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Siegert Pseudo-States as a Universal Tool: Resonances,S Matrix, Green Function
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The Siegert states have long been recognized as a potentially powerful tool in the formal scatterin
theory. Here we propose an efficient method to implement this power in practice. Our method yields
bound states, complex-energy resonances, and scattering wave functions, i.e., a complete solution
the Schrödinger equation. We also obtain a representation of the Green function suitable for a varie
of applications. The method is demonstrated by realistic examples of theeep and dtm three-body
Coulomb systems. [S0031-9007(97)03930-6]
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In 1939, in search of a formal derivation of the
Breit-Wigner resonance formula, Siegert introduced [
a class of solutions to the Schrödinger equation whi
now bear his name. The Siegert states satisfy outgo
wave boundary conditions, and, for the simplest gene
scattering problem, they are defined by∑
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These equations can be satisfied simultaneously only
a discrete set of generally complex momentakn; thus
one should consider Eqs. (1a) and (1b) as an eigenva
problem definingkn and corresponding eigenfunction
fnsrd. The eigenvalueskn coincide with the poles of the
S matrix in the complexk plane. Pure imaginarykn with
Imsknd . 0 represent bound states of the system. Tho
lying close to the realk axis correspond to resonances
Others, though not observable directly, complement t
set and, at least for finite range potentials, suffice
determine theS matrix in the entirek plane [2].

The significance of Siegert states within a gener
formalism of the scattering theory and their potential us
fulness for computational implementations stem from th
fact that they provide a possibility of unified descriptio
of bound states, resonances, and continuum spectrum
terms of a purely discrete set of states. For examp
by virtue of the Mittag-Leffler expansion theorem (i
applicable), one can construct the Green function simp
in the form of a sum over the Siegert states, avoiding t
annoying integral over the continuum [3]. Of course, the
is a price to be paid for such a discretization. First, on
must move away from the real energy axis to the compl
energy plane. Second, for practical applications one m
solve the problem of exponential divergence offnsrd at
r ! `, say, for instance, by making the radial variabler
also complex as in the complex rotation method [4]. How
ever, the most important point is that in order to achie
the completeness required for representing the continuu
one has to generate not just one or a few butmany
solutions of Eqs. (1a) and (1b). This causes an essen
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practical difficulty, because the nonlinearity of Eqs. (1a)
and (1b) with respect to the eigenvaluek prohibits a
direct application of the variational methods, which
renders the problem tractable only by means of an
iterative procedure. In fact, this difficulty was restricting
the power of Siegert states to studying only individual
resonances [5].

Here, we define Siegertpseudo-states by applying the
asymptotic boundary condition (1b) at a finite distance
rmax. This eliminates the problem of exponential diver-
gence offnsrd and makes our method practical with-
out going into the complexr . We propose an efficient
method of constructing a large number of solutions to a
thus modified eigenvalue problem (1a) and (1b), where
the computational labor is reduced essentially to that of
single matrix diagonalization. The eigenvalueskn, stable
against variations ofrmax, represent bound states or true
resonances. All others are dependent onrmax and serve
to represent the continuum. We derive a representation o
the Green function in the regionr , rmax in terms of the
Siegert pseudo-states which, with the aid of the Green for
mula, yield the scattering wave function and theS matrix,
i.e., a complete solution of the scattering problem, though
to the extent determined by the finiteness ofrmax.

The mathematical foundation of our method can be
simply explained as follows. Consider aquadraticalge-
braic eigenvalue problem,

fA 1 lB 1 l2Igc  0 , (2)

whereA andB are square matrices,I is the unit matrix,
andl andc are the eigenvalue and the eigenvector to be
found, respectively. If a given pair ofl and c satisfies
Eq. (2), then the samel and the vector of doubled
dimension scT , lcT dT , where T stands for transpose,
satisfy the ordinarylinear eigenvalue problemµ

0 I
2A 2B

∂ µ
c

lc

∂
 l

µ
c

lc

∂
. (3)

This equation is equivalent to Eq. (2). Suchlinearization
of the problem by means of doubling its dimension
is similar to the well-known procedure of reducing a
second order differential equation to a set of two first
© 1997 The American Physical Society
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order equations. This technique is easily extendable
polynomial eigenvalue problems of an arbitrary order [6
Equation (3) can be rewritten in the symmetric form,µ

2A 0
0 I

∂ µ
c

lc

∂
 l

µ
B I
I 0

∂ µ
c

lc

∂
, (4)

which is more convenient for deriving some genera
relations. In particular, for symmetric matricesA andB,
the eigenvectors of Eq. (4) are orthogonal with respect
the following inner product:

s csndT lncsndT d
µ

B I
I 0

∂ √
csmd

lmcsmd

!
 2lndnm . (5)

Here we have fixed the normalization constant convenie
for further applications. The set of eigenvectors
complete in the space of doubled dimension, namely,X

n

1
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∂
. (6)

An equation of the type (2) arises when one see
solutions of Eqs. (1a) and (1b) as an expansion
terms of some basis. Herel  ik, A stands for the
Hamiltonian matrix, and the linear term inl arises from
the boundary conditions (1b) cast in the form of a Bloc
operator [7]. We skip discussing the one-dimension
case based on Eqs. (1a) and (1b) and demonstrate
method by nontrivial realistic examples of resonances a
scattering in three-body Coulomb systems. We use ma
scaled hyperspherical coordinatesR  sR, Vd, whereV

collectively denotes a set of angular variables. To utiliz
the smoothness of the Coulomb systems with respe
to the hyperradiusR, as discussed in [8], we conside
the wave function multiplied byR3y2. Then the Siegert
pseudo-states are defined by

fHsRd 2 ErsRdgfsRd  0 , E  E0 1
1
2

k2, (7a)

fsRdjR!0 ~ R3y2,µ
≠

≠R
2

b
R

2 ik

∂
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Ç
RRmax

 0 ,

(7b)

where (for more details and notation, see [8])

HsRd  KsRd 1 HadsV; Rd , (8)

KsRd  2
1
2

≠
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≠R
1

15
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, rsRd  R2, (9)

HadsV; Rd 
1
2

L2 1 RCsVd . (10)

Two additional quantities,E0 and b, are introduced in
Eqs. (7a) and (7b) in comparison to Eqs. (1a) and (1b
We chooseE0 to be the lowest continuum threshold
e.g., E0  20.5mpys1 1 mpd a.u. for the eep system,
and b  3y2 2 5y2  21 for the present case of six-
dimensional spherical wave.

We seek the solutions of Eqs. (7a) and (7b) in th
form of the slow/smooth variable discretization (SVD
to
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expansion [8]

fsRd 
NX

j1

MX
m

sjmpjsRdFmsV; Rjd . (11)

HerepjsRd are the discrete variable representation (DVR
basis functions constructed from the Jacobi polynomia
P

s0,3d
n , FmsV; Rjd are the hyperspherical adiabatic channe

functions taken at the DVR quadrature pointsRj , andsjm

are the coefficients to be found. The channel function
have been calculated using the hyperspherical ellipt
coordinates introduced in [9]. SVD provides a very
powerful method for treating nonadiabatic couplings [8]
The whole computational scheme is highly efficient, an
for a variety of three-body Coulomb systems it has bee
shown to yield an accuracy comparable with the be
available variational results [8–10].

Substituting (11) into Eqs. (7a) and (7b) and introduc
ing a new vectorc  r1y2s, wherer is the SVD matrix
for rsRd, we obtain an algebraic equation of the type (2
with real symmetric matricesA and B. By transform-
ing it to the form (3), we construct a set of2 3 N 3 M
Siegert pseudo-statesfnsRd. From Eq. (5) it follows that
the functionsfnsRd satisfy the following orthogonality
condition:Z Rmax

0
dRrsRd

Z
dVfnsRdfmsRd

2
rsRmaxd

iskn 1 kmd

Z
dVfnsRdfmsRdjRRmax  dnm .

(12)

From (6), assuming the completeness of our SVD bas
within the hypersphereR , Rmax (which is the case for
N , M ! `), we obtain the relationsX

n

1
ikn

fnsRdfnsR0d  0 , (13)

X
n
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rsRd
dsR 2 R0ddsV 2 V0d , (14)X
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2
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(15)

Equations (13) and (14) are essential for deriving th
following representation of the Green function:

GsR, R0; Ed 
X
n

fnsRdfnsR0d
knskn 2 kd

. (16)

Finally, using the Green formula [11] and Eqs. (16) an
(7b), we express a solution of the Schrödinger equatio
csRd in terms of its values on the hypersphereR  Rmax,

csRd 
1
2
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Z
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2027



VOLUME 79, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 15 SEPTEMBER1997

s.
h
r-

n-

ht

h

en

a-

in

ls,
d

of
er

r-
ed

al

ry

e-
rt

re
],
lex
e

ar-
a-
Before discussing numerical results, let us comme
on Eqs. (13)–(16). Relations similar to (13) and (14
were known previously [12]. Equation (16) was give
in [3]. However, our method of derivation is quite
different. In order to prove Eq. (16), previous autho
(see, e.g., [3]) had to assume some analytical proper
of GsR, R0; Ed in the complexk plane, and then had to
resort to the Mittag-Leffler expansion theorem. Instead,
our method, Eqs. (13)–(16) follow directly from Eq. (6
for a complete basis. Of course, there is a link betwe
the two approaches: Our method explicitly treats
cutoff potential problem for which the required analytica
properties are fulfilled.

We now consider bound states and resonances. In b
cases the problem reduces to finding such eigenvalues
Eqs. (7a) and (7b) that are stable against an increase
Rmax. Here, we report our results for theeep and dtm

systems for zero total angular momentum. Instead of t
complex momentakn, we look into the distribution of the
Siegert eigenenergiesEn  E0 1 k2

ny2 in the complexE
plane. Our computational strategy is as follows. For
given Rmax, by increasingN and M we achieve conver-
gence for some representative group of eigenvalues.
higher roots, which lie far on the right of the continuum
thresholdE0 and correspond to more rapidly oscillating
wave functions, the convergence is slower. Thus we obt
the basis-independent roots. Then we increaseRmax, re-
peat the procedure, and select those roots which are sta
Figure 1 illustrates a distribution of the basis-independe
roots for eep. Its qualitative features are the same fo
other studied systems. Real roots appear only on the
of E0; they represent boundfImsknd . 0g or antibound
fImsknd , 0g states. We found that the bound and an
bound roots appear in pairs which rapidly coalesce in t
E plane with the increase ofRmax. In addition, there is
one unpaired real root closest toE0. For eep anddtm it
corresponds to an antibound state and keeps approac

FIG. 1. Basis-independent Siegert eigenenergies foreep cal-
culated forRmax  70.
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E0 from the left in the interval ofRmax considered here.
All other roots are complex and appear in conjugate pair
Most of them lie along the parabolalike branches wit
apexes located on the real axis at the thresholds of diffe
ent channels. These roots essentially depend onRmax and
represent discretized continua for the corresponding cha
nels. With the increase ofRmax, new continuum branches
separate out and become clearly visible. Far on the rig
in Fig. 1 these branches obey the law ReEn , sImEnd2,
valid for arbitrary cutoff potentials [2]. Resonances whic
are stable against the increase ofRmax appear as precursors
to the continuum branches. All these features can be se
in Fig. 1.

From the above discussion it can be seen that the p
rameterE0 plays an important role in our formulation,
setting the origin of the branch cut along the real axis
Fig. 1. Here we choseE0 to be the lowest continuum
threshold. The threshold energies for the higher channe
though they appear effectively in Fig. 1, are not include
in the formulation explicitly. At this stage, it is not clear
how our method accounts for the multisheet structure
the complex energy surface discussed in [13], and furth
studies in this direction are required.

Tables I and II present our results. Masses of the pa
ticles were taken to be the same as in [8]. The converg
results are obtained withsN , M, Rmaxd  s60, 30, 50d and
s80, 40, 150d for eep anddtm, respectively. Good accu-
racy of the bound state energies verifies our numeric
procedure. To confirm eligibility of the present method
for calculating resonances, we considered the mandato
test example of the lowest1Se resonance ineep. For
the infinite proton mass, our results are in excellent agre
ment with other precision calculations. We also repo
results for the finite proton mass. Fordtm, we investi-
gated the three lowest resonances below thetmsn  2d
threshold. Our results for the resonance energies a
close to the best available variational calculations [19
and are somewhat better than the results of the comp
rotation method [20,21]. However, our values for th
resonance widths differ by an order of magnitude from
that of [20] and [21] which, in turn, also quite disagree
with each other. To clarify the situation, we thoroughly
analyzed the convergence and found that for such n
row resonances the width is very sensitive to all the p
rametersN, M, and Rmax, and to achieve convergence
for dtm was more difficult than foreep. We also per-
formed calculations forddm, which is computationally

TABLE I. L  0 bound states ofeep (in a.u.) anddtm (in
ma.u.). E —present results,Evar —variational calculations.

System y 2E 2Evar Ref.

eep, mp  ` 0 0.5277497 0.5277510 [14]
eep, mp  1836.1527 0 0.5274454 0.5274459 [14]
dtm 0 0.5385939 0.5385949 [15]
dtm 1 0.4880628 0.4880653 [15]
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TABLE II. Lowest L  0 resonances ineep (in a.u.) and
dtm (in ma.u.). Resonance positions and widths are related
Siegert eigenenergies byEn  Eres 2 iGy2. The numbers in
parentheses give the uncertainty in the last digit quoted. Resu
of Refs. [16–18] are formp  `.

Method y 2Eres G 3 10a Ref.

eeps1Sed, a  4
Kohn variational 0 0.148774 0.1735 [16]

Feshbach formalism 0 0.148777(2) 0.17334(7) [17
Complex rotation 0 0.148777(2) 0.1731(4) [18
Present,mp  ` 0 0.148776(1) 0.1734(1)

Present,mp  1836.1527 0 0.148695(1) 0.1731(1)
dtm, a  9

Variational 0 0.1591945 [19]
· · · 1 0.1453017 · · ·
· · · 2 0.1345261 · · ·

Complex rotation 0 0.1591910 0.64 3 104 [20]
· · · 1 0.1452625 0.14 3 105 · · ·
· · · 2 0.1344000 0.20 3 106 · · ·

Complex rotation 0 0.1591938 0.36 3 103 [21]
· · · 1 0.1452985 0.50 3 104 · · ·
· · · 2 0.1344978 0.12 3 105 · · ·

Present 0 0.1591938 0.354
· · · 1 0.1453015 0.839
· · · 2 0.1345291 1.15

much simpler owing to its symmetry. For the lowest1Se

resonance inddm we obtainedEres  20.1570989 ma.u.
andG  0.687 3 1029 ma.u. The same order of magni-
tude ofG, as compared to thedtm case, supports our con-
fidence in the present results fordtm. We foundno such
stable root fordtm as the resonance discussed in [22].

Finally, to demonstrate the power of our method a
a universal tool for calculating not only bound state
and resonances but also theS matrix, in Table III we
report results for the1Se elastic phase shift in thee 1 ep
system. These results were obtained using Eqs. (16) a
(17). More details of these calculations will be give
elsewhere.

In conclusion, we have proposed an efficient metho
for scattering calculations capable of describing the who
spectrum of the scattering phenomena. Formula (16)

TABLE III. Elastic 1Se phase shift for e 1 ep. d and
d` are the present results formp  1836.1527 and mp  `,
respectively. In both cases,k was determined byE  E0 1
k2y2 with an appropriateE0. Results of Refs. [23,24] are for
mp  `.

k (a.u.) d d` Ref. [23] Ref. [24]

0.1 2.5532 2.5535 2.553(1) 2.5561
0.2 2.0663 2.0668 2.0673(9) 2.0666
0.3 1.6961 1.6966 1.6964(5) 1.6963
0.4 1.4149 1.4154 1.4146(4) 1.4152
0.5 1.2004 1.2009 1.202(1) 1.2010
0.6 1.0404 1.0409 1.041(1) 1.0408
0.7 0.9303 0.9307 0.930(1) 0.9303
0.8 0.8873 0.8874 0.886(1) 0.887
to

lts
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the Green function implemented via Siegert pseudo-state
may find wide applications for a variety of collision
processes, including chemical reactions [25].
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