VOLUME 79, NUMBER 11 PHYSICAL REVIEW LETTERS 15 BPTEMBER 1997

Invariants for Correlations of Velocity Differences in Turbulent Fields
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The phenomenology of the scaling behavior of higher order structure functions of velocity differences
across a scal® in turbulence should be built around the irreducible representations of the rotation
symmetry group. Every irreducible representation is associated with a scalar functi®mwbich
may exhibit different scaling exponents. The common practice of using moments of longitudinal
and transverse fluctuations mixes different scalar functions and therefore may mix different scaling
exponents. It is shown explicitly how to extract pure scaling exponents for correlation functions of
arbitrary orders. [S0031-9007(97)03993-8]

PACS numbers: 47.27.Gs, 02.20.Hj, 05.40.+j, 47.27.Jv

Traditional measurements of anomalous scaling in tursuch invariants are expected to scale with pure scaling ex-
bulence are based on hot wire technology which yieldgponents that can be extracted from the data.
information about the longitudinal components of the ve- The problem of mixing of different scalar functions
locity field u(r,r) [1]. Accordingly, it is customary to does not exist for the second and third order moments
consider the structure functions of longitudinal velocity of the longitudinal and transverse components. It is

differences: worthwhile to go in detail through the analysis of the
— n second order moment in order to see why the longitudinal
Sn(R) = ([dulr, B, 01, (1) and transverse components are not a good choice, and
Su(r,R,¢) = ulr + R,1) — u(r,1), (2) why at the end it does not matter at this order. In
an isotropic homogeneous medium without helicity (with
Sue(r,R,t) = du(r,R,t) - R/R. (3) inversion symmetry) the relevant symmetry group is the

It is well known that these structure functions appearrowIon group SO(3) whose irreducible representations

to scale with scaling exponedt’ which are anomalous can be expressed using the spherical harmdfygs The .
; : i most general form of the second order moment of velocity
(nonlinear functions of):

differences has contributions froth= 0 and 2:

~ R&
Sn(R) ~ RE. @) (5u(r, R, )SuP(r, R, 1)) = Sapac(R)
Only recently has it become feasible, due to advances in 3R.R
experimental technology [2—4], and even more so in com- + [Baﬁ — Lz'g}az(R).
putational methods [5—7], to measure other components R
of the velocity field. In particular, a number of groups (7)
have focused on the transverse components The coefficients in this expression carry the indéx

Su,(r,R,t) = du(r,R,t) — Suc¢(r,R,1)R/R. (5) multiplying terms that are irreducible representations of
the rotation group of dimensioR¢ + 1. The dimension

ot the irreducible representation is the number of tensor
components that transform to one another upon rotation
T,(R) = {|6u,(r,R,1)|") ~ R%. (6) of the system of coordinates. All the tensor components
f a given irreducible representation with a given value of
must have the same coefficient which depends only on
dR- On the other hand, the scalar functiomgR) and

(R) may have different scaling exponents.

Computing now the longitudinal and transverse mo-
ments we find

These groups studied the scaling exponents of the tran
verse structure functions

Two sets of measurements appear to imply that the scalin
exponents/¢ are the same ag’ within experimental
uncertainty [2,3], whereas other numerical [5-7] an
experimental [4] studies indicate the opposite, i.e., tjat %2
are significantly smaller thagy! for n = 4.

The main point of this Letter is to demonstrate that 5
higher order structure functions of longitudinal and trans- R“R
verse moments are not likely to exhibit clean scaling be- (Buedue) = R2 (duduP) = ay(R) — 2ax(R), (8)
havior, since they mix different scalar functions &f . _ 2y _ _
which may scale with different scaling exponents. In ex-<5u’ dui) = (18ul") = (Sucduc) = 2a0(R) + 2a2(R).
perimental and numerical studies in which all the compo- ©)
nents of the velocity field are available it is advisable toObviously, these moments mix the two scalar functions
consider moments that are invariant under rotations [8]with different weights. Fortunately, the incompressibility
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constraint forcegy(R) anda,(R) to have the same scaling bution (with summation on any tensor index) is not zero.

exponent. We compute In fact, incompressibility no longer places constraints for
P RE [ day da, a(R) any of the higher order correlation functions for similar
IR (Su®uPy = R [E - 25 -6 R } reasons. We note that there is no known way to justify

why the three scalar functions should have the same de-
=0, (10)  pendence orR. We can compute now the longitudinal
meaning that the two functions must have the satne and transverse fourth order moments:

scaling, and therefore also the second order longitudinal M L o Bpypd/sas B ys.,d
and transverse components scale with the same exponents.<(5”€) )= 2z RERRVR(Su®8u”bu”8u”),  (15)

The purity (and identity) of exponents of longitudinal (6u,]*) = (5u, - du,)?)
and transverse fluctuations also holds for the third order . v ps
moments. The most general form of the third order tensor — <5a5 - ﬁ)( 5 — RYR )
(8u®*8uP Su?) has contributions fronf = 1 and 3: R? ’ R?
(bu*SuPsu”y = bi(R)[84pR” + 8ayRP + 85,R*] X (Su*SuPdu?du’). (16)
+ b3(R)[8apR” + 8ayRP + 85,R" A calculation yields

— SR*RPRY/R?]. (Bue)*y = C(j? + 263(71{) + C4(R)1/%, (17)

We again have two distinct scalar functions, each multi-
8

plying a rotationally invariant form, and scaling with po- s 14y _ 8co(R) _ 8ca(R) (R
tentially different scaling exponents. Nevertheless, the ! 35 37 N 5

incompressibility constraint provides one relation amongye see that these components mix the three scalar func-
the scalar functions, leaving us with one unknown. Kol-ono"\ith different coefficients. There are two possi-

mogorov showed [9] that thg rate of energy dISSIp""t'orbilities: Either all the scalar functions have the same

fixes Fhe value of the. remaining unknov_vn. The form OfIeading scaling exponent, or they have different scaling

th? third order tensor is thus ‘}’”V determined, ?nd a Calcuéxponents. In the first case, it is obvious that the longitu-
lation ShOWS tha(.l‘S.W(r’R’ )l >.~ (8u(r,r,0l") ~ R. dinal and transverse moments share the same scaling ex-

The first ”O”E'V'a' example is the fourth ord_er tensorponents. In the second case, for a sufficiently long inertial

(3uduPu”5u”). The most general form of this tensor range, and folR < L whereL is the outer scale of tur-

has contributions witf = 0,2, and 4: bulence, the smallest exponent will dominate the scaling

(Su8uPdu” 51’y = co(R)DLP° + e,(R)DSPT° of both moments. Asymptotically the two moments are
4. (R)Da,Byé (11) gxpected to hav_e the same_scaling behr_glvior. However,

4 4o if the three functions have different (leading) exponents,

where data with limited scaling range may lead to the erroneous
conclusion that these moments have different scaling ex-

(18)

aByé 1 .
Dy = \/_4—5[501,8675 + Oay0ps + 0as8py]. (12)  ponents. It should be stressed that the amplitudes of the
) three scalar functionmay be not universabnd different
;‘BV‘S = T[R“Rﬁb‘,/g + R*R”8p5 + RQR55,8«/ experiments may lead to different weights in this mixed
V28R? representation. This may lead to a possible confusion or
+ RPRY 8,5 + RBR55ay + R7R65aﬁ] to conflicting results as seen in Refs. [2-7].
5 The more rational procedure that presents itself in light
— D"BV‘S, (13)  of this discussion is to compute the scaling behavior
7 of the invariant scalar functions which are associated
N [35 ReRBRYR? 5 . with the hlgher'order tensors. To achieve thl§ we use
D437‘s V3 ¢ EDzﬁya the orthonormality of the irreducible representations, and
observe that
_ %ng_ (14) coR) = DEPY2 (5uvsuP du? 1), (19)
_ apyd as. B 8
We see that in this case we have three independent scalar 2(R) = Dy "7 (6uduPbu”du’) (20)
functions of R, i.e., co(R), c2(R), and c4(R), which in ca(R) = D§B75<5ua5u35uy5ua>. (1)

principle may have different scaling exponents. In this . ) ) i
case the incompressibility constraint furnishes no relatsing the explicit form of the irreducible representations
tion between these functions: the reason is that there ex12),(13) we can evaluate these functions and find

ist contributions in this tensor like“ (r, 1)uf (r, t)u” (r + 4 Sug 4

R.Hu’(r + R, 1)), and the divergence of such a contri- co(R) = <|5”| P0<|5u|> < (|oul"), (22)
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4p (Oue can determine the precise combination of longitudinal and
CQ(R) o |5u| P2 . . .
|Sul transverse fluctuations that is expected to scale with pure
Sul[3(8ue)® — |Sul?). 23 exponents for any.ordef. o
* (oul3(3u) loul] (23) In conclusion, it appears extremely worthwhile, in
es(R) = {|6ul* P, Sug light of the growing apundance_ of high quality data on
[Sul full turbulent velocity fields, to implement the approach

4 e 12 4 detailed above. Since one confronts limited scaling
< (358ug — 308ugldul” + 3[oul),  (24) ranges in most applications, it is mandatory to attempt
whereP, are the standard Legendre polynomials of ordeto separate leading from subleading scaling contributions
€. We see that our scalar functions can be representdfd order to be able to make substantial conclusions about
as particular combinations of transverse and longitudinalhe numerical values of scaling exponents. The procedure
fluctuations. With data from a turbulent fieldr, r) one  outlined above goes some way in this direction.
can compute in this way each of the independent scalar This work was supported in part by the German
functions. Plotting them in double logarithmic plots (to |sraeli Foundation, the U.S.-Israel Bi-National Science
get rid of the nonuniversal amplitudes) one has a goo@oundation, the Minerva Center for Nonlinear Physics,
chance of extracting pure scaling behavior. After doingand the Naftali and Anna Backenroth-Bronicki Fund for
so one can return to the analysis of the longitudinal angResearch in Chaos and Complexity.
transverse components with some understanding of the
leading and subleading scaling exponents, to control the
apparent scaling behavior in limited scaling ranges.
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