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Localized and Cellular Patterns in a Vibrated Granular Layer
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We propose a phenomenological model for pattern formation in a vertically vibrated layer of gra
material. This model exhibits a variety of stable cellular patterns, including standing rolls and sq
as well as localized objects (oscillonsandworms), similar to recent experimental observations [Umba
howar, Melo, and Swinney, Nature (London)382, 793 (1996)]. The model is an amplitude equation f
the parametrical instability coupled to the mass conservation law. The structure and dynamics
solutions resemble closely the properties of localized and cellular patterns observed in the exper
[S0031-9007(97)03534-5]
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Granular materials exhibit a unique mixture of pro
erties of both liquids and solids [1]. Intensive the
retical, numerical, and experimental studies of granu
systems revealed a wide variety of new phenomena ty
cal for granular systems, such as clustering and inela
collapse [2], random force chains [3], granular conve
tion [4], and cellular patterns in vibrated layers [5–7
The very complicated rheology of granular media mak
their theoretical analysis extremely difficult. Unlike flui
dynamics, there is no reliable continuum description o
granular system applicable in a wide range of conditio
The widely used approach is a straightforward simulat
of many interacting particles in a gravity field [8,9].

Vibrated granular systems often manifest fluidlik
behavior which resembles similar phenomena in conv
tional liquids. Recent experimental studies of vertica
vibrated granular systems [5–7] demonstrated a r
variety of collective behavior ranging from standin
waves, hexagons, and squares to localized objects (
ticlelike oscillons [6] and one-dimensionalworms, see
[1]). Cellular patterns are remarkably similar to Farad
waves in fluids [10] which have recently been a subje
of intensive research (see, e.g., [11]). The differen
however, is that the primary bifurcation to square p
terns and oscillons is hysteretic; patterns disappea
less magnitude of the plate vibrations than they fi
appear. The localized objects, oscillating at half fr
quency of plate vibrationsVy2 on the background of
a flat surface oscillating atV, are observed in slightly
subcritical parameter region for cellular patterns. In th
Letter we propose a simple continuum model exhibiti
phenomenology remarkably similar to the experimen
observations. Due to its simplicity, it is amenable
a comprehensive analysis. Although this model is n
derived from the corresponding microscopic equatio
of granular systems, it is instructive for interpretation
experimental data and may yield testable predictions.

The model consists of an amplitude equation for t
order parameterc coupled to a conservation law for a
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average mass of granular material per unit area (or a lo
averaged thickness of the layer):

≠tc ­ gcp 2 s1 2 ivdc 1 s1 1 ibd=2c 2 jcj2c 2 rc,

(1)

≠tr ­ a= ? sr=jcj2d 1 b=2r . (2)

Equation (1) without the last term is a popular model f
the parametric instability in oscillating liquid layer (se
[13,14]). The order parametercsx, y, td characterizes lo-
cal complex amplitude of the particle oscillations at th
frequencyv ­ Vy2. Linear terms in this equation can
be derived from the dispersion relation for parametrica
driven granular waves, expanded near frequencyv and
corresponding wave numberk (herek ­

p
vyb, parame-

ter b must chosen to reproduce the correct wave num
at a given frequency). The termgcp provides parametric
driving and leads to the excitation of standing waves. T
termjcj2c phenomenologically accounts for the nonline
saturation of oscillations provided in granular materials
restitution. The last term in Eq. (1) accounts for the co
pling of the order parameter to the local average dens
r. As it is observed experimentally [5,6], the thresho
value of the vibration amplitudeg for the parametric in-
stability depends on the mean layer thickness [5] due
an increase of internal energy dissipation in thicker la
ers. Although one should generally expect this term to
fsrdc with fsrd saturating at larger (when the thickness
of the layer is larger than the scale of typical perturb
tions), we hereafter limit ourselves with the simplest for
fsrd ­ r corresponding to relatively thin layers (propor
tionality constant can be omitted after appropriate scali
of r). Equation (2) describes the conservation of the gra
ular material. Two different physical mechanisms co
tribute to the in-plane mass flux. The first term in (2) re
flects the average particle drift due to the gradient of ma
nitude of high-frequency oscillations. On average, par
cles try to “escape” from regions of large fluctuations, th
© 1997 The American Physical Society 213
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effect analogous to the formation of so-called Chladni fi
ures [12]. The second term describes diffusive relaxat
of the inhomogeneous mass distribution. We expect
effective “granular temperature” and corresponding diff
sion constantb to be proportional to the energy of plat
vibrations, and then for nonvibrating plate the diffusio
constant turns to zero and an arbitrary pattern “freezes

Let us briefly discuss the linear stability properties
Eqs. (1) and (2). The trivial statec ­ 0, r ­ r0 corre-
sponding to a flat layer becomes unstable atg2 ­ g2

c ­
fv 1 bs1 1 r0dg2ys1 1 b2d for vb . 1 1 r0 with re-
spect to a periodic perturbations with the wave numb
kc given byk2

c ­ svb 2 1 2 r0dys1 1 b2d. For vb ,

1 1 r0 spatially uniform perturbation withkc ­ 0 be-
come unstable first, and the vibration threshold isg2

c ­
1 1 r 1 v2. Due to the rotational invariance of (1) an
(2), waves with all directions grow simultaneously.

Above the threshold, the nonlinear terms in Eqs.
and (2) saturate the exponential growth of perturbatio
and provide pattern selection. The problem of patte
selection requires careful analysis of patterns with differ
symmetries. Forr ­ const, Eqs. (1) and (2) reduce to
single equation for which it is known that rolls are the on
stable cellular pattern above onset [13]. This has bee
serious shortcoming of this model since square patte
are frequently observed in Faraday experiments [5,1
Usually pattern selection depends sensitively on the cho
of nonlinearity in the model, and some tweaking wi
nonlocal nonlinearities could remedy this problem (s
e.g., [15]). It turns out that within our combined mod
with r being a dynamical variable it is not needed; squa
and rolls emerge naturally in different parameter region

Consider stability of simplest cellular patterns (rol
and squares) in the framework of Eqs. (1) and (2) clo
to the threshold of parametric instability. Although th
analysis is formally valid for arbitrary rhombic pattern, w
restrict ourselves to the squares since they are typic
preferred by the symmetry. Within the framework
weakly nonlinear analysis (small supercriticality´ defined
below), cellular patterns are described by the followi
solution to Eq. (1):

c ­ fA sinskcxd 1 B sinskcydgeif 1 w , (3)

whereAstd, Bstd are the real amplitudes of two (orthogo
nal) standing waves, phasef ­ const is given by the
solution of the linearized problem, andw is a correc-
tion to the solution which we demand to be small
´ ! 0. Near the threshold the densityr is enslaved to
jcj2, and follows the quasistationary solution of Eq. (2
r ­ r0std expf2hjc j2g, h ­ ayb. The functionr0std
can be found from the condition of total mass conservat
S21

R
rdxdy ­ m ­ const,S is the total area. Substitut

ing r into Eq. (1) and performing standard orthogonaliz
tion procedure to keepw small, we obtain the following
equations forAstd, Bstd (for simplicity we retain nonlin-
earity only in two first orders):
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ÙA ­ A

∑
´ 1

mh 2 3
4

A2 1
2mh 2 3

2
B2

2
mh2

2
sB2A2 1 2B4d

∏
. (4)

The equation forBstd is obtained by the permutation
A , B. The supercriticality parameter is given by´ ­
gcsg 2 gcdys1 1 m 1 k2

c d [16]. It follows from Eq. (4)
that hysteretic transition to squaressA ­ Bd occurs if
mh . 9y5 and stripes (A fi 0, B ­ 0 or A ­ 0, B fi 0)
exhibit subcritical bifurcation atmh . 3.

In the supercritical case we can drop the last two term
in Eq. (4). It is easy to verify that foŕ ! 10 the square
patternsA ­ Bd is stable formh . 1 and unstable other-
wise. Rolls, in the limit́ ! 10, are stable formh , 1
and unstable otherwise. For larger´ . 0 the higher order
terms in Eq. (4) become important, and squares are sta
at 16m´h2 , 3s10´h 2 ´2h2 2 9d and rolls are stable
at 4m´h2 . 3s´h 2 ´2h2 2 3d. In the subcritical case
hm . 9y5 squares are stable in their entire basin of e
istence given by the condition48m´h2 1 s5hm 2 9d2 ­
0. The phase diagram for roll and squares in shown
Fig. 1. It is qualitatively consistent with the experimenta
observations of transition from rolls to squares with d
creasing the driving frequency if one assumes thathm

decreases with an increase of frequency. One expe
that the relative effect of particle drift from regions of in
tense fluctuations characterized by parameterh diminishes
with the increase ofv since characteristic vertical scale
of the layer involved in oscillations becomes smaller
high frequencies. At large positivé there is a bistable
region where rolls and squares coexist, also in agreem
with experiments [5]. It should be noted, however, th
the phase diagram of Eq. (4) exactly corresponds to
original model (1) and (2) only in the limit of small ampli-
tude; otherwise it represents only a Galerkin approxim
tion of the exact solution. Still, our numerical simulation
agreed fairly well with these stability limits.

Now we consider the localized solutions. In exper
ments [6] oscillons appear slightly below the thresho

FIG. 1. Phase diagram for square and roll patterns, wea
nonlinear theory. Black dots indicate stable oscillons seen
numerical experiments.
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of the parametric instability for cellular patterns. W
also found stationary localized axisymmetric solutions
Eqs. (1) and (2) in weakly subcritical region (dots in Fig.
correspond to stable localized solutions found for va
ous combinations of parameters). Figure 2 shows
radial structure of the order parameterc and correspond-
ing distribution ofr for such solution. This solution cor-
responds to a dip in the average mass distributionr ­
r0 exps2hjcj2d. Because of the symmetryc ! 2c , os-
cillons of opposite polarities may coexist in this system
It has oscillating tails atr ¿ 1, csrd ~ r21y2 expsprd
with the (complex) exponentp given by p2 ­ 2k2

c 1p
sg2 2 g2

c dys1 1 b2d.
We studied the linear stability of those localized s

lution with respect to axisymmetric (usually the mo
dangerous) perturbations. Some of the results are p
sented in Fig. 3, where we show the largest eigenva
of the linearized systeml, jcs0dj, and the mass deficit
m ­ 2pr0s

R`

0 r expf2hjcj2gdr 2 1d. The stability re-
gion is limited both at large and smallg in accord with
experiments. At the edges of the stable region,gc1,2, the
stable solution corresponding to the oscillon annihilat
with other unstable localized solutions.

The interaction of two oscillons can be considered
the spirit of Ref. [17]. Since the asymptotic behavior o
c for the oscillon is oscillatory withz, the interaction
force F , Re expsprd is oscillatory too. It is natural to
expect a variety of bound states. A numerically foun
bound state of two oscillons with opposite phases
shown in Fig. 4(a), and a bound state of four oscillo
(one positive surrounded by three negative) is shown
Fig. 4(b). As in the experiment [6] we found that boun
states with coordination numbers higher than three
unstable. There also exist a stable bound state of two li
phased oscillons, but the equilibrium distance between
oscillons is substantially larger than for oppositely pha
pairs, resulting in much weaker binding. Small “granul
noise” probably unbinds such weakly coupled pairs.

We studied the nonlinear evolution of oscillons beyon
their region of stability in numerical simulations o

FIG. 2. Radial structure of the stable oscillon forg ­ 1.8,
m ­ 0.527, b ­ 2, v ­ a ­ 1, andh ­ 5yg.
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Eqs. (1) and (2). Once the lower boundgc1 is passed,
the oscillon rapidly decays toward a trivial statec ­ 0.
Increasingg abovegc2, the instability leads to a rang
of different scenarios, depending on other parame
h, m, v, and a. For small hm (supercritical transi-
tion) oscillons produces a sequence of concentric ro
Depending onhm they either remain rolls or break
to produce a disordered square pattern. At largerhm

oscillon produces other oscillons on its periphery
seen in experiments [6]. It turns out, surprisingly, th
the following oscillons do not appear uniformly aroun
the center, but rather organize themselves in cha
resembling worm-like patterns [Fig. 4(c)], cf. photo b
P. Umbanhowar published in [1]. We propose an exp
nation of this effect by the conservation of total mas
Oscillons push the granular material on their periphe
Since the excessive mass from oscillons in a chain
redistributed by the diffusion, it spreads more rapid
near the tip of the chain. Therefore, the next oscill
will likely appear there, and the tip advances (compa
with diffusion-limited growth [18]). This process wil
continue until the average density in the surrounding
regions becomes so high that the creation of new oscill
is halted (the threshold for oscillon stabilitygc2 increases
with the average density). Our simulations show that
values ofg slightly abovegc2 even after a long time,
oscillons do not fill the entire area [see Fig. 4(d)].

Let us now return briefly to the problem of selection
cellular patterns. In the domain of oscillon stability, the
patterns can be considered as a periodic lattice of wea
coupled oscillons. As it is well known from the solid-sta
physics, the lowest energy configuration of like-charg
objects is a hexagonal lattice (compare with Abrikos
lattice). In contrast, for alternatively charged particles t
optimal configuration is a square lattice where a positiv
charged particle is surrounded by four negatively charg
(antiferromagnetic lattice). Equations (1) and (2) prese
the symmetryc ! 2c, and therefore square pattern
formed by both positive and negative oscillons domina

FIG. 3. Largest eigenvaluel (a), jcj at r ­ 0 (b), and mass
deficit m (c) for stable (solid line) and unstable (dashed lin
oscillons;m ­ 0.527, b ­ 2, v ­ a ­ 1 andh ­ 5yg.
215
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FIG. 4. Gray-coded images of Rec (black corresponds to
maximum, white to minimum) from simulations of Eqs. (1)
(2), (a) bound state of oppositely phase oscillons,a ­ v ­ 1,
b ­ 2, h ­ 2.78, m ­ 0.527, g ­ 1.8, and size L ­ 40;
(b) Triangular bound state, same parameters; (c) worm
structure produced by a single oscillon in the center,a ­ 1,
v ­ b ­ 2, g ­ 2.245, h ­ 4.38, m ­ 0.525, andL ­ 100;
(d) square lattice,v ­ a ­ 1, g ­ 1.84, m ­ 0.52, h ­
2.72, andL ­ 100.

[see Fig. 4(d)]. Once they symmetry is broken (as
two frequency driving), patterns are formed by like-phas
oscillons, and the hexagonal symmetry can be expec
The selection of the pattern in the supercritical case wh
oscillons are unstable is more subtle. The advantage
the square pattern over rhombi cannot be determined in
lowest order of our weakly nonlinear perturbation theo
which happens to be insensitive to the angle between
standing waves. Our arguments related to optimal pack
of localized structures suggest that the unique selectio
square patterns should occur in higher order of´.

We have shown on the basis of phenomenological mo
that the constraint of mass conservation plays a cru
role in pattern formation in vibrated granular materia
The parameters of the model can be estimated experim
tally or from molecular dynamics. We can speculate th
our results are also relevant for fluids, where square p
terns are ubiquitous and localized objects were obser
recently [19]. Parametric waves on a fluid surface indu
mean surface displacement, which must obey a conse
tion law. Thus, we expect that a coupled set of equatio
for the order parameter and a mean displacement may s
as a paradigm model for this system. Although for flui
the knowledge of the Navier-Stokes equations allows
the direct stability analysis of cellular patterns [20], fin
ing a relevant order-parameter model would be useful
studies of more complicated pattern formation in this ri
experimental system. Wormlike structures have also b
recently observed in electroconvection [21]. It is plau
216
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ble to assume that as in a granular system, this effect
also be interpreted as the growth in a system, exhibiting
first-order transition to a cellular structure and controlle
by a slowly diffusing field.
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