
VOLUME 79, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 15 SEPTEMBER1997

9

s a
ient

and
the
Massless Dirac Fermions, Gauge Fields, and Underdoped Cuprates

Don H. Kim, Patrick A. Lee, and Xiao-Gang Wen
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 0213

(Received 26 February 1997)

We study2 1 1 dimensional massless Dirac fermions and bosons coupled to a U(1) gauge field a
model for underdoped cuprates. We find that the uniform susceptibility and the specific heat coeffic
are logarithmically enhanced (compared to linear-in-T behavior) due to the fluctuation of a transverse
gauge field which is the only massless mode at finite boson density. We analyze existing data,
find good agreement in the spin gap phase. Within our picture, the drop of the susceptibility below
superconductingTc arises from the suppression of gauge fluctuations. [S0031-9007(97)04074-X]

PACS numbers: 74.20.Mn, 11.15.–q, 74.25.Bt, 74.25.Ha
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1]
Recent experiments have indicated the existence in
normal state underdoped cuprate superconductor of a
with the same anisotropy as thed-wave superconducting
gap. One proposed explanation involves spin-charge se
ration: An electron in these highly correlated materials is
composite object made of a spin1

2 neutral fermion (spinon)
and a spinless charged boson (holon). The suppressio
normal state magnetic excitation seen in NMR and neutr
scattering is thus viewed as a singlet pairing of neutr
fermions in the absence of coherence among holons. A
possible realization of this idea, two of us have taken thet-
J model (which is believed to capture the essential phys
of CuO2 planes) and developed a slave boson mean fi
theory [1] that extends the local SU(2) symmetry at ha
filling to the finite concentration of holes by introducing
SU(2) doublet of the slave boson field. Among the me
field phases reported in Ref. [1] the so-called stagger
flux (sF) phase (which is connected to ad-wave pairing
phase by a local SU(2) transformation) was argued
describe the pseudogap in underdoped cuprates. The
energy physics of this phase can be described by mass
Dirac fermions, nonrelativistic bosons, and a massless U
gauge field which, together with two massive gauge field
forms SU(2) gauge fields that represent the fluctuatio
around the mean field.

The purpose of this paper is to address the low energy
fective theory of the sF phase as a U(1) gauge theory pr
lem. Although Dirac fermions coupled to a gauge fie
had been considered in several contexts in the past [2],
shall see that interesting new physics emerges when ma
less Dirac fermions are coupled to a gauge field that is a
coupled to a compressible boson current. More spec
cally, the Lorentz symmetry breaking due to coupling
the bosons results in the renormalization of fermion velo
ity which has consequences on physical properties such
uniform susceptibilityxu and electronic specific heatcel

y .
Experimentally,xu of underdoped cuprates begins to de
crease with the lowering of temperature far above the s
perconductingTc, and decreases more rapidly belowTc

[3–5]. Electronic specific heat experiments [6,7] sho
that gsTd f; cel

y sT dyT g of the normal state behaves quit
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similar to xu. Although constant Wilson ratiosgyxud is
a hallmark of Fermi liquid theory, the anomalous tem
perature dependence calls for a departure from the tim
honored theory of most metals. We make a case t
the puzzling normal state behavior ofxu and g may be
viewed asenhancementover linear-in-T xu andg of Dirac
fermions due to the logarithmic decrease of Dirac veloc
caused by fermion-gauge field interaction.

We begin with the following continuum effective La
grangian for our problem:

L ­ C̄ass≠mgm 1 iamgmdCas

1 bps≠0 2 mB 1 ia0db 2
1

2mB
bps= 1 iad2b .

(1)

The Fermi fieldCas is a2 3 1 spinor:C
y
1s ­ s fp

1se, fp
1sod,

C
y
2s ­ s fp

2so, fp
2sed, wherea ­ 1, 2 labels the two Fermi

points, s ­ 1, . . . , N labels fermion species (N ­ 2 for
the physical cases ­", #), and e, o stands for even and
odd sites, respectively. Thegm matrices are Pauli ma-
tricessg0, g1, g2d ­ ss3, s1, s2d and satisfyhgm, gnj ­
2dmn sm, n ­ 0, 1, 2d. C̄as ; Cy

asg0. In the sF phase
of Ref. [1], the fermion dispersion near the Fermi poin
is anisotropic, but we rescale it to an isotropic spectru
Eskd ­ yDjkj, whereyD ­

p
yFy2, the geometric mean

of the two velocities (y2 is proportional to the energy gap)
We setyD ­ 1, unless otherwise specified. The gaug
field am ­ sa0, ad corresponds to thea3

m part of Ref. [1]’s
SU(2) gauge fields [8]. The terms in Eq. (1) involvin
the Bose fieldb (representing charge degree of freedom
are believed to play several important roles, including t
suppression of dynamical mass generation (Néel ord
ing [2]) and instanton effects [9]. Most importantly, th
compressible boson current screens thea0 field, making it
massive. Unfortunately, we do not have a detailed und
standing of our boson subsystem. Therefore we shall dr
upon only a few qualitative features of the Bose sec
while focusing mainly on the Fermi sector of the theory

Equation (1) carries certain similarity to the uniform
resonating valence bond (uRVB) gauge theory [10,1
© 1997 The American Physical Society 2109
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proposed to describe optimally and slightly overdope
cuprates, and some of the theoretical framework can
carried over to our problem. As in the uRVB case, th
internal gauge fieldam does not have dynamics of its own
but it acquires dynamics from the polarization of fermion
and bosons. Integrating out the matter fields generates
self-energy term for the gauge field,La ­ 1

2 amsPmn
F 1

P
mn
B dan, up to quadratic order. The fermion polarization

P
mn
F from the two Dirac points is given by

P
mn
F sqd ­

2N
b

X
k0

Z d2k
s2pd2

trfGFskdgmGF sk 1 qdgng ,

(2)
whereGFskd ­ 2sikmgmd21 is the fermion Green’s func-
tion and k, q denote 3-momentum; for example,k ­
fk0 ­ s2n 1 1dpT , kg. In the Coulomb gauge, the spa
tial part and the time part of the gauge field are decouple
the propagators beingD00sqd ­ fP00

F sqd 1 P
00
B sqdg21

and Dijsqd ­ sdij 2 qiqjyq2dD'sqd si, j ­ 1, 2d, with
D'sqd ­ fP'

F sqd 1 P
'
B sqdg21. As mentioned earlier,

the bosons should have a finite compressibilityfP00
B sq !

0d fi 0g so that the time component of the gauge field b
comes massive [at finite temperatureP

00
F sq ! 0d is also

nonzero and contributes to the screening of thea0 field],
but the spatial part of the gauge field, which is pure
transverse, remains massless even at finite boson den
and temperature, as long as the bosons are unconden
(as in the spin gap phase). In the remainder of this pap
we will focus on the effect of this massless mode, igno
ing thea0 field.
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In the absence of detailed understanding of the Bo
sector, we assume that the transverse gauge propagat
dominated by the fermion part. In other words,D'sqd ø
D'

F sqd ; 1yP
'
F sqd. This approximation, which is often

used in the uRVB gauge theory, may not be fully just
fied in our case, but it allows us to organize the infrare
behavior of our theory within1yN expansion. The full ex-
pression for analytically continued transverse polarizati
function P

'
F sv, qd at finite temperature is rather compli

cated, and therefore we shall not write it here, althou
it is used later in the evaluation of the gauge fluctu
tion contribution toxu and cel

y . In the limiting case of
T . jqj . jvj, we have

P'
F sv, qd ø 2iC1

vT
jqj

1 C2
q2

T
, (3)

while in the zero temperature limit,

ImP'
F sv, qd ­ 2Nsgnsvdusjvj 2 jqjd

p
v2 2 q2y8 ,

ReP'
F sv, qd ­ Nusjqj 2 jvjd

p
q2 2 v2y8 .

(4)

To the leading order in1yN, fermion self-energy due to
transverse gauge fluctuations is

Sskd ­
1
b

X
q0

Z d2q
s2pd2 giGFsk 1 qdgjD

ij
F sqd , (5)

whereD
ij
F sqd ­ sdij 2 qiqjyq2dyP

'
F . At zero tempera-

ture, the self-energy is [12]
N
8

Sskd ­ 2ig0
Z d3q

s2pd3

k0 1 q0

sk 1 qd2
p

q2
1 igx

Z d3q
s2pd3

skx 1 qxd sq2
y 2 q2

xd 2 2qxqysky 1 qyd

q2sk 1 qd2
p

q2

1 igy
Z d3q

s2pd3

sky 1 qyd sq2
x 2 q2

yd 2 2qxqyskx 1 qxd

q2sk 1 qd2
p

q2
. (6)
or
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We find, forjkj . jk0j,

Sskd ­ 2cik0g0A0skd 1 2cik ? gA1skd (7)

with c ­ 4ys3Np2d and A0skd ø A1skd ø lnsLyjkjd,
whereL is a UV cutoff. Now the pole of the renormal-
ized Green’s functionGR

F skd ­ fGFskd21 2 Sskdg21 oc-
curs at

Eskd ­ jkjf1 2 4ysNp2d lnsLyjkjdg . (8)

Note that the presence of compressible bosons and
resulting breaking of Lorentz symmetry is crucial in orde
to have logarithmic velocity renormalization. Indeed
in the absence of bosons, the gauge propagator (ga
independent part) is given byDmnsqd ­ 8yNsdmn 2

qmqnyq2dy
p

q2, and the zero temperature fermion sel
energy takes the formS ­ ikmgmfsk2d; therefore the
velocity is not renormalized.

Treating the quasiparticles described by Eq. (8)
“free,” we calculatecy andxu up toO s1yN0d:
the
r
,
uge

f-

as

cel
y ­ s9ypdz s3dNT2f1 1 s8yNp2d lnsLyT d 1 · · ·g ,

xu ­ s2ypd lns2dNTf1 1 s8yNp2d lnsLyTd 1 · · ·g
(9)

fz s3d ­ 1.202g. These results are believed to be valid f
two reasons: (1) ImA0,1sn 1 i01, kd ­ 0 for jnj , jkj,
so the quasiparticles are well defined. (2) Unlike the us
Fermi liquid theory, the free particle response functio
vanishes asT ! 0. To the extent that the Landau
parameters in Fermi liquid theory enter as in mean fie
theory, this means that the Landau parameter correc
vanishes inT ! 0 [14]. Indeed, it will be shown shortly
that the calculation ofxu and cel

y from the free energy
shift due to gauge fluctuation yields the same results.

The enhancement ofcel
y seen here finds its counterpa

in the more familiar problems such as electron-phon
interaction in metals [15], uRVB gauge theory [11], an
half-filled Landau level [16], where interactions induc
mass enhancement which manifests itself in the spec
heat. In the nonrelativistic analogs, however, mass ren
malization does not necessarily result in the enhancem
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of compressibility and uniform susceptibility [15,17,18]
because the corrections are tied to the Fermi surface [1
The crucial difference in our case is that there are on
Fermi “points” instead of Fermi “surface.” Thus, in con
trast to the nonrelativistic case, we find that the susce
tibility is also renormalized such that the Wilson rati
gsTdyxusTd is constant. In fact, the Wilson ratio is the
same as that of free Dirac fermions because quasipartic
are well defined and Fermi-liquid-type corrections are a
sent, as discussed earlier.

To check this conclusion, we calculatexu andcel
y in a

gauge invariant way, using the correction to the free ener
due to gauge fluctuations. We consider only the leadi
correction in1yN , which isO s1yN0d:

DF ­
1

s2pd3

Z
d2q

Z `

2`
dvnsvd

3 tan21

µ
ImP

'
F sv, qd

ReP
'
F sv, qd

∂
. (10)

The entropy shiftDS s­ 2≠DFy≠T d due to gauge fluc-
tuation has two contributions:DS1 from the temperature
dependence of the Bose functionnsvd ­ 1yfexpsvyT d 2

1g and DS2 from the temperature dependence of fermio
polarization. Numerically, we find that the former give
a ,T 2 contribution to entropy, while the latter, which can
be written as

DS2 ­
21

s2pd3

Z jqj,TUV

d2q
Z `

2`
dvnsvd

3 Im

µ
D'

F
≠

≠T
P'

F

∂
(11)

sTUV ­ high energy cutoffd, gives a singular contribution
~ 2T2 ln T . The gauge fluctuation contribution toxu

sDxud is obtained by taking2≠2y≠H2 at H ­ 0 of
DFsHd. This approach corresponds to summing th
bubble diagrams for the vertex correction and the se
energy correction. It takes the form,

Dxu ­
21

s2pd3

Z jqj,TUV

d2q
Z `

2`
dvnsvd

3 Im

µ
D'

F
≠2

≠m
2
F

P̃'
F

∂
, (12)

where ≠2P̃'y≠m
2
F is a shorthand notation for

≠2P'sv, q; mFdy≠m
2
F jmF ­0 in which P'sv, q; mFd

is the transverse polarization function of Dirac fermion
with finite chemical potentialmF . This expression, which
closely resembles that ofDS2, gives a singular contri-
bution ~ 2T ln T . Note that the expressions forDS2
and Dxu are also applicable to (nonrelativistic) uRVB
gauge theory [11,16], but they are usually ignored in th
case because they give only subleading corrections wh
DS1 generates a singular correction~ T2y3 [16], unlike
our case in whichDS2 dominate at low temperatures
,
5].
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Summarizing our numerical evaluation, we have

Dxu ­
0.358

y
2
D

T ln
TUV

2.4T
, Dcel

y ­
2.79

y
2
D

T 2 ln
TUV

2.6T
(13)

at low temperaturessT , ,TUV y5d in agreement with
Eqs. (9).

We now discuss our results in light of the experimen
In Fig. 1(a) we plotxu of YBa2Cu3O6.63, a prototypical
underdoped (bilayer) cuprate, from the Knight shift da
of Takigawa et al. [4] We took the liberty of moving
the zero ofxu by 0.27 statesyeV Cu(2), which is within
the error bars corresponding to uncertainty in the orb
contributions Korb sxu ~ Kspin ­ K 2 Korbd. This
change avoids the unphysical situation of Ref. [4]
which 63K

spin
ab , 17K

spin
iso , 17K

spin
c , 0 at T ­ 0. Further

support for the adjustment of 0 comes from precision me
surements of the Knight shifts in YBa2Cu4O8 by Bankay
and collaborators [5] who made a substantial upward s
of Kspin from their previous values [19]. We find tha
the normal state data of Ref. [4] are well fitted (sol
line) by xusT ; yD , TUV d ­ Dxu 1 x0

u . HereDxu is the
numerical evaluation of Eq. (12) whose low-T behavior
is given by Eq. (13), andx0

u is the uniform susceptibility
of bare Dirac fermions with the same upper cutoffTUV :
x0

u ­
4

y
2
Dp

TF sTUV y2T d, F sxd ­
Rx

0 yy cosh2 ydy. The
two parameters in the fit are chosen to beyD ­ 0.76J
and TUV ­ 0.63J, where we set the antiferromagnet
exchange energyJ ­ 1500 K. We expect the gauge
fluctuations to be suppressed in the superconduc
state (due to Higgs mechanism) so thatxu should cross
over tox0

u (dashed line) at low temperatures. This is
qualitative agreement with the data belowTc. The inset
of Fig. 1(a) shows a similar fit for the spin Knight shift
of YBa2Cu4O8 [5], which is again very good. Thus ou
theory can account for the susceptibility in both the norm

FIG. 1. (a)xu of YBa2Cu3O6.63. Inset: spin Knight shifts of
YBa2Cu4O8. The vertical lines indicateTc. The symbols are
as in Refs. [4,5]. The dashed line is the susceptibilityx0

u of
free Dirac fermions, and the solid line is the fit to our theor
which includes gauge fluctuations. (b)gsT d of YBa2Cu3O6.67.
(c) xu of La22xSrxCuO4 (see text). (d)gsT d of La22xSrxCuO4.
2111
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and superconducting states, without the need to adj
the energy scale of the gap parameter.Using the same
parametersyD andTUV as in the fitting of YBa2Cu3O6.63

Knight shift data, we plotg ­ Dcel
y yT 1 g0 (where

g0 ­
16

y
2
Dp

GsTUV y2T d, Gsxd ­
Rx

0 y3y cosh2 ydy) in
Fig. 1(b). Also shown is the experimental data forgsT d
of YBa2Cu3O6.67 [7]. Rough agreement of scales betwee
the curves is quite encouraging.

In monolayer La22xSrxCuO4, the uniform susceptibility
is usually deduced from bulk susceptibility by subtractin
the core diamagnetismxc and Van Vleck paramagnetism
xVV . Figure 1(c) showsxu of La22xSrxCuO4 obtained
by subtracting the powder average valuexVV 1 xc ­
20.5 statesyeV [20] (there’s some uncertainty in the
value ofxVV ) from the bulk susceptibilityx [3]. The data
can be characterized byxu ­ Dxu 1 x0

u 1 xconst, with
syD ­ 0.99J, TUV ­ 1.17Jd for x ­ 0.10 and syD ­
0.79J, TUV ­ 0.65J) for x ­ 0.14. Unlike the YBCO
compounds, the temperature independent partxconst . 0
is needed for a reasonable fit. Regarding the specific h
data of LSCO, cutoffs significantly smaller than the one
used forxu are needed to fitg of the same compound
in terms ofg ­ Dcel

y yT 1 g0 1 gconst. In Fig. 1(d) we
have kept the sameyD as in Fig. 1(c), but used smaller
cutoffs (TUV ­ 0.8J for x ­ 0.1 and TUV ­ 0.49J for
x ­ 0.135) to fit the g data [6]. This discrepancy and
the origin of nonzerogconst and xconst are not well
understood. Thexconst . 0 feature in LSCO has been
emphasized by some [21] to be important evidence th
the bilayer structure is important for spin gap behavio
Recent experiments on trilayer HgBa2Ca2Cu3O81d [22]
and monolayer HgBa2CuO41d [23], however, find similar
spin gap behaviors as in YBCO, suggesting that LSCO
a rather special case.

Despite reasonable agreement, we feel that the ab
comparisons do not provide a conclusive test, becau
the Tc is too high to probe the normal state infrare
behavior for a wide range of temperature. In fact, mo
of the bending feature seen in thegsT d data is presumably
related to the high energy cutoff (the deviation from linea
Dirac spectrum) which has been treated in a caval
manner here by using a hard cutoffTUV . The low-T
curvature inxu data (d2xuydT2 , 0; faster decrease at
lower temperature) seems to support the gauge fluctuat
picture, but it may not be simple to separate this effect fro
the curvature due to high energy cutoff. Nevertheless,
view that the theory advocated here presents a simple
appealing picture of the spin gap phase. In this theory,
new energy scale is introduced to distinguish the spin g
phase and the superconducting phase; the Dirac velo
in both phases is taken to be the same. Rather, it is
gauge fluctuation that distinguishes the phases by caus
the enhancement ofxu andg in the normal state.

Instead of a conclusion, we recapitulate some issu
that have been glossed over. We have ignored thea0

field whose effect may not be totally innocuous [24]. I
fact, we have checked thatin the absence of bosonsthe
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contributions toxu and cel
y derived from the free energy

shift due to thea0 fluctuation cancel the singular contribu-
tions from transverse gauge fluctuation, in agreement with
the nonrenormalization of Dirac velocity in a Lorentz in-
variant situation. Also, we have not treated contributions
from the Bose sector, especially in regard to the entropy
Last, we mention the issue of whether the renormaliza-
tion of the fermion propagator feeds back to the gauge
propagator. In the nonrelativistic gauge theory [11,16],
the density-density correlation function and the transverse
gauge propagator receive only subleading corrections [18]
This might not hold any longer in our case. At present it
is not clear as to what extent the transverse propagator
modified by the “feedback effect” and to what extent this
affects the physical picture.
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