2sssG, Us1ddddpd on which the UR of the
universal central extension̂G of G carried by it restricts
as the characterh of H2sssG, Us1ddddp , center Ĝ.

All the phenomena treated in the main part of the pap
follow from this postulate. It is unambiguous, express
in terms of well-defined physical concepts (namely,G,
andC ) [15], and the consequences can be explored w
clarity and precision.

As an example, consider the Euclidean-invariant m
tion of a particle of mass 1

2 in the plane:C  R2, G 
Es2d ; SOs2d $3R2, the semidirect product of the rotation
and translation groups. We have [4,6]H2sssEs2d, Us1dddd 
H2sssR2, Us1dddd  R; equivalence classes of PURs ofEs2d,
labeled by a real numberh, are in one-to-one corre-
spondence with those ofR2 and the central extensions
are Ẽs2dh  SOs2d $3R̃2

h. The trivial sector accommo-
dates the quantum mechanics of the free particle. T
SS structure is purely algebraic. Forh fi 0, the Heisen-
berg groupR̃2

h is obtained by exponentiating its Lie al
gebra fPi , Pjg  ih´ij of momenta (the generators o
space translations) and has a unique (up to equivalen
irreducible UR. It can then be shown [14] that irre
ducible URs ofẼs2dh form a sethHh,j , j [ Zj in which
Hh,j for every j is the irreducible UR ofR̃2

h up to a
j-dependent equivalence wherej is the maximum an-
gular momentum inHh,j. For eachh, the h sec-
tor is Hh  L2sR2d, having the decompositionHh 
©jHh,j. TheEs2d-invariant free HamiltonianT0  PiPi
2162
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is, of course, not̃Es2dh invariant forh fi 0 and the anom-
aly equation has the solutionth  2hJ [ Lie Es2d (J is
the angular momentum), givingTh  PiPi 1 2hJ. The
resulting equation of motion is then the Lorentz force equa
tion for a particle of chargee in a uniform magnetic field
B  hye. In fact, the entire Landau theory follows just
from the symmetry (and without having to invoke a vecto
potential) [14,16]. The method can be readily adapted
deal with discrete groups (periodic potentials) and/or dis
crete configuration spaces (lattices),C  G  Z2 [14],
C  R2, G  Z2 [16].

In conclusion, the relationship between constant ma
netic filed problems and PURs of translation groups ha
a natural generalization covering Poincaré-invariant qua
tum U(1)-gauge field theory. The key to this lies in the
localizability property of certain (nontachyonic) PURs o
Ps3, 1d [17], taking account of which requires a generali
zation of the cohomological machinery used here. This
well as a more general consideration of relativistic sym
metries will be taken up elsewhere.
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