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We present quantum cloning machines that transformN identical qubits intoM . N identical copies
and we prove that the fidelity (quality) of these copies is optimal. The connection between cloning and
measurement is discussed in detail. When the number of clonesM tends towards infinity, the fidelity of
each clone tends towards the optimal fidelity that can be obtained by a measurement on the input qubi
More generally, quantum cloning machines are universal devices to translate quantum information int
classical information. [S0031-9007(97)03916-1]
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Quantum cloning machines (QCM) act on an unknow
quantum state and make one, or more, copies of it. T
superposition principle of quantum mechanics prohibi
the copies from being perfect [1,2]. This basic result
maybe the most fundamental difference between classi
and quantum information theory, and QCM therefore prob
in a detailed way the structure of quantum information
For example, theU1,2, QCM makes two copies of one qubit
(i.e., of a spin1

2 state) with a fidelity independent of the
state of the input qubit [3]. Other recent related work ha
been concerned with deriving inequalities governing th
quality of QCM [4], and in applying QCM to concrete
problems such as eavesdropping in quantum cryptograp
[5], quantum entanglement [5–7], and building quantu
computer networks to realize QCM [8].

A conceptually simple cloning machine, which we sha
call the classical copying machine (CCM), is obtained b
making a measurement on the input state. The (classic
result of the measurement is then used to make an arbitr
numberM of identical copies. Such a copying machin
only makes use of the information about the input sta
that is available through measurement. It is therefore le
efficient than the QCM’s proper. Indeed the most gener
QCM consists of theN input qubits all in the same state
the M 2 N blank copies all in the same neutral state
and an eventual ancilla, which evolve unitarily into a
(entangled) state of theM clones and the ancilla. For
any finite numberM of copies, these QCM make bette
copies than the CCM. But in the limitM ! `, the quality
of the two copying machines are equal. This shows th
not only do QCM necessarily make imperfect copies, b
that information is necessarily diluted during the copyin
process, since whenM is large the copies contain no more
information than that which is available classically. Not
that the quantum information has not disappeared, b
is hidden in the correlations between the copies and t
ancilla.

In this article, for simplicity, we concentrate on QCM
that transform one qubit intoM identical copies, though
many results are also stated for an arbitrary numberN of
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input qubits. WhenN ­ 1 andM ­ 2 our QCM reduces
to the QCM of Bǔzek and Hillery [3]. Furthermore we
prove that these QCM are optimal, i.e., that no other QC
can make better copies. We use this result to make prec
the above discussion relating cloning and measurement

The input state of our QCM is a qubitjcl ­ cosuy
2j "l 1 eif sinuy2j #l. Thea priori probability distribu-
tion of the polarization directionc is uniform over the
Poincaré sphere. We measure the quality of the cop
by their fidelityF , i.e., the mean overlap between any o
the copies (they are all identical) and the input state,

F ­
Z

dV kcjroutjcl , (1)

where
R

dV ­
R2p

0 df
Rp

0 du sinuy4p , and rout is the
reduced density matrix of one of the copies.

The U1,M QCM is described by the following unitary
operator:

U1,M j "l ≠ R ­
M21X
j­0

ajjsM 2 jd ", j #l ≠ Rj ,

U1,M j #l ≠ R ­
M21X
j­0

aM212j

(2)
3 jsM 2 1 2 jd ", s j 1 1d #l ≠ Rj ,

aj ­

s
2sM 2 jd
MsM 1 1d

,

whereR denotes the initial state of the copy machine an
the M 2 1 blank copies,Rj are orthogonal normalized
internal states of the QCM, and we have denotedjM 2

jc , jc'l the symmetric and normalized state withM 2

j qubits in the statec and j qubits in the orthogonal
statec'.

A somewhat lengthy computation involving combina
torial series shows that this unitary operator acts on
arbitrary input statec as follows:

U1,M jcl ≠ R ­
M21X
j­0

ajjsM 2 jdc, jc'l ≠ Rjscd , (3)
© 1997 The American Physical Society 2153
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where Rjscd represents the internal state of our QCM
with Rjscd'Rkscd for all j fi k. In order to give a
synthetic expression forRjscd, let us introduce the qubits
cp ­ cosuy2j "pl 1 e2if sinuy2j #pl which transforms
under rotations as the complex conjugate representat
If we formally identify the internal states of the QCM
Rj with the statesRj ­ jsM 2 1 2 jd "p, j #pl, then the
statesRjscd are succinctly expressed asRjscd ­ jsM 2

1 2 jdcp, jscpd'l.
The density matrix describing the output qubits is th

same for all copies, and has the formrout ­ F jcl kcj 1

s1 2 F d jc'l kc'j. To calculate the fidelityF we first
note thata2

j is the probability that there arej errors among
the M output copies. Then, concentrating on the fir
output qubit, we have

F1,M ­
M21X
j­0

Probs j errors in theM 2 1 last qubitsd

­
M21X
j­0

M 2 j
M

a2
j ­

2M 1 1
3M

,

(4)

where M2j
M is the ratio of the number of ways to choos

j errors amongM 2 1 qubits over the number of ways
to choosej errors among M qubits. Note that since th
possible final states of the QCM are orthogonal, one c
know whether the copy process went through without err
or not. However, this requiresa priori knowledge of the
initial state, since the two possible final states of the QC
depend on it. If one does not have anya priori knowledge
about the initial state (and this is what we assume), th
it is impossible to learn by making a measurement on t
QCM whether or not the cloning has succeeded.

We have also constructed a more general QCM th
takesN identical input qubit intoM identical copies. It
is described by

UN ,M jNcl ­
M2NX
j­0

ajjsM 2 jdc , jc'l ≠ Rjscd,

aj ­

s
N 1 1
M 1 1

s
sM 2 Nd! sM 2 jd!
sM 2 N 2 jd! M!

,

(5)

wherejNcl is the input state consisting ofN spins all in
the statec, and the other notations are as above. No
that the numberj of errors in the copies is smaller or equa
to the numberM 2 N of additional qubits. The fidelity
of each output qubit is

FN ,M ­
M21X
j­0

M 2 j
M

a2
j ­

MsN 1 1d 1 N
MsN 1 2d

. (6)

The N to N 1 1 cloning machine is particularly simple
since the right-hand side in Eq. (5) contains only tw
terms. In this case the fidelityFN ,N11 ­

N213N11
N213N12 tends

rapidly towards 1 asN grows, corresponding to the fac
that the input state is quasiclassical.
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The fidelity FN ,M of these QCM (5) tends toN 1

1yN 1 2 for largeM which is the optimal fidelity achiev-
able by carrying out a measurement onN identical qubits
[9,10]. This suggests that the QCM tends towards th
CCM asM increases. We now prove that this is indee
the case. Let us first consider the caseN ­ 1. In [10]
it was shown that an optimal measurement on a sing
qubit is simply a Stern Gerlach measurement that is a pr
jection onto two (randomly chosen) orthogonal statesjfl
andjf'l. The corresponding CCM consists of makingM
copies of thef state (jMfl) if the outcome of the measure-
ment isf, andM copies of thef' state (jMf'l) if the
outcome of the measurement isf'. The density matrix
describing theM copies, averaged over the orientations o
the measuring basisjfl, is

rCCM ­
Z

dVf jkcjflj2PjMcl

1 jkcjf'lj2PjMf'l , (7)

where the first factor is the probability to have outcomef

(f'), andPjMfl (PjMf'l) is the projector onto the state
jMfl (jMf'l). In order to compare the CCM to the
QCM, we expressrCCM in the basisc , c' to obtain

rCCM ­
MX

s­0

2sM 1 1 2 sd
sM 1 1d sM 1 2d

PjsM2sdc ,sc'l . (8)

It is then easy to show that the QCM tends towards th
CCM asM increases. For instance, one has TrfrQCM 2

rCCMg2 . M23. Other measures of the “distance” be
tweenrCCM andrQCM similarly decrease asM increases.
A more complicated procedure, based on the coveria
measurements of [9], see also [10], show that for an a
bitrary numberN of input qubits

rCCM ­ sN 1 1d
MX

s­0

M! sM 1 N 2 sd!
sM 1 N 2 sd! sM 2 sd!

3 PjsM2sdc ,sc'l

and TrfrQCM 2 rCCMg2 . N4M23. Thus when the num-
ber of copiesM increases, the QCM tends towards th
CCM. Conversely one can consider QCM as measurin
devices. Indeed, givenN qubits all in the same unknown
statec, one can either make a coherent measurement
all N qubits, or equivalently use the QCM to produce
very large numberM of clones and then do separable
measurements on the clones. Indeed, since for largeM,
rQCM is a mixture of product states of the formjM 3 fl it
suffices to measure them with a classical polarimeter. T
fidelity of these two ways of gaining information abou
c are equal. Hence the QCM can be considered as
universal device transforming quantum information int
classical information. This is illustrated in Fig. 1. Note
that in the first case all the difficulty for experiments lie
in the coherent measurement, whereas in the second c
all the difficulty is in the QCM.
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FIG. 1. Diagram of the flow of quantum information to
classical information.

We now prove that the QCM we have described a
optimal. For simplicity we consider the case where there
only one input qubit, but an arbitrary numberM of output
qubits. The idea of the calculation follows closely th
analysis of optimal measurements of [10]. We first expre
in full generality the average fidelityF of a quantum
cloning machine in terms of the final statejRjkl (see
below) of the machine. These final states are subject
the condition that the evolution is unitary. One must the
maximizeF subject to the unitarity conditions which are
introduced by using Lagrange multipliers. The proble
then reduces to an eigenvalue equation for a matrixA, and
the extremal value ofF is expressed in terms of the larges
eigenvalue of this matrix.

The most general QCM acts on the input qubits", # in
the following way:

j jl jRl ! jM 2 k ", k #l jRjkl, j ­", # , (9)

where jRl is the initial state of the QCM and the blank
copies,jRjkl are unnormalized final states of the ancilla
and we use a summation convention: repeated indices
summed over. Unitarity of the evolution imposes that

kRj0kjRjkl ­ dj0,j . (10)

Note that becausejM 2 k ", k #l is completely symmet-
ric, we have made the hypothesis that the output of t
QCM is completely symmetric. As discussed below, th
hypothesis can be dropped without affecting our concl
sions. Our task is to maximize the fidelity of this QCM
subject to the unitary constraints (10). The rotation
symmetry of the input qubits is exploited by expressin
an arbitrary input qubit as a SU(2) rotationOj0jsVd acting
on the " state, jcl ­ cosuy2 " 1eif sinuy2 #­ O"j j jl.
The evolution of an arbitrary input qubit is then

jcl jRl ­ O"jj jl jRl ! jcoutl

­ O"jjM 2 k ", k #l jRjkl . (11)

Because the output state is symmetric under permutatio
the fidelity of the copies is obtained by calculating th
overlap of the reduced density matrix of one copy, say t
first, with the input statejcl and averaging over the input
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states. One finds

F ­ TrfkcoutjO"i0 ji0l kijOp
"ijcoutlg i, i0 ­", #

­ kRj0k0 jRjkl
µZ

dV Op
"j0O"i0Op

"iO"j

∂
(12)

3 TrfkM 2 k0 ", k0 # j ji0l kij jM 2 k ", k #lg

­ kRj0k0 jRjklAj0 ,k0,j,k ,

where we have expressed everything in terms of the SU
rotation matrices and introduced the matrixAj0,k0 ,j,k which
plays an essential role in this calculation. Our problem
to maximizeF subject to the unitary constraints Eq. (10
We impose the unitary constraints by adding them v
Lagrange multiplierslj0j. Thus we must extremize

F ­ kRj0k0 jRjklAj0 ,k0,j,k

2 lj0jskRj0k0 jRjkldk0,k 2 dj0,jd , (13)

with respect to the final states of the QCMjRjkl and
the multiplierslj0j. It is, however, useful to consider a
simpler problem in which we impose only one constrain
namely, the trace of Eq. (10). Obviously the extrema
this reduced problem are greater or equal to the extre
of the full problem Eq. (13), and we will thus obtain an
upper bound on the fidelity of QCM. We shall show be
low that rotational symmetry implies that this upper boun
is attained by optimal QCM. Thus we have to extremiz

F ­ kRj0k0 jRjklAj0,k0,j,k

2 lskRj0k0 jRjkldk0,kdj0,j 2 2d . (14)

Varying with respect tokRj0k0 j (more properly one should
vary with respect to the components ofkRj0k0 j in a basis),
we obtain the equations

sAj0,k0,j,k 2 ldk0,kdj0,jd jRjkl ­ 0 . (15)

Thusl are the eigenvalues ofAj0,k0 ,j,k andjRjkl its eigen-
vectors. Suppose we have found a solutionl, jRjkl of
Eq. (15) and of the unitary constraints Eq. (10). The
multiplying Eq. (15) on the left bykRj0k0 j and summing
overj0, k0 yields

kRj0k0 jRjklAj0 ,k0,j,k ­ kRj0k0 jRjklldk0,kdj0,j ­ 2l , (16)

where the last equality follows from the constrain
Eq. (10). But the left-hand side is equal to the fidelityF

Eq. (12). So the maximal eigenvalue ofA is related to the
optimal fidelity of the QCM byF ­ 2lmax. It remains
to calculate the matrixA. After some algebra one finds
that it is block diagonalAj0,k0,j,k ­ dk2j,k02j0Bk1j,k01j0

with

B ­
1

6M

√
2M 2 K

p
sM 2 Kd sK 1 1dp

sM 2 Kd sK 1 1d M 1 K 1 1

!
,

(17)
2155
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whereK ­ k 2 j. The largest eigenvalue ofA is s2M 1

1dy6M corresponding to an upper bound on the optim
fidelity F # s2M 1 1dy3M. This bound is saturated
by the QCM Eq. (2) thereby proving that it is optimal
We have generalized this proof to show that the QC
Eq. (5) that transformN identical qubits into an arbitrary
numberM of copies are optimal. Our proof is at presen
only valid for N ­ 1, 2, . . . , 7, although we expect it
to generalize to arbitraryN. The difficulty whenN is
large is that the matrixB is N 1 1 3 N 1 1 and its
eigenvalues are correspondingly difficult to calculate.

Throughout this Letter we have considered QCM th
are symmetric in their output qubits. If we want to
generalize our results to QCM that are not symmetric, w
must adopt a more general definition of the fidelity of th
copies which we take to be the average fidelity of ea
copy. We will now show that there necessarily exist QC
that are optimal in this more general sense and symmet
Indeed, suppose one has constructed a (not necess
symmetric) optimal QCM. One can then build anothe
QCM which is identical to the proceeding one, except th
some of the output states have been permuted. This Q
is obviously also optimal because of the symmetry of th
definition of fidelity. If one takes a coherent superpositio
of these QCM, averaged over all possible permutations
the output qubits, one obtains still another optimal QCM
but which is symmetric in its output qubits.

One can similarly show that there necessarily exist op
mal QCM that are rotation invariant. Indeed suppose th
one has built a (not necessarily rotationally invariant) o
timal QCM. By rotating the whole apparatus one obtain
another optimal QCM. [This follows from the rotation in
variance of the definition of fidelity Eq. (1), which is av
eraged over all possible orientations of the input qubit
If one takes a coherent superposition of these QCM, a
eraged over the orientations of the apparatus, one obta
an optimal and rotationally invariant QCM [11]. We fur
ther note that the Lagrange multipliersljj0 associated with
such an optimal rotationally invariant QCM must also b
invariant under rotation, which can only be the case
ljj0 ­ ldjj0 (Shur’s Lemma). This explains why the ex
trema of the reduced problem Eq. (13) are also extrema
the full problem Eq. (14).

In summary, the QCM that have been presented a
optimal as well for copying quantum information as fo
2156
al

.
M

t

at

e
e
ch
M
ric.
arily
r
at
CM
e
n
of
,

ti-
at

p-
s

-
-
s.]
v-
ins

-

e
if

-
of

re
r

translating quantum information to classical information
thus establishing the connection between cloning qua
tum information and gaining classical information. For
example, the1 ! 2 QCM provides the optimal eavesdrop-
ping strategy for a quantum cryptography protocol base
on 3 nonorthogonal basesX, Y , and Z on the Poincaré
sphere, as conjectured by Ch. Fuchs (private commun
cation). The experimental realization of such optima
QCM is a worthwhile challenge. Indeed, it would pro-
vide a universal device for copying and reading quantum
information.
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