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Localized and Cellular Patterns in a Vibrated Granular Layer
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We propose a phenomenological model for pattern formation in a vertically vibrated layer of granular
material. This model exhibits a variety of stable cellular patterns, including standing rolls and squares
as well as localized objectsgcillonsandwormg, similar to recent experimental observations [Umban-
howar, Melo, and Swinney, Nature (Londd82, 793 (1996)]. The model is an amplitude equation for
the parametrical instability coupled to the mass conservation law. The structure and dynamics of the
solutions resemble closely the properties of localized and cellular patterns observed in the experiments.
[S0031-9007(97)03534-5]

PACS numbers: 47.54.+r, 46.10.+z, 47.35.+i, 81.05.Rm

Granular materials exhibit a unique mixture of prop-average mass of granular material per unit area (or a local
erties of both liquids and solids [1]. Intensive theo-averaged thickness of the layer):
retical, numerical, and experimental studies of granular
systems revealed a wide variety of new phenomena typi-0:¥ =y — (1 —iw)i + (1 + ib)V¢ — | — pip,
cal for granular systems, such as clustering and inelastic
collapse [2], random force chains [3], granular convec- (1)
tion [4], and cellular patterns in vibrated layers [5—7]. _ . 2 2
The very complicated rheology of granular media makes Gp = aV - (pVIPF) + BV p. )
their theoretical analysis extremely difficult. Unlike fluid Equation (1) without the last term is a popular model for
dynamics, there is no reliable continuum description of ahe parametric instability in oscillating liquid layer (see
granular system applicable in a wide range of conditions[13,14]). The order parameter(x, y, r) characterizes lo-
The widely used approach is a straightforward simulatiorcal complex amplitude of the particle oscillations at the
of many interacting particles in a gravity field [8,9]. frequencyw = /2. Linear terms in this equation can

Vibrated granular systems often manifest fluidlike be derived from the dispersion relation for parametrically
behavior which resembles similar phenomena in convendriven granular waves, expanded near frequeacand
tional liquids. Recent experimental studies of verticallycorresponding wave numbkrherek = \/w /b, parame-
vibrated granular systems [5-7] demonstrated a richer b must chosen to reproduce the correct wave number
variety of collective behavior ranging from standing at a given frequency). The tergn/™ provides parametric
waves, hexagons, and squares to localized objects (padriving and leads to the excitation of standing waves. The
ticlelike oscillons [6] and one-dimensionavorms see term||?y phenomenologically accounts for the nonlinear
[1]). Cellular patterns are remarkably similar to Faradaysaturation of oscillations provided in granular materials by
waves in fluids [10] which have recently been a subjecrestitution. The last term in Eq. (1) accounts for the cou-
of intensive research (see, e.g., [11]). The differencepling of the order parameter to the local average density
however, is that the primary bifurcation to square pat-p. As it is observed experimentally [5,6], the threshold
terns and oscillons is hysteretic; patterns disappear alue of the vibration amplitude for the parametric in-
less magnitude of the plate vibrations than they firsistability depends on the mean layer thickness [5] due to
appear. The localized objects, oscillating at half fre-an increase of internal energy dissipation in thicker lay-
guency of plate vibration€)/2 on the background of ers. Although one should generally expect this term to be
a flat surface oscillating af), are observed in slightly f(p)y with f(p) saturating at large (when the thickness
subcritical parameter region for cellular patterns. In thisof the layer is larger than the scale of typical perturba-
Letter we propose a simple continuum model exhibitingtions), we hereafter limit ourselves with the simplest form
phenomenology remarkably similar to the experimentalf(p) = p corresponding to relatively thin layers (propor-
observations. Due to its simplicity, it is amenable totionality constant can be omitted after appropriate scaling
a comprehensive analysis. Although this model is nobf p). Equation (2) describes the conservation of the gran-
derived from the corresponding microscopic equationsilar material. Two different physical mechanisms con-
of granular systems, it is instructive for interpretation oftribute to the in-plane mass flux. The first term in (2) re-
experimental data and may vield testable predictions.  flects the average particle drift due to the gradient of mag-

The model consists of an amplitude equation for thenitude of high-frequency oscillations. On average, parti-
order parameteyy coupled to a conservation law for an cles try to “escape” from regions of large fluctuations, the
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effect analogous to the formation of so-called Chladni fig- A= A[s LM =30 2um 3

ures [12]. The second term describes diffusive relaxation 4 2

of the inhomogeneous mass distribution. We expect the un? 5o, 4

effective “granular temperature” and corresponding diffu- 2 (B°A" + 2B )] (4)

sion constaniB to be proportional to the energy of plate The equation forB(r) is obtained by the permutation
vibrations, and then for nonvibrating plate the diffusions « g The supercriticality parameter is given ly=
constant turns to zero and an arbitrary pattern “freezes”. c(y = y)/( + w + k) [16]. It follows from Eq. (4)

Let us briefly discuss the linear stability properties ofhat hysteretic transition to squarés = B) occurs if
Egs. (1) and (2). The trivial stat¢ = 0, p = po corre- |, > 9/5 and stripes{ # 0, B =00r A = 0, B # 0)
sponding to a flat layer becomes unstableyét=_y§ = exhibit subcritical bifurcation a7 > 3.

[@ + b(1 + po)P/(1 + b?) for wb > 1 + po with re- In the supercritical case we can drop the last two terms
spect to a periodic perturbations with the wave numbeyy, Eq. (4). Itis easy to verify that for — +0 the square

ke given bykg = (wb — 1 = po)/(1 + b?). Forwb <  pattern(A = B) is stable forun > 1 and unstable other-

1 + po spatially uniform perturbation with, = 0 be-  jse. Rolls, in the limite: — +0, are stable foun < 1

come unstable first, and the vibration thresholdyfs= and unstable otherwise. For larger> 0 the higher order
1+p+ o0 Due to the_ rotational invariance of (1) and terms in Eq. (4) become important, and squares are stable
(2), waves with all directions grow simultaneously. at 16usn® < 3(10en — 0% — 9) and rolls are stable

Above the threshold, the nonlinear terms in EQs. (Lat4ue9? > 3(enp — 292 — 3). In the subcritical case

and (2) saturate the exponential growth of perturbations, , > 9/5 squares are stable in their entire basin of ex-
and provide pattern selection. The problem of patterfstence given by the conditiot8uen? + (Snu — 9)? =
selection requires careful analysis of patterns with differenfy The phase diagram for roll and squares in shown in
symmetries. Fop = const, Egs. (1) and (2) reduce to a rig 1. Itis qualitatively consistent with the experimental
single equation for which it is known that rolls are the only gpservations of transition from rolls to squares with de-
stable cellular pattern above onset [13]. This has been &easing the driving frequency if one assumes that
serious shortcoming of th_is model since square patterngecreases with an increase of frequency. One expects
are frequently observed in Faraday experiments [5,11}nat the relative effect of particle drift from regions of in-
Usually pattern selection depends sensitively on the choicgnse fluctuations characterized by paramstdiminishes
of nonlinearity in the model, and some tweaking with yith the increase ofv since characteristic vertical scale
nonlocal nonlinearities could remedy this problem (seeof the layer involved in oscillations becomes smaller at
e.g., [15]). It turns out that within our combined model high frequencies. At large positive there is a bistable
with p being a dynamical variable itis not needed; squaregegion where rolls and squares coexist, also in agreement
and rolls emerge naturally in different parameter regions.yith experiments [5]. It should be noted, however, that
Consider stgbility of simplest cellular patterns (rolls the phase diagram of Eq. (4) exactly corresponds to the
and squares) in the framework of Egs. (1) and (2) closgyiginal model (1) and (2) only in the limit of small ampli-
to the threshold of parametric instability. Although the y,de: otherwise it represents only a Galerkin approxima-
analysis is formally valid for arbitrary rhombic pattern, we tjon of the exact solution. Still, our numerical simulations
restrict ourselves to the squares since they are typicallggreed fairly well with these stability limits.
preferred by the symmetry. Within the framework of “Now we consider the localized solutions. In experi-

below), cellular patterns are described by the following

solution to Eq. (1):

¢ = [Asin(k.x) + Bsink.y)]le'® + w, 3 05 Rolls
Squares

whereA(r), B(r) are the real amplitudes of two (orthogo-
nal) standing waves, phasg = const is given by the
solution of the linearized problem, and is a correc-
tion to the solution which we demand to be small at 0.0
e — 0. Near the threshold the density is enslaved to
||, and follows the quasistationary solution of Eq. (2),
p = po(t)exd—mnlyI*], n = a/B. The functionp(r)
can be found from the condition of total mass conservation
S~! [ pdxdy = pu = const,Sis the total area. Substitut-
ing p into Eq. (1) and performing standard orthogonaliza- un

tion procedure to keep small, we obtain the following FIG. 1. Phase diagram for square and roll patterns, weakly

equations forA(z), B(z) (for simplicity we retain nonlin-  nonlinear theory. Black dots indicate stable oscillons seen in
earity only in two first orders): numerical experiments.
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of the parametric instability for cellular patterns. We Egs. (1) and (2). Once the lower bound; is passed,
also found stationary localized axisymmetric solutions tathe oscillon rapidly decays toward a trivial stage= 0.
Egs. (1) and (2) in weakly subcritical region (dots in Fig. 1Iincreasingy abovewy,,, the instability leads to a range
correspond to stable localized solutions found for vari-of different scenarios, depending on other parameters
ous combinations of parameters). Figure 2 shows the, w, w, and a. For small nu (supercritical transi-
radial structure of the order parameterand correspond- tion) oscillons produces a sequence of concentric rolls.
ing distribution ofp for such solution. This solution cor- Depending onnu they either remain rolls or break
responds to a dip in the average mass distribupos  to produce a disordered square pattern. At larger
poexp(—nly|?). Because of the symmety — —i, 0s-  oscillon produces other oscillons on its periphery as
cillons of opposite polarities may coexist in this system.seen in experiments [6]. It turns out, surprisingly, that
It has oscillating tails at- > 1, (r) = r~"/2exp(pr)  the following oscillons do not appear uniformly around
with the (complex) exponenp given by p> = —k? +  the center, but rather organize themselves in chains,
Jiy2 = 3/ + b2). resembling worm-like patterns [Fig. 4(c)], cf. photo by
We studied the linear stability of those localized so-P. Umbanhowar published in [1]. We propose an expla-
lution with respect to axisymmetric (usually the mostnation of this effect by the conservation of total mass.
dangerous) perturbations. Some of the results are préscillons push the granular material on their periphery.
sented in Fig. 3, where we show the largest eigenvalu&ince the excessive mass from oscillons in a chain is
of the linearized system, |¢(0)|, and the mass deficit redistributed by the diffusion, it spreads more rapidly
m = 2mpo( [, rexd—nly|*ldr — 1). The stability re- near the tip of the chain. Therefore, the next oscillon
gion is limited both at large and smayl in accord with  will likely appear there, and the tip advances (compare
experiments. At the edges of the stable regipn,,, the  with diffusion-limited growth [18]). This process will
stable solution corresponding to the oscillon annihilatesontinue until the average density in the surrounding flat
with other unstable localized solutions. regions becomes so high that the creation of new oscillons
The interaction of two oscillons can be considered inis halted (the threshold for oscillon stability., increases
the spirit of Ref. [17]. Since the asymptotic behavior ofwith the average density). Our simulations show that for
¢ for the oscillon is oscillatory withz, the interaction values ofy slightly abovey., even after a long time,
force F ~ Reexfpr) is oscillatory too. It is natural to oscillons do not fill the entire area [see Fig. 4(d)].
expect a variety of bound states. A numerically found Let us now return briefly to the problem of selection of
bound state of two oscillons with opposite phases isellular patterns. In the domain of oscillon stability, these
shown in Fig. 4(a), and a bound state of four oscillonspatterns can be considered as a periodic lattice of weakly
(one positive surrounded by three negative) is shown irroupled oscillons. As itis well known from the solid-state
Fig. 4(b). As in the experiment [6] we found that bound physics, the lowest energy configuration of like-charged
states with coordination numbers higher than three arebjects is a hexagonal lattice (compare with Abrikosov
unstable. There also exist a stable bound state of two likdattice). In contrast, for alternatively charged particles the
phased oscillons, but the equilibrium distance between theptimal configuration is a square lattice where a positively
oscillons is substantially larger than for oppositely phaseharged particle is surrounded by four negatively charged
pairs, resulting in much weaker binding. Small “granular(antiferromagnetic lattice). Equations (1) and (2) preserve
noise” probably unbinds such weakly coupled pairs. the symmetryys — —, and therefore square patterns
We studied the nonlinear evolution of oscillons beyondformed by both positive and negative oscillons dominate
their region of stability in numerical simulations of
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FIG. 3. Largest eigenvalug (a), || at » = 0 (b), and mass
FIG. 2. Radial structure of the stable oscillon fer= 1.8, deficit m (c) for stable (solid line) and unstable (dashed line)
u=0527,b=20=a=1andn =5/y. oscillons;u = 0527, b =2, o = @ = 1 andn = 5/y.
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ble to assume that as in a granular system, this effect can
also be interpreted as the growth in a system, exhibiting a
first-order transition to a cellular structure and controlled
by a slowly diffusing field.
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