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Massless Dirac Fermions, Gauge Fields, and Underdoped Cuprates
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We study2 + 1 dimensional massless Dirac fermions and bosons coupled to a U(1) gauge field as a
model for underdoped cuprates. We find that the uniform susceptibility and the specific heat coefficient
are logarithmically enhanced (compared to lineafifsehavior) due to the fluctuation of a transverse
gauge field which is the only massless mode at finite boson density. We analyze existing data, and
find good agreement in the spin gap phase. Within our picture, the drop of the susceptibility below the
superconducting’. arises from the suppression of gauge fluctuations. [S0031-9007(97)04074-X]

PACS numbers: 74.20.Mn, 11.15.—q, 74.25.Bt, 74.25.Ha

Recent experiments have indicated the existence in th&milar to y,. Although constant Wilson rati¢y/ y.) is
normal state underdoped cuprate superconductor of a gaphallmark of Fermi liquid theory, the anomalous tem-
with the same anisotropy as tllewave superconducting perature dependence calls for a departure from the time-
gap. One proposed explanation involves spin-charge sephenored theory of most metals. We make a case that
ration: An electron in these highly correlated materials is ahe puzzling normal state behavior gf and y may be
composite object made of a spjmeutral fermion (spinon)  viewed asnhancemeraver linear-in" x, andy of Dirac
and a spinless charged boson (holon). The suppression t#rmions due to the logarithmic decrease of Dirac velocity
normal state magnetic excitation seen in NMR and neutrogaused by fermion-gauge field interaction.
scattering is thus viewed as a singlet pairing of neutral We begin with the following continuum effective La-
fermions in the absence of coherence among holons. Asgfangian for our problem:
possible realization of this idea, two of us have takerrthe o .

7 model (which is believed to capture the essential physics = = Was(0uy" + iauy*)Was
of CuG, planes) and developed a slave boson mean field
theory [1] that extends the local SU(2) symmetry at half-
filling to the finite concentration of holes by introducing a (1)
SU(2) doublet of the slave boson field. Among the mean ‘

field phases reported in Ref. [1] the so-called staggeredhe FermifieldV,;isa2 X 1SPINOr®, = (fives fiso)s

flux (sF) phase (which is connected tadavave pairing Vo, = ( f3s0, fas.), Wherea = 1,2 labels the two Fermi
phase by a local SU(2) transformation) was argued tgoints,s = 1,...,N labels fermion speciesM = 2 for
describe the pseudogap in underdoped cuprates. The laWwe physical case =1,|), and e, o stands for even and
energy physics of this phase can be described by masslesdd sites, respectively Thg“ matrices are Pauli ma-
Dirac fermions, nonrelativistic bosons, and a massless U(1tjices (y?, y!, ¥?) = (o3, 0' ,0%) and satisfy{y*, y*} =
gauge field which, together with two massive gauge fields26#” (u,» = 0,1,2). ¥, = ¥ 40 In the sF phase
forms SU(2) gauge fields that represent the fluctuationsf Ref. [1], the fermion dispersion near the Fermi points
around the mean field. is anisotropic, but we rescale it to an isotropic spectrum

The purpose of this paper is to address the low energy ef(k) = vplk|, wherev, = ,/vrv;, the geometric mean
fective theory of the sF phase as a U(1) gauge theory prolef the two velocities ¥, is proportional to the energy gap).
lem. Although Dirac fermions coupled to a gauge fieldWe setvp = 1, unless otherwise specified. The gauge
had been considered in several contexts in the past [2], wieeld a,, = (a0, a) corresponds to thefL part of Ref. [1]'s
shall see that interesting new physics emerges when masSu(2) gauge fields [8]. The terms in Eq. (1) involving
less Dirac fermions are coupled to a gauge field that is alsthe Bose fields (representing charge degree of freedom)
coupled to a compressible boson current. More specifiare believed to play several important roles, including the
cally, the Lorentz symmetry breaking due to coupling tosuppression of dynamical mass generation (Néel order-
the bosons results in the renormalization of fermion velocing [2]) and instanton effects [9]. Most importantly, the
ity which has consequences on physical properties such asmpressible boson current screensdhdield, making it
uniform susceptibilityy,, and electronic specific heat!.  massive. Unfortunately, we do not have a detailed under-
Experimentally,y, of underdoped cuprates begins to de-standing of our boson subsystem. Therefore we shall draw
crease with the lowering of temperature far above the sudpon only a few qualitative features of the Bose sector
perconductingl., and decreases more rapidly bel@y  while focusing mainly on the Fermi sector of the theory.
[3-5]. Electronic specific heat experiments [6,7] show Equation (1) carries certain similarity to the uniform
thaty(7T) [= ¢¢'(T)/T] of the normal state behaves quite resonating valence bond (URVB) gauge theory [10,11]
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proposed to describe optimally and slightly overdoped In the absence of detailed understanding of the Bose
cuprates, and some of the theoretical framework can bgector, we assume that the transverse gauge propagator is
carried over to our problem. As in the uRVB case, thedominated by the fermion part. In other words! (q) =
internal gauge field, does not have dynamics of its own, Dz (¢q) = 1/I1x(g). This approximation, which is often

but it acquires dynamics from the polarization of fermionsused in the uRVB gauge theory, may not be fully justi-
and bosons. Integrating out the matter fields generates tHied in our case, but it allows us to organize the infrared

self- -energy term for the gauge field,, = a,L(H behavior of our theory within /N expansion. The full ex-
HB )a,,, up to quadratic order. The ferm|on polar|zat|on pression for analytically continued transverse polarization
%" from the two Dirac points is given by function I17(w, q) at finite temperature is rather compli-
2N 4’k cated, and therefore we shall not write it here, although
¥ (q) = Zf 2n)? t{Gr(k)y*Gr(k + g)¥"]. it is used later in the evaluation of the gauge fluctua-

tion contribution toy, andc¢!. In the limiting case of

. 1. . @ 7> lq] > |w|, we have
whereGr(k) = —(ik,y*)" " is the fermion Green'’s func-
tion and k,q denote 3-momentum; for examplé,= n . oT q’
[ko = 2n + 1)#rT,k]. In the Coulomb gauge, the spa- 17 (@, q) = —iC Tql + G T (3)

tial part and the time part of the gauge field are decoupled,

the propagators being?®(q) = [II(q) + II1%(g)]"!  while in the zero temperature limit,

and D' (q) = (8;; — qiq;/q*)D*(q) (i,j = 1,2), with

DY(q) = [l (g) + Iz(¢)]"'. As mentioned earlier, ImIT7(w,q) = —Nsgnw)d(lw| — lghve* — q /8

the bosons should have a finite compressibll’(s —  RellL(w,q) = NO(lq] — |w|)\/m/8

0) # 0] so that the time component of the gauge field be-

comes massive [at finite temperatdig”’ (¢ — 0) is also To the leading order in/N, fermion self-energy due to
nonzero and contributes to the screening ofdhdield],  transverse gauge fluctuations is

but the spatial part of the gauge field, which is purely

transverse, remains massless even at finite boson densny Zf
and temperature, as long as the bosons are uncondense

(as in the spin gap phase). In the remainder of this paper,

we will focus on the effect of this massless mode, |gnorwhereDF (q) = (8;; — qiqj/q2)/H#. At zero tempera-

G ¥ Gk + YD), ()

ing thea field. | ture, the self-energy is [12]

NS = —iy? dq _k+tq . [ dq (ks + gx) (g5 — 43) = 2q:qy(ky + qy)

g V) e+ e ) @y @k + 9/q?

. Bg (ky + 4) (@7 = ¢7) = 2q:q, (ks + )
) Gy @k + g7 ' i
We find, for|k| > |kol, |l = (9/m¢BINT[1 + 8/N7?)In(A/T) + -], ©)
E(k) — _Ciko’yo./’zl()(k) + 2¢ik - ‘)’ﬂl(k) (7) Xu = (2/7T)|n(2)NT[1 + (8/N772)In(A/T) + ]

with ¢ = 4/(3N#2) and Ay(k) =~ A, (k) =~ In(A/|k|), [£(3) = 1.202]. These results are believed to be valid for

where A is a UV cutoff. Now the pole of the renormal- two reasons: (1) I, (v + 0", k) = 0 for || < [K],
ized Green’s functiotGR (k) = [Gr(k)™! — S(k)]"! oc- SO the quasiparticles are well defined. (2) Unlike the usual

curs at Fermi liquid theory, the free particle response function
vanishes asT — 0. To the extent that the Landau
E() = |k|[1 — 4/(N7>) In(A/|Kk])]. (8) parameters in Fermi liquid theory enter as in mean field
theory, this means that the Landau parameter correction
Note that the presence of compressible bosons and thanishes il — 0 [14]. Indeed, it will be shown shortly
resulting breaking of Lorentz symmetry is crucial in orderthat the calculation ofy, andc¢' from the free energy
to have logarithmic velocity renormalization. Indeed, shift due to gauge fluctuation yields the same resuilts.
in the absence of bosons, the gauge propagator (gaugeThe enhancement af' seen here finds its counterpart
independent part) is given by#”(q) = 8/N(6,, — in the more familiar problems such as electron-phonon
qﬂqy/qz)/\/ﬁ, and the zero temperature fermion self-interaction in metals [15], uRVB gauge theory [11], and
energy takes the forn® = ik, y*f(k*); therefore the half-filled Landau level [16], where interactions induce

velocity is not renormalized. mass enhancement which manifests itself in the specific
Treating the quasiparticles described by Eg. (8) aseat. Inthe nonrelativistic analogs, however, mass renor-
“free,” we calculatec, and y, up to @ (1/N°): malization does not necessarily result in the enhancement
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of compressibility and uniform susceptibility [15,17,18], Summarizing our numerical evaluation, we have
because the corrections are tied to the Fermi surface [15].

S ; . 0.358 T 2.79 T
The crucial difference in our case is that there are only Ay, = ——TIn % Act! = — T2In %
Fermi “points” instead of Fermi “surface.” Thus, in con- Up : Up :
trast to the nonrelativistic case, we find that the suscep- (13)

tibility is also renormalized such that the Wilson ratio gt |ow temperature$” < ~Tyv/5) in agreement with
¥(T)/x«(T) is constant. In fact, the Wilson ratio is the Egs. (9).
same as that of free Dirac fermions because quasiparticles\we now discuss our results in light of the experiments.
are well defined and Fermi-liquid-type corrections are abin Fig. 1(a) we ploty, of YBa,Cu;Oge3, a prototypical
sent, as discussed earlier. underdoped (bilayer) cuprate, from the Knight shift data
To check this conclusion, we calculatg andc;' ina  of Takigawaet al.[4] We took the liberty of moving
gauge invariant way, using the correction to the free energishe zero ofy, by 0.27 state&eV Cu(2), which is within
due to gauge fluctuations. We consider only the leadinghe error bars corresponding to uncertainty in the orbital

correction inl /N, which isO (1/N°): contributions K (y, o« K" = K — K°)_  This
. change avoids the unphysical situation of Ref. [4] in

AF — 1 ]quf don(w) which Sk,," K" g™ <0 at T =0. Further
@2m)? —o support for the adjustment of 0 comes from precision mea-

L (ImIE (0, q) surements of the Knight shifts in YBE&w,Og by Bankay
X tan <m> (10)  and collaborators [5] who made a substantial upward shift

of K" from their previous values [19]. We find that
The entropy shiftAS (= —9AF/aT) due to gauge fluc- the normal state data of Ref. [4] are well fitted (solid
tuation has two contributions\S; from the temperature line) by x.(T;vp,Tuv) = Ax. + x°. HereAy, is the
dependence of the Bose functiefw) = 1/[explw/T) —  numerical evaluation of Eq. (12) whose Idvbehavior
1] andAS, from the temperature dependence of fermionis given by Eq. (13), ang? is the uniform susceptibility
polarization. Numerically, we find that the former gives of bare Dirac fermions with the same upper cutdify:
a~T? contribution to entropy, while the latter, which can 0 = — T F(Tyy/2T), F(x) = [5 y/cosRydy. The

2
vp T

be written as two parameters in the fit are chosen to #9g = 0.76J
. . and Tyy = 0.63J, where we set the antiferromagnetic
AS, = —1 f dzqf don(w) exchange energy = 1500 K. We expect the gauge
2m)3 —o fluctuations to be suppressed in the superconducting

9 state (due to Higgs mechanism) so thagt should cross
X Im<D; oT H#) (11)  over to x? (dashed line) at low temperatures. This is in

qualitative agreement with the data bel@w. The inset
(Tyv = high energy cutolf gives a singular contribution of Fig. 1(a) shows a similar fit for the spin Knight shifts

« —T?InT. The gauge fluctuation contribution tp, ©f YB&CwOs [5], which is again very good. Thus our
(Ay.) is obtained by taking—a2/aH> at H = 0 of theory can account for the susceptibility in both the normal

AF(H). This approach corresponds to summing the

bubble diagrams for the vertex correction and the self- temperature (K) temperature (K)

0 100 200 0 50 100 150 200 250 300
T T T T T T T 2.0

energy correction. It takes the form, 5
=20 wee . =
—1 lal<Tuv ) o0 § .‘v{ 115 E
Ay, = PImE f d°q [_x don(w) §1-0- 0
= =
82 B Q; 05 Zh
x (D} o fi ). (12)
7 , ,
—_ L od) {12
. 3 3.0 =
where aZHL/a,u% is a shorthand notation for % Osg
82Hl(w,q; MF)/aM%l;LF:O in which II,(w,q; ur) % 20 ® =014 ®x=0.135 . E.
is the transverse polarization function of Dirac fermions 2ol =010 | mi=000 104 3%
with finite chemical potentigl . This expression, which =

. . . 0.0 L L L L L 0.
closely resembles that kS, gives a singular contri- 0 100 200 300 0 100 200 300

bution « —TInT. Note that the expressions fas, emperature () temperature_(K) _ _
and Ay, are also applicable to (nonrelativistic) uRVB FIG. 1. (&) x, of YBa,Cu;Ose3. Inset: spin Knight shifts of
gauge theory [11,16], but they are usually ignored in thaﬁ(BaZCLuog. The vertical lines indicatd.. The symbols are

as in Refs. [4,5]. The dashed line is the susceptibijfy of

case because they give only subleading corrections Wh'lﬁee Dirac fermions, and the solid line is the fit to our theory,

AS; generates a singular correction7?/3 [16], unlike  which includes gauge fluctuations. (YT of YBa,CusOs 7.
our case in whichAS, dominate at low temperatures. (c) y. of La,—,Sr,CuQ, (see text). (d)y(T) of Lay—,Sr,CuQy.
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and superconducting states, without the need to adjusontributions toy, andc¢! derived from the free energy
the energy scale of the gap parametéising the same shift due to thes, fluctuation cancel the singular contribu-
parametersup andTyy as in the fitting of YBaCw;Og63  tions from transverse gauge fluctuation, in agreement with
Knight shift data, we ploty = Ac¢'/T + y° (where the nonrenormalization of Dirac velocity in a Lorentz in-
0 — Uiﬁﬂ G(Tyv/2T), G(x) = [, y3/cosRydy) in variant situation. Also, we have not treated contributions
Fig. 1(b). Also shown is the experimental data fd(T) from the Bose sector, especially in regard to the entropy.
of YBa,Cw;Og 67 [7]. Rough agreement of scales betweenl-ast, we mention the issue of whether the renormaliza-
the curves is quite encouraging. tion of the fermion propagator feeds back to the gauge
In monolayer La_, Sr,CuQ;, the uniform susceptibility Propagator. In the nonrelativistic gauge theory [11,16],
is usually deduced from bulk susceptibility by subtractingthe density-density correlation function and the transverse
the core diamagnetisrp. and Van Vleck paramagnetism gauge propagator receive only subleading corrections [18].
xvv. Figure 1(c) showsy, of La,_,Sr,CuO, obtained This might not hold any longer in our case. At present it
by subtracting the powder average valygy + yx. = IS Not clear as to what extent the transverse propagator is
—-0.5 Stategev [20] (there's some uncertainty in the modified by the “feedback effect” and to what extent this
value of yyy) from the bulk susceptibility [3]. The data affects the physical picture.
can be characterized by, = Ay, + XS + Xeconst» With D.H.K. acknowledges helpful conversations with
(vp = 0.99J, Tyy = 1.17J) for x = 0.10 and (vp = A. Shytov, N. Nagaosa, T. Imai, C. Mudry, and Y.B.
0.79J, Tuy = 0.65J) for x = 0.14. Unlike the YBCO Kim. We have been supported by the NSF MRSEC
compounds, the temperature independent pajt, > 0  Program [DMR 94-0034] (P.A.L. and D.H.K.) and by
is needed for a reasonable fit. Regarding the specific he&tSF Grant No. 94-11574 (X. G. W.).
data of LSCO, cutoffs significantly smaller than the ones
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