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In Situ Band Gap Engineering of Carbon Nanotubes
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Bond rotation defects close the gap in large-gap nanotubes, open the gap in small-gap nanotubes, and
increase the density of states in metallic nanotubes. Not only are these defects likely to be present in
as-grown nanotubes, but they could be introduced locally into intact nanotubes, thereby opening a new
road towards device applications. [S0031-9007(97)03973-2]
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The vanishing Fermi surface of a graphite sheet impliesramework in pentaheptite is slightly lower than in§s
either semiconducting and metallic behavior in carborbolstering the notion that bond rotations are plausible enti-
nanotubes [1] depending on circumferential boundary conties. Unlike a single sheet of graphite, pentaheptite within
ditions [2]. Indexing tubes by the number of lattice vectorsboth LDA and tight binding (TB) is a metal with a substan-
around a circumference, theory predicts thatn) tubes tial Fermi surface around theé point and 0.1 states per eV
are metals(n, n + 3i) tubes (withi an integer) are small- per atom at the Fermi energy [8]. Within an extended zone
gap semiconductors WitHg,, > 2> and other tubes have scheme, increasing the density of bond rotation defects in
larger gaps proportional té. This classification, based 2 graphlte shee_t should continuously trangform the F_erml
on band folding and hybridization, depends critically onP0INts of graphite at the edges of the Brillioun zone into
the size and location of the graphitic Fermi points. the Fermi surface of pentaheptite around Since the cir-

Progress towards measurements on nanotubes of a wefidmferential boundary conditions of a nanotube slice the
defined index motivates a reassessment of these elega®tn€ quite thinly, this expansion and motion of the Fermi
theoretical predictions for pure nanotubes. It has alread§urface has dramatic effects on tube electronic structure
been shown that a pentagon-heptagon defect creat¥€n atlow defect concentrations. _

a metal/metal, metal/semiconductor, or semiconductor/ 10 flesh out these intuitive observations we have per-
semiconductor heterojunction [3] between two perfectformed extensive TB and LI_DA calculations for defectl_ve
semi-infinite half-tubes with different indices. This defect N@notubes of each electronic flavor. The (7,0) tube is a
causes a global change in structure and hence cannot BgMmiconductor with a large band gap-ef Vin TB. The
induced locally. In this Letter we analyze topological (5:5) tube is a metal with 0.05 states per eV per atom at
defectswithin a single nanotube of well-defined index, the Fermi energy. The (9,0) tube is a semiconductor with
defects which allow band gap modification beyond tha@ Small hybridization-induced gap 6f0.07 V. TB cal-

expected for perfect nanotubes. culations using the parametrization of Ref. [9] were rein-
A I local bond rotation [4] in a graphitic network forced byab initio norm-conserving [10] pseudopotential
creates two pentagons and two heptagons, calculations in the LDA [11]. The LDA calculations used

a supercell with well-isolated tubes 5.5 A apart. An en-
ergy cutoff of 40 Ry in a plane-wave basis yielded band
energies converged to 0.04 eV. An LDA cross-check of
M) the TB results is most important in the smallest tubes,
’ in which curvature-induced hybridization can reduce the
a Gaussian curvature quadrupole which does not changgmp [12]. The (9,0) and (5,5) tubes are large enough that
the global tube index. A bond rotation in a typical carbonLDA and TB results for the electronic structure around
nanotube costs 4-5 eV with a kinetic barrier of 7 eVthe Fermi level are very similar.
against a planar rotation [5], large enough to guarantee Coordinates of defective tubes were generated by ro-
metastability at room temperature [6]. tating one, two, or three bonds in a supercell of a per-
To understand the electronic effects of bond rotation irfect tube and relaxing the resulting structure with tight
nanotubes we first examine pentaheptite, a planar carbdsinding molecular dynamics (TBMD) [13], allowing the
material composed entirely of pentagons and heptagorexial unit cell length to vary. The roles of curvature-
[7]. Within the local density approximation (LDA) penta- induced hybridization and periodic boundary conditions
heptite is 0.33 eYatom higher in energy than an isolated were clarified by unrolling the tube unit cells and perform-
graphite sheet. The energetic cost of distorting 4pé  ing similar calculations on the resulting flattened sheets of
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defective graphite. Unless otherwise noted, a line througbktructures of the 84-atom (126-bond) sheet and tube with
the heptagons [ pentagons] is parallel to the tube axis in thtne defect at a5 angle to the tube axis. The defects
(7,0) and (9,0) [(5,5)] tubes. When two defects inhabit thedecrease the gap by 15%, compared to 60% for paral-
supercell they are spaced evenly on opposite sides ¢l alignment. Similar but smaller differences arise when
the tube. When three defects inhabit the supercell thethe defects alternate from one side of the tube to another
are distributed uniformly. in a doubled unit cell. Although the size of the gap re-

The pure (7,0) tube has a large gap which is reflecteduction changes, the qualitative picture is preserved, with
in the (7,0)-derived planar graphite supercell by the largéond rotation defects closing the gap. The robustness of
distance between the Fermi points and th& line, the the continuous evolution in electronic structure through
line comprising thek values allowed by circumferential systems of different sizes with different defect arrange-
boundary conditions in the corresponding tube. Rotatingnents in both tight binding and the LDA suggests that
one bond in two hundred reduces the tube gap by 30%this mechanism of defect-induced metallization has gen-
40% (Fig. 1). The mechanism for gap closure in theeral relevance for large-gap carbon nanotubes.
tube is best understood via the sheet calculations (Fig. 2). Since one line of allowed values in an(n,n) tube
Bond rotation defects in the sheet move the Fermi surpasses from the extended zone graphitipoint to the
face closer to thd-X line, closing the gap of the corre- K point, the motion of the Fermi point along this line
sponding nanotube. Two defects within a 56-atom unifrom K to I" upon introduction of bond rotation defects
cell suffice to close the tubular gap. Curvature-inducedhould not open a gap. We explore this situation through
hydridization aids this metallization: The correspondingcalculations on defective (5,5) nanotubes. As expected,
sheet at this defect density still maintains a small gapdefects do not open a gap, but instead increase the density
Within an extended zone scheme based about the originaf states at the Fermi level as the large7* band
graphitic cell with a two-atom basis, the gap closes as thédispersion decreases (Fig. 4). The corresponding sheet
Fermi surface moves from th€ point towards the closest calculations show the Fermi points moving along the
line of allowedk values in the direction of thé& point I'-X line with band dispersion very similar to that of the
(see Fig. 3). Since the lines of allow&d/alues miss the associated tubes. When the defects in neighboring cells
Fermi points by a wide margin in the pure (7,0) tube, anyare almost touching, a flat impurity band crosses the Fermi
motion and expansion of the Fermi points upon introducievel. Although the electron-phonon matrix elements in
tion of defects is likely to close the gap. LDA calculations
yield a similar 40% reduction in the band gap under 1%
bond rotation, but the absolute values of the band gaps are
smaller due tar*-7* hybridization not included in the TB
parametrization [12].

Are these results sensitive to the locations and align-
ments of the defects? We recalculated the electronic
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FIG. 2. Two bond rotation defects in a 56-atom graphitic
supercell move the Fermi surface towards thepoint along
FIG. 1. Evolution of the band structur&(k) and gap of the I'-Y line of the sheet Brillouin zone. Since the periodic
(7,0) tubes upon increasing the concentration of bond rotatiothoundary conditions in the corresponding tube pick outlthg
defects. Fractions indicate the number of rotated and unrotatdihe, this motion of the sheet Fermi surface closes the gap of
carbon-carbon bonds within the supercell. the defective tube.
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Motion and expansion of the graphitic Fermi points can

| ) also open the gap of the corresponding tube. (Fhe +
' remans X 3i) nanotubes have small hybridization-induced gaps; the
g graphitic Fermi point is essentially adjacent to the line
om N S of allowed k values. In these tubes the defect-induced
gapdoses L.© ‘;‘;g‘;ﬁﬁm evolution of the extended two-dimensional zone Fermi

surface fronK to I' can pull the Fermi surface away from
the adjacent line of allowedl values, thereby opening a
gap. This process is visible in the electronic structure
of the defective (9,0) tube, in which the gap opens
FIG. 3. Schematic diagram showing the evolution of thefrom 0.07 to 0.5 eV as the defect concentration increases
electronic structure of a graphitic sheet upon introduction offrom zero to two bonds in 108 (Fig. 5). Thereafter, the
bond rotation defects. The dashed lines show alloiedlues  oytended-zone two-dimensional Eermi surface approaches
for large-gap, small-gap, and metallic tubes. the next line of allowedk values and the gap closes.
The bond rotation also breaks the degeneracy of7the

and especially ther* bands. Similar gap openings are
small tubes should be moderately large [14], a defect-fre@xpected in other defective, n + 3i) tubes.

(n,n) tube is a very poor BCS superconductor unless the are these defects visible in real space? Bond rotation

density of states is increased by doping the system awa¥efects with the line through the centers of the heptagons
from the =-7* crossing. Using bond rotation defects to

k ; arallel to the tube axis form only a slight (0.2 A) out-
increase the density of states may have an advantage m&érd pucker in the side of a nanotube. However, when a

chemical doping since alkali doped superconducting C |ine petween the pentagons is parallel to the tube axis, the

and gr_aphlte are not air stable. ) positive curvature of the pentagons forms a divot which
Motivated by experiment, we also examine bond ro-ig compatible with optimally oriented saddles of negative

tation defects in (10,10) tubes, the most common comgnature from the heptagons, yielding a divot approxi-

ponent of recently synthesized single-walled nanotubgnsiely 0.9 A deep. Although the distortion is large, the
bundles [15]. One bond rotation defect aligned with the,,per of atoms involved is small, suggesting that the de-

axis of a 160-atom supercell breaks the electron-hole symg (s are difficult to see in a transmission electron micro-
metry while shifting and splitting the Van Hove singulari- gcope - Alternatively, a scanning probe microscope could
ties in the density of states on a scale of 0.5 eV. New statggso|ve these defects on the surface of a nanotube. Recent
associated with the atoms in the pentagons and heptagogs,nning tunneling microscopy experiments have spectro-
appear within the metallic plateau near the Fermi energyqqnically resolved purely pentagonal defects near the tips
and increase the density of states by roughly 25%. of carbon nanotubes [16].

The density of bond rotation defects would be small

in thermodynamic equilibrium. At 4-5 eV per defect
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FIG. 4. Evolution of the band structurE(k) and density of
states of (5,5) tubes upon increasing the concentration of bonBIG. 5. Evolution of the band structur&(k) and gap of
rotation defects. (*) Two rotated bonds within a 60-bond (40- (9,0) tubes upon increasing the concentration of bond rotation
atom) unit cell yield a flat defect band with an anomalouslydefects. The gap is maximal when two defects occupy a 108-
high density of states of 1.5 per atom per eV. bond supercell.
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