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Invariants for Correlations of Velocity Differences in Turbulent Fields
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The phenomenology of the scaling behavior of higher order structure functions of velocity differenc
across a scaleR in turbulence should be built around the irreducible representations of the rotatio
symmetry group. Every irreducible representation is associated with a scalar function ofR which
may exhibit different scaling exponents. The common practice of using moments of longitudin
and transverse fluctuations mixes different scalar functions and therefore may mix different sca
exponents. It is shown explicitly how to extract pure scaling exponents for correlation functions
arbitrary orders. [S0031-9007(97)03993-8]
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Traditional measurements of anomalous scaling in tu
bulence are based on hot wire technology which yiel
information about the longitudinal components of the v
locity field usr, td [1]. Accordingly, it is customary to
consider the structure functions of longitudinal velocit
differences:

SnsRd ­ kfdulsr, R, tdgnl , (1)

dusr, R, td ; usr 1 R, td 2 usr, td , (2)

du,sr, R, td ; dusr, R, td ? RyR . (3)

It is well known that these structure functions appe
to scale with scaling exponentz ,

n which are anomalous
(nonlinear functions ofn):

SnsRd , Rz ,
n . (4)

Only recently has it become feasible, due to advances
experimental technology [2–4], and even more so in co
putational methods [5–7], to measure other compone
of the velocity field. In particular, a number of group
have focused on the transverse components

dutsr, R, td ; dusr, R, td 2 du,sr, R, tdRyR . (5)

These groups studied the scaling exponents of the tra
verse structure functions

TnsRd ­ kjdutsr, R, tdjnl , Rz t
n . (6)

Two sets of measurements appear to imply that the scal
exponentsz ,

n are the same asz t
n within experimental

uncertainty [2,3], whereas other numerical [5–7] an
experimental [4] studies indicate the opposite, i.e., thatz t

n
are significantly smaller thanz ,

n for n $ 4.
The main point of this Letter is to demonstrate tha

higher order structure functions of longitudinal and tran
verse moments are not likely to exhibit clean scaling b
havior, since they mix different scalar functions ofR
which may scale with different scaling exponents. In e
perimental and numerical studies in which all the comp
nents of the velocity field are available it is advisable
consider moments that are invariant under rotations [
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such invariants are expected to scale with pure scaling e
ponents that can be extracted from the data.

The problem of mixing of different scalar functions
does not exist for the second and third order momen
of the longitudinal and transverse components. It i
worthwhile to go in detail through the analysis of the
second order moment in order to see why the longitudina
and transverse components are not a good choice, a
why at the end it does not matter at this order. In
an isotropic homogeneous medium without helicity (with
inversion symmetry) the relevant symmetry group is the
rotation group SO(3) whose irreducible representation
can be expressed using the spherical harmonicsY,,m. The
most general form of the second order moment of velocit
differences has contributions from, ­ 0 and 2:

kduasr, R, tddubsr, R, tdl ­ daba0sRd

1

∑
dab 2

3RaRb

R2

∏
a2sRd .

(7)

The coefficients in this expression carry the index,,
multiplying terms that are irreducible representations o
the rotation group of dimension2, 1 1. The dimension
of the irreducible representation is the number of tenso
components that transform to one another upon rotatio
of the system of coordinates. All the tensor component
of a given irreducible representation with a given value o
, must have the same coefficient which depends only o
R. On the other hand, the scalar functionsa0sRd and
a2sRd may have different scaling exponents.

Computing now the longitudinal and transverse mo
ments we find

kdu,du,l ­
RaRb

R2
kduadubl ­ a0sRd 2 2a2sRd , (8)

kdut ? dutl ­ kjduj2l 2 kdu,du,l ­ 2a0sRd 1 2a2sRd .
(9)

Obviously, these moments mix the two scalar function
with different weights. Fortunately, the incompressibility
© 1997 The American Physical Society
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constraint forcesa0sRd anda2sRd to have the same scaling
exponent. We compute

≠

≠Ra
kduadubl ­

Rb

R

∑
da0

dR
2 2

da2

dR
2 6

a2sRd
R

∏
­ 0 , (10)

meaning that the two functions must have the sameR
scaling, and therefore also the second order longitudin
and transverse components scale with the same expone

The purity (and identity) of exponents of longitudinal
and transverse fluctuations also holds for the third ord
moments. The most general form of the third order tens
kduadubdugl has contributions from, ­ 1 and 3:

kduadubdugl ­ b1sRd fdabRg 1 dagRb 1 dbgRag

1 b3sRd fdabRg 1 dagRb 1 dbgRa

2 5RaRbRgyR2g .

We again have two distinct scalar functions, each mult
plying a rotationally invariant form, and scaling with po-
tentially different scaling exponents. Nevertheless, th
incompressibility constraint provides one relation amon
the scalar functions, leaving us with one unknown. Kol
mogorov showed [9] that the rate of energy dissipatio
fixes the value of the remaining unknown. The form o
the third order tensor is thus fully determined, and a calc
lation shows thatkjdu,sr, R, tdj3l , kjdutsr, r, tdj3l , R.

The first nontrivial example is the fourth order tenso
kduadubdugdudl. The most general form of this tensor
has contributions with, ­ 0, 2, and 4:

kduadubdugdudl ­ c0sRdDabgd
0 1 c2sRdDabgd

2

1 c4sRdDabgd
4 , (11)

where

D
abgd
0 ­

1
p

45
fdabdgd 1 dagdbd 1 daddbgg , (12)

D
abgd
2 ­

1
p

28R2
fRaRbdgd 1 RaRgdbd 1 RaRddbg

1 RbRgdad 1 RbRddag 1 RgRddabg

2

s
5
7

D
abgd
0 , (13)

D
abgd
4 ­

s
35
8

RaRbRgRd

R4 2

s
5
2

D
abgd
2

2

s
7
8

D
abgd
0 . (14)

We see that in this case we have three independent sca
functions of R, i.e., c0sRd, c2sRd, and c4sRd, which in
principle may have different scaling exponents. In thi
case the incompressibility constraint furnishes no rela
tion between these functions; the reason is that there e
ist contributions in this tensor likekuasr, tdubsr, tdugsr 1

R, tdudsr 1 R, tdl, and the divergence of such a contri-
al
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bution (with summation on any tensor index) is not zer
In fact, incompressibility no longer places constraints f
any of the higher order correlation functions for simila
reasons. We note that there is no known way to just
why the three scalar functions should have the same
pendence onR. We can compute now the longitudina
and transverse fourth order moments:

ksdu,d4l ;
1

R4 RaRbRgRdkduadubdugdudl , (15)

kjdutj
4l ; ksdut ? dutd2l ,

­

µ
dab 2

RaRb

R2

∂ µ
dgd 2

RgRd

R2

∂
3 kduadubdugdudl . (16)

A calculation yields

ksdu,d4l ­
c0sRd
p

5
1

2c2sRd
p

7
1 c4sRd

s
8

35
, (17)

kjdutj
4l ­

8c0sRd
3
p

5
2

8c2sRd
3
p

7
1 c4sRd

s
8

35
. (18)

We see that these components mix the three scalar fu
tions with different coefficients. There are two poss
bilities: Either all the scalar functions have the sam
leading scaling exponent, or they have different scali
exponents. In the first case, it is obvious that the longi
dinal and transverse moments share the same scaling
ponents. In the second case, for a sufficiently long inert
range, and forR ø L whereL is the outer scale of tur-
bulence, the smallest exponent will dominate the scali
of both moments. Asymptotically the two moments a
expected to have the same scaling behavior. Howev
if the three functions have different (leading) exponen
data with limited scaling range may lead to the erroneo
conclusion that these moments have different scaling
ponents. It should be stressed that the amplitudes of
three scalar functionsmay be not universal, and different
experiments may lead to different weights in this mixe
representation. This may lead to a possible confusion
to conflicting results as seen in Refs. [2–7].

The more rational procedure that presents itself in lig
of this discussion is to compute the scaling behav
of the invariant scalar functions which are associate
with the higher order tensors. To achieve this we u
the orthonormality of the irreducible representations, a
observe that

c0sRd ­ D
abgd
0 kduadubdugdudl , (19)

c2sRd ­ D
abgd
2 kduadubdugdudl , (20)

c4sRd ­ D
abgd
4 kduadubdugdudl . (21)

Using the explicit form of the irreducible representation
(12),(13) we can evaluate these functions and find

c0sRd ~

ø
jduj4P0

µ
du,

jduj

∂¿
~ kjduj4l , (22)
2051
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c2sRd ~

ø
jduj4P2

µ
du,

jduj

∂¿
~ kjduj2f3sdu,d2 2 jduj2gl, (23)

c4sRd ~

ø
jduj4P4

µ
du,

jduj

∂¿
~ k35du4

, 2 30du2
,jduj2 1 3jduj4l , (24)

whereP, are the standard Legendre polynomials of orde
,. We see that our scalar functions can be represent
as particular combinations of transverse and longitudin
fluctuations. With data from a turbulent fieldusr, td one
can compute in this way each of the independent sca
functions. Plotting them in double logarithmic plots (to
get rid of the nonuniversal amplitudes) one has a goo
chance of extracting pure scaling behavior. After doin
so one can return to the analysis of the longitudinal an
transverse components with some understanding of t
leading and subleading scaling exponents, to control th
apparent scaling behavior in limited scaling ranges.

These considerations are readily extended to higher o
der moments. Thenth order tensor of velocity differences
across a scalarR will have ny2 1 1 invariant scalar func-
tions for n even, andsn 1 1dy2 invariant functions forn
odd. There is no need to write down the explicit form
of the irreducible representations, since the structure e
hibited by Eqs. (22)–(24) repeats at all orders. In othe
words, the independent scalar functiondn

, sRd, which is
the function associated with the irreducible representatio
of order , in the nth rank tensor of velocity differences,
can be written in general as

dn
, sRd ~

ø
jdujnP,

µ
du,

jduj

∂¿
, , # n , (25)

where , has the same parity asn. Thus by simply
examining the Legendre polynomials in any textbook, on
2052
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can determine the precise combination of longitudinal a
transverse fluctuations that is expected to scale with p
exponents for any ordern.

In conclusion, it appears extremely worthwhile, i
light of the growing abundance of high quality data o
full turbulent velocity fields, to implement the approac
detailed above. Since one confronts limited scalin
ranges in most applications, it is mandatory to attem
to separate leading from subleading scaling contributio
in order to be able to make substantial conclusions ab
the numerical values of scaling exponents. The proced
outlined above goes some way in this direction.
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