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Semiconductor devices are the most appealing systems for information encoding using
dimensional spatial solitons, recently reported both theoretically and experimentally in model syste
We show that stable solitons can be realized and controlled, both in passive microresonators
excitonic nonlinearity and in below-threshold vertical-cavity lasers. The solitons are robust eno
to withstand significant carrier diffusion and self-defocusing, which is very encouraging for dev
applications. [S0031-9007(97)03963-X]
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The extensive work in the field of transverse spati
pattern formation in nonlinear optical systems [1] was m
tivated, in part, by the hope of realizing applications to in
formation technology. The main difficulty is the fact tha
the various parts of an optical pattern are strongly corr
lated, so that any local modification introduced to enco
information either affects other parts or is spontaneous
eliminated. This problem, however, can be circumvent
by generating spatial solitons (SS) in a system constitu
by a nonlinear material contained in a planar optical res
nator driven by a stationary, coherent plane wave fie
[2–5], because the SS can be addressed individually a
independently from one another.

Let us focus on the case when SS arise in the neighb
hood of a modulational instability [3–5]. The idea is o
considering the transverse planes, orthogonal to the pro
gation direction of the beam, as a blackboard on whi
light dots can be written and erased in any desired locati
This is obtained by shining localized address pulses wh
locally create a bleached area, hence the name of “o
cal bullet holes” (OBH) [4] used for this kind of SS. This
area exerts a guiding action on the optical field which cou
terbalances the spreading action of diffraction, making t
soliton structure self-sustaining. The basic property whi
characterizes OBH with respect to the SS studied earlie
that, once they have been created, they persist until th
are wiped out by another laser pulse; the presence of
optical cavity ensures this behavior.

Such SS arise even in the absence of any refract
effects; the analysis of Refs. [4,5] was based on a mo
in which the medium is a saturable absorber in exa
resonance with radiation. Stable OBH have been fou
also in a Kerr medium model in a small parametr
domain [6].

There is the possibility of fixing the position of SS
by introducing a spatial modulation in the driving field
[4] and of erasing them by introducing an appropria
phase shift in the address pulse [5]; in this way one m
realize an optical memory array of soliton pixels, wit
0031-9007y97y79(11)y2042(4)$10.00
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2N3N coexisting states for an array ofN 3 N solitons.
Recent experiments in liquid crystal light valves [7] and
organic saturable absorbers [8] confirmed the possibi
of writing and erasing SS by laser pulses; the system
[8] corresponds closely to the model analyzed in [4,5].

A major breakthrough for SS application would be t
demonstrate SS in semiconductor devices. In this paper
undertake a theoretical and numerical analysis of this pr
lem, introducing suitable models for driven semiconduct
(s.c.) microcavities to bridge the field of SS formation
the class of broad area s.c. optics. In our approach we
troduce the two basic physical mechanisms which gover
s.c. material, namely, the carrier density dynamics coup
to that of the field via a proper modelization of the nonlin
ear interaction, and the carrier diffusion which is criticall
relevant for transverse effects. This increases substanti
the numerical complexity of the models in comparison wi
those analyzed in [3–6] and in general with any sort
two-level model, because the transverse Laplacian appe
in all equations. Diffusion represents a problem for th
stability of SS, because it tends to quench them favori
the homogeneous state. Solitons arise from a balance
tween the guiding action of nonlinearity and the spreadi
action of diffraction, and one must see whether diffusio
destroys this balance or not.

We consider a broad area s.c. heterostructure in a Fa
Perot microresonator scheme in two basic configuratio
(A) a passive (i.e., without injected current) multiple qua
tum well (MQW) structure perpendicular to the directio
of propagation of the radiation, and (B) a vertical-cavi
surface-emitting laser kept above transparency (hence w
population inversion) but some 5%–10% below thresho
The active case (B) is considered in addition to the pa
sive case (A) because passive s.c. devices can be typic
operated only on the self-defocusing side of the resona
[9], and self-defocusing represents an additional proble
for the stability of OBH. Introducing population inversion
self-defocusing is converted into self-focusing, hence th
problem is not met in case (B).
© 1997 The American Physical Society
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The paraxial model for both devices can be compact
cast as follows:

Et ­ 2fs1 1 h 1 iud 1 2CQD 2 i=2
'gE 1 EI ,

(1a)

Dt ­ 2gfs1 1 jEj2dD 2 1 2 bs1 2 sDd2ys

2 d=2
'Dg , (1b)

where the subscriptt indicates differentiation with re-
spect to t, E and EI are normalized slowly varying
amplitudes associated with intracavity field and extern
driving field (homogeneous in the transverse plane), r
spectively;D ­ s1 2 NyN0dys, whereN is the carrier
density andN0 is its transparency value. Timet is scaled
to the cavity decay ratek andg is the nonradiative carrier
recombination rate normalized tok. The Laplacian=2

' ­
≠2y≠x2 1 ≠2y≠y2 describes diffractive and diffusive ef-
fects; the coordinatesx, y are scaled to the diffraction
length in the cavityflL y4ps1 2 Rdg1y2, wherel is the
wavelength,L the cavity length, andR is the reflectivity
coefficient of the mirrors;d is the squared ratio of the diffu-
sion length to the diffraction length. The cavity mistuning
from the input field frequencyv0 is measured byu [5].
Linear absorption (from Bragg reflectors, buffer layers
etc.) is accounted for byh; the term s1 2 sDd2 ~ N2

describes radiative recombination. In thepassive configu-
ration the nonlinearity is modeled via an excitonic reso
nance atve described by a Lorentzian shape [10] with
half-width ge, so Q ­ s1 2 iDdys1 1 D2d where D ­
sve 2 v0dyge. The bistability parameterC is defined as
C ­ aabsLzy2s1 2 Rd, whereaabs is the absorption co-
efficient per unit length on resonance,L is the length of
the nonlinear medium,z is the confinement factor [10];
s is equal to unity. In theactive configurationa current
J is supplied, larger than the transparency valueJ0, thus
making the medium inverted (N . N0); C ~ sJ 2 J0d is
the pump parameter [11];s and Q are defined, respec-
tively, as s ­ 1 2 JyJ0 and Q ­ ia 2 1, wherea is
the linewidth enhancement factor of s.c. lasers [11].

The curve of the homogeneous (i.e., plane wave) stea
state is derived from (1) by dropping all derivatives. An
example of stationary curves forjEj vs jEI j is given in
Fig. 1 for both the passive and active cases. The line
stability analysis for the homogeneous stationary solutio
was carried out analytically by evaluating the respons
of the system to perturbations of the form expfisKxx 1

Kyydg. The instability domains in the planesjEj, Kd,
whereK ­ sK2

x 1 K2
y d1y2 andjEj is the stationary value,

are shown in Fig. 2 for different values of the paramete
d. In Fig. 1 the unstable portions of the stationar
curves are indicated by broken lines; those with positiv
slope correspond to modulational instabilities which form
stationary patterns.

The scenario of emerging patterns has then been stud
by extensive simulations using a split-step code wit
periodic boundary conditions. The numerical integration
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al
e-

,

-

dy

ar
ns
e

r
y
e

ied
h
,

FIG. 1. Homogeneous steady-state curves with unstable d
mains and various patterns found by numerical simulation
(a) Passive case forC ­ 40, D ­ 1 (self-defocusing),u ­
22, h ­ 0.25, b ­ 1.6, d ­ 0.2. (b) Active case forC ­
0.45 (threshold valueC ­ 0.5), a ­ 5, u ­ 22, h ­ 0,
b ­ 0, d ­ 0.052.

a demanding task, is worsened by a stiffness stemmi
from the time rateg in Eq. (1b) which is on the order of
1022 1023. It is thus critical to check the results from the
integrations in time of the full model (1) using the radia
integration technique formulated in [4]. It allows one to
calculate the stationary SS directly, bypassing dynamic
transients, so one gains a high spatial resolution and
reduced numerical load.

In our model the application of that approach is no
straightforward. A first difficulty is the presence of one
more equation (1b) with diffusion; a slightly different
method is then adopted in which the radial integratio
is performed outwards (and not inwards as in [4]) from
the originr ­ 0 (at the SS peak), and we look for those
initial valuesEsr ­ 0d ­ E0, Dsr ­ 0d ­ D0, for which
the solution integrated up to a fixed large valuer1 is as
close as possible to the homogeneous solution. Looki
for stationary, azimuthally symmetric solutions, the mode
is reduced to a set of ordinary differential equations

Err ­ iEI 1 fu 2 is1 1 hdgE 2 2CiQED 2 Eryr ,
(2a)

Drr ­ fs1 1 jEj2dD 2 1 2 bs1 2 sDd2ysgyd 2 Dr yr .
(2b)
2043
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FIG. 2. The unstable region in the plane (jEj, K) lies inside
the curves, plotted for different values ofd. (a) Passive case
(b) Active case. The other parameters are as in Fig. 1.

The integration of Eqs. (2) gives then a solutio
sssEsr; E0, D0d, Dsr; E0, D0dddd for each initial condition
sE0, D0d. Assuming thatsEh, Dhd is the homogeneou
solution, a function

fsE0, D0d ­
1
M

MX
m­0

fjEsr1 2 mDr; E0, D0d 2 Ehj2

1 jDsr1 2 mDr; E0, D0d 2 Dhj2g
(3)

is defined which measures the distance between the ca
lated solution and the homogeneous one, whereDr is the
integration step. The solutions we look for are the zero
function f whenr1 ! `. The problem amounts to find
ing the minima off in the 3D space of the parametersE0

(complex) andD0 (real).
A structural discrepancy from the saturable absor

scheme is the appearance of a further spatial scale fa
other than diffraction, due to the diffusion process. Expe
mental estimations of diffusion and diffraction lengths le
to values ford between 0.01 and 0.5, in both active a
passive GaAsyGaAlAs structures. A stiffness appears v
the smallness ofd in the denominator of (2b) which ren
ders the integration of Eqs. (2) sensitive to the choice
the initial conditionsE0, D0d: if it is not taken very close to
the exact one, we are led to a rapid divergence as we m
away fromr ­ 0. This problem can be circumvented b
applying a perturbative method. After expressingD in a
power series ofd, i.e.,D ­ D0 1 dD1 1 Osd2d, the ex-
2044
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pansion is inserted into Eqs. (1) which yields, up to term
of orderd,

D0 ­ f1 1 s1 1 jEj2 2
p

A dys2bdgys , (4a)

D1 ­ 2h4sb 1 sd f ResEpEr dg2yssAd 2 D0fEI ImsEd
1 sssu 1 2CD0 ImsQdddd jEj2 1 jEr j

2gjyA , (4b)

where A ­ s1 1 jEj2d2 1 4bs1 1 jEj2 2 sd and we
assumedEI real. Hence Eqs. (2) reduce to only Eq. (2a
with D ­ D0 1 dD1, the limit d ! 0 being now regu-
lar. Figure 3 shows the level of agreement obtained in th
comparison between the results of the numerical integr
tion in time and those of the radial integration; for all case
of interest we achieved an accuracy within 0.1%.

We explored selected but significant regions of th
parameter space in order to identify the characterist
and general features of the results. In the passive ca
the choice of parametric domains was suggested by t
experimental results reported by CNET (see, e.g., [9]).

In Fig. 1 we indicate branches of different patterns tha
are found by numerical integration; we plot a value whic
corresponds to the maximum ofjEj in each pattern. As in
the case of saturable absorber [4,5], a necessary condit
to observe stable SS is the coexistence of a pattern bran
with a portion of stable homogeneous steady-state branc
such a region is shown by arrows in Fig. 1. The kind o
patterns (SS, rolls, honeycomb hexagons) as well as t
location of the SS branch with respect to the homogeneo
steady-state curve is qualitatively the same in the passi
and in the active cases, and in the saturable absorber mo
indicating a general scenario for the appearance of SS.

The most prominent fact that emerges from our calcula
tions is that SS are robust with respect to carrier diffusion
Whend is increased, the SS become lower and wider, an
beyond a certain valuedmax they do not exist any more.
However, in self-focusing case (passive forD , 0, active

FIG. 3. Radial profile of the spatial soliton for both the
passive (left) and the active (right) s.c. devices. The paramete
used areh ­ 0.25, b ­ 0, u ­ 23, C ­ 30, D ­ 0, d ­
0.2, jEI j ­ 31, and h ­ 0, b ­ 0, u ­ 22, C ­ 0.45, a ­
5, d ­ 0.052, jEI j ­ 0.75, respectively, for the two cases.
Results obtained by numerical simulations (symbolsd ands)
are compared to the radial integration results (solid and dott
lines).
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for a . 0) diffusion is not a problem asdmax is larger
than the values one meets in practice.

Another interesting result is that, in the passive cas
robust SS persist even in the presence of some defocus
[D . 0; see Fig. 1(a)]. This means that the guiding
action of saturation is strong enough to counterbalan
the spreading effects arising from self-defocusing an
diffusion. Of course, the amount of self-defocusing mus
be limited, e.g., for20 , C , 40, D must not exceed
the value1.6. The value ofdmax is still not a problem
whenD ­ 1: e.g., in the case of Fig. 1(a)dmax ø 0.55 for
jEI j ­ 33. Furthermore, the robustness of a SS to carrie
diffusion increases with its height (i.e., withjEI j).

For both active and passive systems, an increase ofC
produces an increase of the extension of the interval
input field jEI j where one meets stable SS.

When the modulus of the detuning parameterD (pas-
sive case) ora (active case) is of order unity, SS are
found for negative values of the cavity mistuningu; this
feature arises from the interplay of cavity detuning an
diffraction, described in [4].

The value of the rateg in Eq. (1b) is basically irrelevant
for the stationary patterns that emerge.

For the other parameters, we discuss the active and t
passive cases separately.

(i) Passive systems.—We found stable SS whenjDj

is on the order of, or smaller than, unity; i.e., one mus
operate in a neighborhood of the excitonic resonanc
In the self-focusing caseD , 0, for 30 , C , 40, if
jDj is significantly larger than unity one has still pattern
formation, but isolated SS are not met; i.e., the creatio
of a SS also generates several other SS around it. As
the parameterb which governs radiative recombination,
we considered the two valuesb ­ 0 and b ­ 1.6, and
the picture is qualitatively the same; forb ­ 1.6 SS
can resist to a stronger diffusion, especially in the sel
defocusing case.

(ii) Active systems.—Stable solitons were found only
when the linewidth enhancement factora is positive,
as it is usually; fora , 0 we met spatial patterns but
not solitons. Fora . 0, a reduction ofa leads to the
disappearance of SS, but this effect can be counterac
by increasingjuj.

In the paraxial approximation used in our model th
width of SS scales as the diffraction length in the cavity
In the case of standard microresonators, the transmissiv
coefficient s1 2 Rd is small, so that a reduction inR
would be beneficial to decrease the size of SS.

We analyzed in details the process of writing an
erasing OBH; the picture remains basically that describe
in the saturable absorber case [5]. We found, in additio
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that a SS can be erased even when the pulse is not aim
exactly; i.e., the system can self-accommodate some err

The pulse duration for writing and erasing is on the
order of the nonradiative recombination rate. To perform
this operation, in the passive case our calculations indica
a pulse power ofø0.5 mW which corresponds to a
switching energy ofø1.5 pJ; the intensity of the holding
beam is on the order of7 kWycm2. In the active case,
in which the parameterC is quite lower, the switching
power is ø0.2 mW (which corresponds to 0.5 pJ), and
the holding intensity isø0.7 kWycm2. No optimization
of these figures was attempted.

The results of our theoretical and numerical investiga
tions lead one to conclude that the realization of an arra
of spatial solitons using s.c. materials is feasible despi
diffusion and, sometimes, self-defocusing. The parame
ric domains, where SS exist, are of sizable extent and a
cessible to experimental realizations. Both the active an
the passive cases present promising perspectives; the fi
offers the advantages of presence of gain, which ensu
cascadability, and of smaller holding and switching pow
ers. The second is less noisy and exhibits more extend
domains of holding beam intensity, where SS exist.
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