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We present quantum cloning machines that transfdridentical qubits inta > N identical copies
and we prove that the fidelity (quality) of these copies is optimal. The connection between cloning and
measurement is discussed in detail. When the number of clnesds towards infinity, the fidelity of
each clone tends towards the optimal fidelity that can be obtained by a measurement on the input qubits.
More generally, quantum cloning machines are universal devices to translate quantum information into
classical information. [S0031-9007(97)03916-1]

PACS numbers: 89.70.+c, 03.65.—w

Quantum cloning machines (QCM) act on an unknowninput qubits. WherNV = 1 andM = 2 our QCM reduces
quantum state and make one, or more, copies of it. Th&o the QCM of Bizek and Hillery [3]. Furthermore we
superposition principle of quantum mechanics prohibitsprove that these QCM are optimal, i.e., that no other QCM
the copies from being perfect [1,2]. This basic result iscan make better copies. We use this result to make precise
maybe the most fundamental difference between classicéthe above discussion relating cloning and measurement.
and guantum information theory, and QCM therefore probe The input state of our QCM is a qubjity) = cosé/
in a detailed way the structure of quantum information.2| 1) + ¢ sing/2| |). Thea priori probability distribu-

For example, thé/; ,, QCM makes two copies of one qubit tion of the polarization directiony is uniform over the
(i.e., of a spin; state) with a fidelity independent of the Poincaré sphere. We measure the quality of the copies
state of the input qubit [3]. Other recent related work hady their fidelity 7, i.e., the mean overlap between any of
been concerned with deriving inequalities governing théhe copies (they are all identical) and the input state,
quality of QCM [4], and in applying QCM to concrete

problems such as eavesdropping in quantum cryptography F = [ dQ (Ylpoul), 1)
[5], quantum entanglement [5-7], and building quantum )
computer networks to realize QCM [8]. where [dQ = [T d¢ [y dOsing/4m, and poy is the

A conceptually simple cloning machine, which we shallreduced density matrix of one of the copies.
call the classical copying machine (CCM), is obtained by The U; ) QCM is described by the following unitary
making a measurement on the input state. The (classicatperator:
result of the measurement is then used to make an arbitrary M-1
numberM of identical copies. Such a copying machine U;y|1) ® R = Z ajlM — )H1jleR;,
only makes use of the information about the input state Jj=0
that is available through measurement. It is therefore less M-l
efficient than the QCM'’s proper. Indeed the most general Umnll)®R = Z op—1—j
QCM consists of theV input qubits all in the same state, j=0 2)
the M — N blank copies all in the same neutral state, X|M-1-H1LG+DDOR;,
and an eventual ancilla, which evolve unitarily into an 2M — j)
(entangled) state of th&f clones and the ancilla. For aj = 1/m
any finite numbem of copies, these QCM make better
copies than the CCM. Butin the limi — o, the quality whereR denotes the initial state of the copy machine and
of the two copying machines are equal. This shows thathe M — 1 blank copies,R; are orthogonal normalized
not only do QCM necessarily make imperfect copies, buinternal states of the QCM, and we have dendted—
that information is necessarily diluted during the copyingjy, ji*) the symmetric and normalized state with —
process, since wheM is large the copies contain no more j qubits in the statay and j qubits in the orthogonal
information than that which is available classically. Notestates .
that the quantum information has not disappeared, but A somewhat lengthy computation involving combina-
is hidden in the correlations between the copies and theorial series shows that this unitary operator acts on an

ancilla. arbitrary input statey as follows:

In this article, for simplicity, we concentrate on QCM M—1
that transform one qubit intd/ identical copies, though U, yly) ® R = > a;l(M — j)g, j*) ® Ri(), (3)
many results are also stated for an arbitrary num¥ef j=0
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where R;() represents the internal state of our QCM The fidelity Fy » of these QCM (5) tends tv +
with R;(¢) LR(y) for all j # k. In order to give a 1/N + 2 forlargeM which is the optimal fidelity achiev-
synthetic expression fak;(¢), let us introduce the qubits able by carrying out a measurement@ridentical qubits
y* = cosh/2| 1) + e~i?sind/2| |*) which transforms [9,10]. This suggests that the QCM tends towards the
under rotations as the complex conjugate representatio@CM asM increases. We now prove that this is indeed
If we formally identify the internal states of the QCM the case. Let us first consider the caée= 1. In [10]
R; with the state®; = |[(M — 1 — j) 1%,/ |"), then the it was shown that an optimal measurement on a single
statesk;(y) are succinctly expressed &(y) = [(M —  qubit is simply a Stern Gerlach measurement that is a pro-
1 — ™, j™)*h). jection onto two (randomly chosen) orthogonal stdtgs
The density matrix describing the output qubits is theand|¢*). The corresponding CCM consists of makilg
same for all copies, and has the fopm,, = Fly){y| +  copies of thep state (M ¢)) if the outcome of the measure-
(1 — F)lg)t]. To calculate the fidelityF we first ment is¢, andM copies of thep - state (M ¢ 1)) if the
note thaTa]Z is the probability that there ageerrors among outcome of the measurementds. The density matrix
the M output copies. Then, concentrating on the firstdescribing thélf copies, averaged over the orientations of

output qubit, we have the measuring bas|#)), is
M—1 . 2
Fim = Prol( j errors in theM — 1 last qubit$ pcem = [dQ¢ <1 " Praayy
i=0
. @) + Wl P Piurgs. (7)

where the first factor is the probability to have outcoge

(¢1), and Pjy4y (Pimey) is the projector onto the state
[M@p) (IMpt)). In order to compare the CCM to the
QCM, we exprespccy in the basisy, ¢+ to obtain

Mz‘l M~—j 5, 2M+1

— a’ = i

s Mo 3M

Where% is the ratio of the number of ways to choose
j errors among¥ — 1 qubits over the number of ways
to choosej errors among M qubits. Note that since the Mo oM +1-5)

possible final states of the QCM are orthogonal, one can pPccm = Z M+ )M + 2) Piar-sypspry-  (8)
know whether the copy process went through without error s=0

or not. However, this requires priori knowledge of the |t is then easy to show that the QCM tends towards the
initial state, since the two possible final states of the QCMCCM asM increases. For instance, one habohiem —
depend on it. If one does not have anpriori knowledge  pccyq]? = M 3. Other measures of the “distance” be-
about the initial state (and this is what we assume), thE[WeeanCM andpqcwm similarly decrease a¥ increases.

it is impossible to learn by making a measurement on th@& more complicated procedure, based on the coveriant

QCM whether or not the cloning has succeeded. measurements of [9], see also [10], show that for an ar-
We have also constructed a more general QCM tha@itrary numbemN of input qubits

takesN identical input qubit intoM identical copies. It
is described by

M!(M + N — s)!

M
pcem = (N + 1)2

M-N M+ N— )M —s)!
UvnlINgy = D ajl(M = j)g. jur*) @ R;(), X Pl syt
j=0
®)  and TEpocm — pcom = N*M 3. Thus when the num-

— N)! — )
@ = \/N 1 /M= N)! (M, ‘ J)", ber of copiesM increases, the QCM tends towards the
M+1yM-N-jM CCM. Conversely one can consider QCM as measuring

where|N ) is the input state consisting of spins all in devices. Indeed, giveN gubits all in the same unknown
the stateys, and the other notations are as above. NotStat€y, one can either make a coherent measurement of
that the numbey of errors in the copies is smaller or equal &l N qubits, or equivalently use the QCM to produce a

to the numbe — N of additional qubits. The fidelity V€'Y large numben/ of clones and then do separable
of each output qubit is measurements on the clones. Indeed, since for l&fge

pocw is a mixture of product states of the fot X ¢) it

Fus = MEI M-j , MN+I1)+N (©6) suffices to measure them with a classical polarimeter. The
NM = M = M(N +2) fidelity of these two ways of gaining information about

¢ are equal. Hence the QCM can be considered as a
The N to N + 1 cloning machine is particularly simple universal device transforming quantum information into
since the right-hand side in Eq. (5) contains only twoclassical information. This is illustrated in Fig. 1. Note
terms. In this case the fidelitfy y+1 = % tends that in the first case all the difficulty for experiments lies
rapidly towards 1 asv grows, corresponding to the fact in the coherent measurement, whereas in the second case

that the input state is quasiclassical. all the difficulty is in the QCM.
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states. One finds

uantuminformation | Quantum o Cassical information
quantuminfol Mclones of fidelity of asymptotic

Nt ] vechine | AMARYOMM | iy (N2 F = Tl Woul O1li") (il O [houe)] i, =11
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S (12)
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FIG. 1. Diagram of the flow of quantum information to

classical information. where we have expressed everything in terms of the SU(2)

rotation matrices and introduced the mat#ix, ;  which
lays an essential role in this calculation. Our problem is

We now prove that the QCM we have described arg, mayimize F subject to the unitary constraints Eq. (10).
optimal. For simplicity we consider the case where there igy/o impose the unitary constraints by adding them via

only one input qubit, but an arbitrary numbfer of output | 54range multiplierst;;,. Thus we must extremize
qubits. The idea of the calculation follows closely the 7

analysis of optimal measurements of [10]. We first express F = RjwlRj)Aj p.j
in full generality the average fidelityf of a quantum .
cloning machine in terms of the final stat®;) (see — A (RwIR Sk = 8y, (13)

below) of the machine. These final states are subject tQ;i, respect to the final states of the QCM ;) and
the condition that the evolution is unitary. One must theny,q multipliers A;;. It is, however, useful to ci)nsider a

maximize F subject to the unitarity conditions which are simpler problem in which we impose only one constraint,
introduced by using _Lagrange multipliers. The problemnamdy, the trace of Eq. (10). Obviously the extrema of
then reduces to an eigenvalue equation for a marand s reduced problem are greater or equal to the extrema
the extremal vaIl_Je off is expressed in terms of the largest ¢ ihe full problem Eg. (13), and we will thus obtain an
eigenvalue of this matrix. _ o upper bound on the fidelity of QCM. We shall show be-
The most general QCM acts on the input quibitsin |y that rotational symmetry implies that this upper bound
the following way: is attained by optimal QCM. Thus we have to extremize

|]> |R> - |M —k Tsk l> |Rjk>’ ] :T7l7 (9) j: = <Rj’k’|Rjk>Aj’,k’,j,k

where|R) is the initial state of the QCM and the blank — AR RSk xdj; = 2). (14)
copies,|R ;) are unnormalized final states of the ancilla
and we use a summation convention: repeated indices
summed over. Unitarity of the evolution imposes that

'Varying with respect tqR /| (more properly one should
ARy with respect to the components(@;/| in a basis),
we obtain the equations

(Rjic|Rjx) = 81 . (10) (Ajipjxk — Abpidjj)IRj) = 0. (15)

Note that becausf¥ — k 1,k |) is completely symmet- ThusA are the eigenvalues df .« and|R;) its eigen-
ric, we have made the hypothesis that the output of theectors. Suppose we have found a solutianR ;) of
QCM is completely symmetric. As discussed below, thisEd. (15) and of the unitary constraints Eq. (10). Then
hypothesis can be dropped without affecting our conclumultiplying Eqg. (15) on the left byR;| and summing
sions. Our task is to maximize the fidelity of this QCM overj’, k" yields

subject to the unitary constraints (10). The rotational _ _

symmetry of the input qubits is exploited by expressing RjwlRjAjwjx = (Rjw|Rj)ASk 1 8j1; = 24, (16)
an arbitrary input qubit as a SU(Z)inOt_at'O)J’J(Q) acting  here the last equality follows from the constraint
on thet state,|y/) = cos6/2 1 +e'?sind/2 1= Oyl j).  Eq. (10). But the left-hand side is equal to the fideffy

The evolution of an arbitrary input qubit is then Eqg. (12). So the maximal eigenvaluebfs related to the
) optimal fidelity of the QCM byF = 2Anax It remains
) IR) = O j) IR) = [Yhour) to calculate the matrixi. After some algebra one finds
= 0yjIM — k 1,k DIRj). (11) that it is block diagonalA; s jx = Sk—jk—jBi+jk+j
' ' with
Because the output state is symmetric under permutations,
the fidelity of the copies is obtained by calculating the p — L( M — K VM —K) (K +1) )
overlap of the reduced density matrix of one copy, say the 6M \ /(M —K) (K +1) M+K+1

first, with the input statgy) and averaging over the input a7
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whereK = k — j. The largest eigenvalue dfis (2M +  translating quantum information to classical information,
1)/6M corresponding to an upper bound on the optimathus establishing the connection between cloning quan-
fidelty F = (2M + 1)/3M. This bound is saturated tum information and gaining classical information. For
by the QCM Eg. (2) thereby proving that it is optimal. example, thd — 2 QCM provides the optimal eavesdrop-
We have generalized this proof to show that the QCMping strategy for a quantum cryptography protocol based
Eq. (5) that transfornV identical qubits into an arbitrary on 3 nonorthogonal base$, Y, and Z on the Poincaré
numberM of copies are optimal. Our proof is at presentsphere, as conjectured by Ch. Fuchs (private communi-
only valid for N = 1,2,...,7, although we expect it cation). The experimental realization of such optimal
to generalize to arbitraryv. The difficulty whenN is  QCM is a worthwhile challenge. Indeed, it would pro-
large is that the matrixB is N + 1 X N + 1 and its vide a universal device for copying and reading quantum
eigenvalues are correspondingly difficult to calculate.  information.
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