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Exact Kohn-Sham Exchange Potential in Semiconductors
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A new Kohn-Sham method that treats exchange interactions within density functional theory
exactly is applied to Si, diamond, GaN, and InN. The exact local exchange potential leads to
significantly increased band gaps that are in good agreement with experimental data. Generalized
gradient approximations yield exchange energies that are much closer to the exact values than those
predicted by the local density approximation. The exchange contribution to the derivative discontinuity
of the exchange-correlation potential is found to be very large (of the order of 5—-10 eV). [S0031-
9007(97)04017-9]

PACS numbers: 71.15.Mb, 71.45.Gm, 71.55.Cn, 71.55.Eq

All current electronic structure calculations of solids thatright-hand side of Eq. (1) can be calculated rigorously
are based on the Kohn-Sham (KS) method of densityfrom E,, from first order perturbation theory, and by
functional theory [1] approximate both the exchange asnvoking linear response theory [7,8], respectively.
well as the correlation potential and the corresponding Because of the Hohenberg-Kohn theorem, there ex-
energies. Most frequently, the local density approximatiorists a one-to-one mapping between the potentials(r)
(LDA) [1] or generalized gradient approximations (GGA) and densitieso(r) which guarantees that the functional
[2-5] are employed. Recently, several schemes havderivative § Vis(r)/dp(r') is defined. Its matrix repre-
been proposed to calculate the KS exchange potentigentation has to be constructed by invertidg /6 Vs
rigorously [6—9]. The first practical implementations of on a restricted function space @&p(r) and 6 Vks(r)
these schemes for solids gave encouraging results fahat excludes constant functions. This can most easily
band structures in semiconductors, but were forced to udge achieved by representing the KS orbitals and poten-
shape approximations for the potentials [9,10] or averagetials in a plane-wave basis and excluding the zero wave-
eigenvalue gaps in the one-particle Green function [11,12}vector components [8]. In a plane-wave representation,

In this Letter, we present aexactdetermination of the with G, G’ denoting reciprocal lattice vectors, one obtains
KS exchange potential, its discontinuity, and the exchange
energy for solids, and discuss results for Si, diamond, V.(G) = Z [EG') + E*(-G"]xo '(G.G)), (2)
GaN, and InN. In addition, the exact treatment of the G'#0

exchange interaction enables us to assess the quality of 1

_ NL /
conventional approximate KS methods. Our calculations EG) = Q %{(vlex (r.r)lck)
are based on a recently developed general procedure [7,8 _
y developed genera p L7.8] X ponk(—G) ek — £al ™. (3)

that allows one to evaluate the local KS exchange potential
V,(r) rigorously. The potential, (r) equals the functional ’
derivative of the exchange enerdy, with respect to  xo(G,G') = = ijjck(G)pwk(G’) [evk — k]l
the electron density (r). This derivative is not directly Q

. : . . ()]
accessible, however, sindg, is known only in terms of
the one-particle KS states;, and the explicit functional where p.,x(G) = (ck|exdiG - r]|vk), &,k are the va-
dependence of the orbitals; on the electron density is lence ¢) and conduction ) state KS eigenvalues of
unknown. The key idea of Ref. [7] is to determifig(r)  Bloch momentunk, and Q) denotes the crystal volume.
by noting that the exchange potential requires only thérhe operato’ N in Eqg. (3) has the same form as the non-
knowledge of thdirst order change ofE, with respect to local Hartree-Fock exchange operator but is constructed
the density. One may employ the chain rule to obtain, inwith KS one-particle states. The inverse gf is to be
a shorthand matrix notation, taken in the subspace of nonzero reciprocal lattice vec-

SE < SE S SV tors and is denoted by, '. Note that the zero wave-

v, = 25 — Z|:_x 2% c.c.} KS (@) vector component o¥/, can be chosen arbitrarily since
5p i 5¢, (SVKS 1)

vck

p the KS orbitals are invariant with respect to adding a con-
In Eqg. (1), Vks denotes the total local potential in the stant to the KS potential. If correlations are neglected,
single-particle KS Hamiltonial' + Vs, the eigenstates the solution of the KS equations with the exchange po-
of which are¢;. The three first-order derivatives on the tential of Eq. (1) represents an exact “exchange-only” KS
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procedure which is physically equivalent to the so-calledexact potential. This is due to the unphysical, repulsive,
optimized potential method (OPM) [6] that has only beenself-interaction that is contained in the LDA. Other
applied to atoms so far [6,11,13]. However, a straightfor-gradient approximations [2,3,5] show similar trends and
ward extension of this method to periodic systems leadgield too large exchange potentials in regions of low
to divergencies since the integral kernel of the OPM in-density. In accord with these findings, the EXX method
tegral equation is not invertible for infinite systems. Theyields a more pronounced variation of the valence charge
present exact exchange formalism, that we abbreviate byensity across the [111] axis than LDA as shown in
EXX, eliminates these divergencies exactly. Fig. 1(b). The GGA methods tend to overestimate this
Equation (2) gives the exact local KS exchange potentiainore pronounced inhomogeneity of the charge density.
Vks in a form that is well suited for pseudopotential plane-These trends in the exchange potentials and densities are
wave calculations. In order to rigorously stay within the present in all semiconductors that we have studied. The
density functional framework, the external potential in thefollowing values (given in parenthesis) are the maximum
KS equations should be local as well. We have thereforand minimum valence electron densities, respectively, in
employed a local ionic pseudopotential for Si [14] at first. A~3 along the [111] axis analogous to Fig. 1. Diamond:
In addition, we have evaluatéd using standard nonlocal, LDA (0.095; 2.03), GGA [4] (0.066; 2.13), and EXX
norm-conserving pseudopotentials [15]. (0.078; 2.06). GaN: LDA (0.039; 3.41), GGA [4] (0.022;
All densities and electronic energies were determine@®.55), and EXX (0.031; 3.41).
with ten speciak points. Kinetic energy cutoffs of 25,  The accuracy of an approximate density functional
65, 45, and 40 Ry, for Si, diamond, GaN, and InN, re-E?P[ p] can be assessed in two ways. One may determine
spectively, were used, and the band summations includettie deviation from the exact functiondi®XX[p] at a
all conduction bands. The matrix size gf lay be- given, fixed reference densipf. Alternatively, one may
tween258 X 258 and458 X 458. We have checked very determine the self-consistent densifif? that corresponds
carefully that the presented band gaps are converged to this functional and compatgiP?[ p*PP ] with the exact
0.02 eV, LDA and GGA energies to 0.01 gstom, and value EEXX[ pEXX]In Si, we find the exact exchange
EXX and Hartree-Fock energies [16] to 0.04 &¥om. energy EEXX[pEXX]  evaluated at the self-consistent
Figure 1(a) depicts the exact and approximate exchanggensitypF*X, to equal—29.40 eV/atom. Here, the local
potentials of the valence electrons in silicon along thepseudopotential [14] has been employed again. In Fig. 2,
[111] direction. The LDA potential underestimates thethis result is compared to those obtained with several
spatial variation of the exchange potential significantly.approximate functionals [2—-5]. The LDA exchange
In the physically most relevant bonding region in betweerenergy is—27.72 eV/atom and deviates from the exact
the Si atoms, V5G4 is seen to be superior to the LDA value by a very significant amount of 6% whereas all
potential that is less attractive and smoother than thgradient approximations show much improved values.
Thus, gradient approximations that have been originally
fitted to atomic data show a remarkable transferability to
extended systems. Figure 2 also shows that the agreement
with the exact energy deteriorates if one calculates the
exchange energigsiPP[ p*PP | self-consistently. We note
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FIG. 1. (a) Comparison of the calculated exact exchange
potential (open circles), in eV, along the [111] direction in Si -8k
with the approximate LDA (dashed line) and GGA (solid line)
[4] exchange potentials. The filled black circles correspond td=IG. 2. Exchange energy differences of Si, in percent, as
the positions of the Si atoms. The LDA and GGA potentialscalculated using the LDA [17], GEA [5], PW86 [2], PW91l
were evaluated at the exchange-only EXX density and th¢3], and BE88 [4] approximate exchange functionaié®,

local ionic pseudopotential was employed. The mean valueselative to the EXX exchange energy. The grey bars have
of all exchange potentials have been set equal to zero. (d)een calculated for the fixed densipF*X. The black bars
Self-consistent charge densities computed with the indicatecepresent results from self-consistent, approximate exchange-
exchange-only functionals. only calculations using the charge densitifr.
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that these self-consistent calculations were performe®ABLE I. Energy gaps (in eV) and exchange pafts of the

without taking correlation contributions into account. discontinuity (i.n eV) for various sem.iconductors. The minimal
The self-consistent total energ&Ff‘X[pEXX] in Siis 9aPEg, and higher band gaps, relative to the top of the valence
Ol

. band, are given. The calculated values shown are obtained by
found to be equal to-104.75 eV/atom. This has to the LDA and the present EXX method, respectively. For Si,

be compared with the exchange-only LDA and GGA [4]values computed with local and nonlocal pseudopotentials are
values of—103.21 and —104.92 eV/atom, respectively. shown. The experimental value for InN refers to the wurtzite

Thus, the relative error is-1.5% for LDA and only 0.2%  Structure.

for the GGA of Ref. [4]. All these findings show clearly LDA EXX A, Expt.
that GGA exchange and total energies are definitely— -
superior to the ones obtained within the LDA. We Si L 154 2.36 5.84 24
obtained very similar trends in all the other solids that{local) EF S;g i'ig gig icljg
we have investigated. ) &P ' ' ' '
The self-consistently determined Hartree-Fock ex-S! L 145 230 598 24
change and total energies are29.61 eV/atom and ("oniocal) EF S'ig i'iz g'gé icljg
—104.87 eV/atom, respectively, in Si. Thus, they are &P ' ' ' '
very close to the corresponding EXX values. The samé& L 8.42 9.19 10.18
holds for the self-consistent Hartree-Fock and EXX T 5.57 6.28 9.29 7'(3(,7
densities that deviate by less thaf *% at the bond Eeup 4.16 5.06 870 54
center. Similar findings have been reported for atom&aN L 458 594 8.40
before [11]. We point out that the difference between g( é'gg g'gg ;'gg 3.30
Hartree-Fock and exchange-only EXX is thé&t is : : '
evaluated with Hartree-Fock orbitals and Kohn-Shani"N 1': 3.1189 142?(? 67'14: Lok
orbitals, respectively. In the former method, the single X .94 4.68 676

particle equations contain rronlocal exchange potential,
whereas the EXX method leads tdazal potential. This  2Ref. [24].
locality may be considered as an additional restriction for’Ref. [25].
the wavefunctions, which causes the EXX total energy toRef. [26].

be higher than in Hartree-Fock. ZRef. [27].
In Table I, we summarize the fundamental band gap$Ref- [28].

in Si, diamond, GaN, and InN as obtained by the LDA o (26}
and EXX method, respectively. In both cases, we have

included LDA correlations [17], even though they are ) ) ) )
found to raise the gaps by only 0.1-0.2 eV in all materialg®S summarized in Table II, the different pseudopotentials

and in both methods. In the case of Si, the use of locahave very little influence on the EXX results in Si. By
or nonlocal pseudopotentials makes very little differencecontrast, the KLI approximation for the valence electrons
For all considered semiconductors, the EXX band gap! S€en to have a very noticeable effect on band gaps.

are roughly 1 eV larger than the corresponding LDA The exact KS band gap differs from the true band gap
gaps and in much better agreement with experiment. ThigY @ finite discontinuityA,. of the exchange-correlation
systematic improvement can be attributed to the absendtential [20], whose size has not been unambiguously de-
of the self-interaction in the EXX formalism. In the LDA termined until now [21]. Fortunately, the exact exchange
method, the self-interaction is well known to raise thePotential enables us to calculate the exchange contribution
more localized valence states relative to the delocalized

conduction band states and to diminish the gap.

In Table I, we compare the presently calculated band’ABLE Il. Comparison of band gaps in Si, calculated with
gaps for silicon with results obtained by alternativeth® present EX); m_etEOd a”ﬁ ?}ther SChemehS that go fb?yo.“d
density functional or quasiparticle methods. Both thet?éo‘udggo?gr:ﬁglts2‘7‘1'1%'03236‘;;9%3? row, the types of lonic
EXX/ASA [9,10] and the KLI method of Ref. [12] also
attempt to compute the exchange potential exactly. The  EXX  EXX =~ EXX KLl # EXX/ASA® GW°
former method employs a shape approximation (atomi§' (LDA) (EXX)" (KLh® (KLD*®

sphere approximation, ASA) for the KS potential and den-L  2.30 2.35 2.26 1.82 1.98 2.27
sity. The KLI method uses an averaged eigenvalue apl’ 3.29 3.26 325 287 2.87 3.35
proximation in the one-particle Green function containedX 158 150 149 0.94 1.24 1.44

implicitly in Egs. (3) and (4). In order to check the de- aget [1g).
pendence of the results on the type of pseudopotential, wegef. [10].
have employed standard LDA [15] as well as relativis- :Ref. [29].
tic KLI [18] and (consistent) EXX [19] pseudopotentials. “Ref. [19].
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A, to the discontinuity exactly. Itis given by [22,23] [6] J.D. Talman and W.F. Shadwick, Phys. Rev.14, 36
_ NL _ _ /I\/NL / (1976).
Ay = (cklV, Vilek) = (wkIlV, Vilvk?)., [7] A. Gorling and M. Levy, Phys. Rev. /&0, 196 (1994);
(5) Int. J. Quant. Chem. Symg9, 93 (1995).

where |ck) and |vk’) denote the energetically lowest [8] A. Gérling, Phys. Rev. B53, 7024 (1996).

conduction and highest valence band states, respectivelyl®] T- Kotani, Phys. Rev. Lettr4, 2989 (1995).

As can be deduced from TableA, amounts to typically 0] T- Kotani and H. Akai, Phys. Rev. B4, 16 502 (1996).
twice the band gap. Since the discontinuity, is L1 ‘ibli'(g'g%er' Y. Li, and G.J. lafrate, Phys. Rev. 4%,
gua?r"?".‘teed to be sm'aller tha_n the true band gap bY I32] D.M. Bylar.1der and L. Kleinman, Phys. Rev. Left4,
definition, the correlation c_ontnbutlon to the discontinuity 3660 (1995): Phys. Rev. B2, 14566 (1995)ibid. 54,
must cancel a large portion of the exchange p&st 7891 (1996).

Importantly, the sum of the EXX band gap ankl  [13] E. Engel and S.H. Vosko, Phys. Rev.4%, 2800 (1993).
turns out to be almost identical to the Hartree-Fock[14] J. lhm, M.L. Cohen, and D.J. Chadi, Phys. Rev2B
band gap; the differences are found to be less than 3% 4592 (1980).

in the semiconductors that we have studied. This cafit5] N. Troullier and J.L. Martins, Phys. Rev. B3 1993
be understood by assuming the difference between the (1991); G.B. Bachelet, D.R. Hamann, and M. Schliter,
Hartree-Fock and the exchange-only EXX orbitals to be _ Phys. Rev. B26, 4199 (1982). .
negligible. With this assumption, the matrix element[16] In this context, we have used the method of F. Gygi and
(@:ilVi: — V.lg;) equals the difference between the ?'PB%deéeSCh"ggysz' Rev. Bg,h44og (\11298?648 1081
ith Hartree-Fock and exchange-only EXX one-particle[ }3.P. Perdew and A. Zunger, Phys. Re2® ( )

. 18] D. M. Bylander and L. Kleinman, Phys. Rev. B, 9432
energy. Thus,A, equals the difference between the[ ) (1997)_y Y

Hartree-Fock and the EXX ei_genvalue gaps. \We not§ig] M. Moukara, M. Stadele, J. A. Majewski, A. Gorling, and

that one may interpret the right-hand side of Eq. (5) P. Vogl, unpublished.

alternatively as the exchange contribution to the excitatiof20] J. P. Perdew and M. Levy, Phys. Rev. Leftl, 1884

energy between any pair of valence and conduction band  (1983).

states [22], and we have included several of these valudgl] R.W. Godby, M. Schliiter, and L.J. Sham, Phys. Rev. B

in Table | as well. 37, 10159 (1988); O. Gunnarsson and K. Schénhammer,
In conclusion, we have provided a way to take into ac-___ Phys. Rev. Lett56, 1968 (1986). _

count exchange in the KS theory exactly that may be conl?2] A- Gorling and M. Levy, Phys. Rev /52, 4493 (1995);

- - - - . . A. Gorling, Phys. Rev A64, 3912 (1996).
sidered a rigorous starting point for treating correlations. ! X : ) .
We are indebted to L. Kleinman and D.M. Bylan- [23] J.P. Perdew, irDensity Functional Methods in Physjcs

) . . ) edited by R.M. Dreizler and J. da Providencia (Plenum,
der for making their KLI pseudopotentials available New YOI’)II( 1985), p. 265. (
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