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Siegert Pseudo-States as a Universal Tool: Resonancgdyiatrix, Green Function
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The Siegert states have long been recognized as a potentially powerful tool in the formal scattering
theory. Here we propose an efficient method to implement this power in practice. Our method yields
bound states, complex-energy resonances, and scattering wave functions, i.e., a complete solution of
the Schrodinger equation. We also obtain a representation of the Green function suitable for a variety
of applications. The method is demonstrated by realistic examples ofetheand dru three-body
Coulomb systems. [S0031-9007(97)03930-6]

PACS numbers: 34.10.+x, 03.65.Nk, 34.80.Bm, 36.10.Dr

In 1939, in search of a formal derivation of the practical difficulty, because the nonlinearity of Egs. (1a)
Breit-Wigner resonance formula, Siegert introduced [1]and (1b) with respect to the eigenvalite prohibits a
a class of solutions to the Schrddinger equation whicldirect application of the variational methods, which
now bear his name. The Siegert states satisfy outgoingenders the problem tractable only by means of an
wave boundary conditions, and, for the simplest generigterative procedure. In fact, this difficulty was restricting

scattering problem, they are defined by the power of Siegert states to studying only individual
1 42 1, resonances [5].
[—5 i V(r) — E}ﬁ(?) =0, =7k (1a) Here, we define Siegefiseudestates by applying the
d asymptotic boundary condition (1b) at a finite distance
¢ ()= =0, <E - ik>¢(r) =0 (1b)  rpna. This eliminates the problem of exponential diver-

gence of¢,(r) and makes our method practical with-
These equations can be satisfied simultaneously only fayut going into the complex. We propose an efficient
a discrete set of generally complex momeiitg thus  method of constructing a large number of solutions to a
one should consider Egs. (1a) and (1b) as an eigenvalibus modified eigenvalue problem (1a) and (1b), where
problem definingk, and corresponding eigenfunctions the computational labor is reduced essentially to that of a
¢,(r). The eigenvalues, coincide with the poles of the single matrix diagonalization. The eigenvalugs stable
S matrix in the complex plane. Pure imaginark, with  against variations ofy,x, represent bound states or true
Im(k,) > 0 represent bound states of the system. Thoseesonances. All others are dependentrgp, and serve
lying close to the reak axis correspond to resonances.to represent the continuum. We derive a representation of
Others, though not observable directly, complement théhe Green function in the region < ry. in terms of the
set and, at least for finite range potentials, suffice tdiegert pseudo-states which, with the aid of the Green for-
determine the§ matrix in the entirek plane [2]. mula, yield the scattering wave function and thenatrix,

The significance of Siegert states within a general.e., a complete solution of the scattering problem, though
formalism of the scattering theory and their potential useto the extent determined by the finiteness-@f;.
fulness for computational implementations stem from the The mathematical foundation of our method can be
fact that they provide a possibility of unified description simply explained as follows. Considergaadraticalge-
of bound states, resonances, and continuum spectrum braic eigenvalue problem,
terms of a purely discrete set of states. For example,
by virtue of the Mittag-Leffler expansion theorem (if [A +AB + A’T]c = 0, (2)
applicable), one can construct the Green function simplyvhere A and B are square matriced, is the unit matrix,
in the form of a sum over the Siegert states, avoiding theind A andc are the eigenvalue and the eigenvector to be
annoying integral over the continuum [3]. Of course, therefound, respectively. If a given pair of and ¢ satisfies
is a price to be paid for such a discretization. First, oneeq. (2), then the same and the vector of doubled
must move away from the real energy axis to the complexiimension (c”, Ac¢T)”, where T stands for transpose,
energy plane. Second, for practical applications one musfatisfy the ordinaryinear eigenvalue problem
solve the problem of exponential divergencedgf(r) at
r — oo, say, for instance, by making the radial variable < 0 I >< ¢ ) = ,\( ¢ > (3)
also complex as in the complex rotation method [4]. How- —A —B/\4c Ac
ever, the most important point is that in order to achieveThis equation is equivalent to Eq. (2). Suatearization
the completeness required for representing the continuunof the problem by means of doubling its dimension
one has to generate not just one or a few ndny is similar to the well-known procedure of reducing a
solutions of Egs. (1a) and (1b). This causes an essentiabcond order differential equation to a set of two first
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order equations. This technique is easily extendable texpansion [8]

N M
polynomial eigenvalue problems of an arbitrary order [6]. R) = (R (O R 11
Equation (3) can be rewritten in the symmetric form, ¢®) ]Zl % $u(R)P,(2:R)) (1)
-A 0\/ c)\ _ A B I c Here;(R) are the discrete variable representation (DVR)
0 I)\Ac) “\I 0)\Ac)’ ) basis functions constructed from the Jacobi polynomials

|Pn0’3), ®,(€); R;) are the hyperspherical adiabatic channel
functions taken at the DVR quadrature poiRts ands;,,

re the coefficients to be found. The channel functions

ave been calculated using the hyperspherical elliptic

) coordinates introduced in [9]. SVD provides a very

(T Anc(n)T)<B I )( c (”1)> = 21,8,m. (5) Powerful method for treating nonadiabatic couplings [8].

L 0/\ Ane The whole computational scheme is highly efficient, and

Here we have fixed the normalization constant convenienfor a variety of three-body Coulomb systems it has been
éhown to yield an accuracy comparable with the best

for further applications. The set of eigenvectors IS_vailable variational results [8—10].

complete in the space of doubled dimension, namely, Substituting (11) into Eqs. (7a) and (7b) and introduc-
Z 1 W (™ ), ™7y = <0 I > (©) ing a new vector = p'/2s, wherep is the SVD matrix
24, \ Apc®™ " I -B)° for p(R), we obtain an algebraic equation of the type (2)
with real symmetric matriced and B. By transform-
An equation of the type (2) arises when one seeksng it to the form (3), we construct a set 2fX N X M
solutions of Egs. (1la) and (1b) as an expansion irSiegert pseudo-states,(R). From Eqg. (5) it follows that
terms of some basis. Hergé = ik, A stands for the the functions¢,(R) satisfy the following orthogonality
Hamiltonian matrix, and the linear term in arises from condition:

which is more convenient for deriving some general
relations. In particular, for symmetric matricAsand B,
the eigenvectors of Eq. (4) are orthogonal with respect t
the following inner product:

n

the boundary conditions (1b) cast in the form of a Bloch [ Rmax

operator [7]. We skip discussing the one-dimensional dRp(R)] dQ ¢, (R)¢,(R)

case based on Egs. (1a) and (1b) and demonstrate ou? p(Ronar)

method by nontrivial realistic examples of resonances and —ﬁ ] dQ¢,(R)d,,(R)| g=rmax = Onm -

scattering in three-body Coulomb systems. We use mass- (12)
scaled hyperspherical coordinatBs= (R, (), where() _ _
collectively denotes a set of angular variables. To utilizeéFrom (6), assuming the completeness of our SVD basis
the smoothness of the Coulomb systems with resped¥ithin the hyperspher® < Rp.x (which is the case for

to the hyperradiusk, as discussse/(zj in [8], we consider N.M — ), we obtain the relations

the wave function multiplied byr-/=. Then the Siegert 1

pseudo-states are defined by ; i #.(R)¢,(R') =0, (13)

[HR) - EpRIR) =0, E=Eo+ 3K, (7a)

& (R)|g—p = R,

/:L _ pl ey
2. $a(R)$,(R) = ~Gr SR ~ KRNSO =~ ), (14)

(7b) . , 2
d b . ik, pn(R),(R') = (R — Rpax)
<ﬁ — E - lk)d)(R) - =0, %" ¢ ¢ ®) p(Rmax)
R=Rmax X 8(R' = Ruax)8(Q — Q).
where (for more details and notation, see [8]) (15)
H(R) = K(R) + H,q(Q2;R), 8 . . -
®) ) al ) ® Equations (13) and (14) are essential for deriving the
1 9 9 15 ' ' ion:
KR) = —= — p(R) = + -, o(R) = R%, (9) following representation of the Green function:
20R" IR 8 / ¢ (R) ¢, (R)
[ G(R,R;E) =D . (16)
Hpq(Q:;R) = 3 A% + RC(Q). (10)  kn(ky — k)

Two additional quantitiesf, and b, are introduced in Finally, using the Green formula [11] and Egs. (16) and
Egs. (7a) and (7b) in comparison to Egs. (1a) and (1b)(.7b)’ we express a solution of the Schrddinger equation
We chooseE, to be the lowest continuum threshold, ¥ (R) interms of its values on the hypersphére= Rpx,

e.g.,Ep = —0.5m,/(1 + m,) a.u. for the eep system, _1 , .
andb = 3/2 — 5/2 = —1 for the present case of six- ¢(R) 2 p(Rinax) [ dVG(R,RLE)

dimensional spherical wave. <i b ik>¢//(R’)
We seek the solutions of Egs. (7a) and (7b) in the OR' R’ R/—Rmax
form of the slow/smooth variable discretization (SVD) a7
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Before discussing numerical results, let us commeng, from the left in the interval oR,,,x considered here.
on Egs. (13)-(16). Relations similar to (13) and (14)All other roots are complex and appear in conjugate pairs.
were known previously [12]. Equation (16) was given Most of them lie along the parabolalike branches with
in [3]. However, our method of derivation is quite apexes located on the real axis at the thresholds of differ-
different. In order to prove Eg. (16), previous authorsent channels. These roots essentially depend,.gr and
(see, e.g., [3]) had to assume some analytical propertiggpresent discretized continua for the corresponding chan-
of G(R,R/'; E) in the complexk plane, and then had to nels. With the increase d,.x, new continuum branches
resort to the Mittag-Leffler expansion theorem. Instead, irseparate out and become clearly visible. Far on the right
our method, Egs. (13)—(16) follow directly from Eq. (6) in Fig. 1 these branches obey the lawHRe~ (ImE,)?,
for a complete basis. Of course, there is a link betweemwalid for arbitrary cutoff potentials [2]. Resonances which
the two approaches: Our method explicitly treats aare stable againstthe increaseRgf appear as precursors
cutoff potential problem for which the required analytical to the continuum branches. All these features can be seen
properties are fulfilled. in Fig. 1.

We now consider bound states and resonances. In both From the above discussion it can be seen that the pa-
cases the problem reduces to finding such eigenvalues cdmeterE, plays an important role in our formulation,
Egs. (7a) and (7b) that are stable against an increase sétting the origin of the branch cut along the real axis in
Rumax- Here, we report our results for thep anddrp  Fig. 1. Here we chosé&, to be the lowest continuum
systems for zero total angular momentum. Instead of théhreshold. The threshold energies for the higher channels,
complex momenté,,, we look into the distribution of the though they appear effectively in Fig. 1, are not included
Siegert eigenenergids, = E, + k2/2 in the complexE in the formulation explicitly. At this stage, it is not clear
plane. Our computational strategy is as follows. For ehow our method accounts for the multisheet structure of
given Rn.x, by increasingV and M we achieve conver- the complex energy surface discussed in [13], and further
gence for some representative group of eigenvalues. Fatudies in this direction are required.
higher roots, which lie far on the right of the continuum Tables | and Il present our results. Masses of the par-
thresholdEy and correspond to more rapidly oscillating ticles were taken to be the same as in [8]. The converged
wave functions, the convergence is slower. Thus we obtairesults are obtained wittV, M, R..,) = (60, 30, 50) and
the basis-independent roots. Then we increRgg, re- (80,40, 150) for eep anddtu, respectively. Good accu-
peat the procedure, and select those roots which are stabtacy of the bound state energies verifies our numerical
Figure 1 illustrates a distribution of the basis-independenprocedure. To confirm eligibility of the present method
roots foreep. Its qualitative features are the same forfor calculating resonances, we considered the mandatory
other studied systems. Real roots appear only on the lefest example of the lowests® resonance ireep. For
of Ey; they represent boundm(k,) > 0] or antibound the infinite proton mass, our results are in excellent agree-
[Im(k,) < 0] states. We found that the bound and anti-ment with other precision calculations. We also report
bound roots appear in pairs which rapidly coalesce in theesults for the finite proton mass. Fdru, we investi-

E plane with the increase dt...x. In addition, there is gated the three lowest resonances belowthé: = 2)
one unpaired real root closestEy. Foreep anddru it  threshold. Our results for the resonance energies are
corresponds to an antibound state and keeps approachinlpse to the best available variational calculations [19],
and are somewhat better than the results of the complex
Siegert pseudo-states for eep rotation method [20,21]. However, our values for the

0.15 : ' ' ' resonance widths differ by an order of magnitude from
that of [20] and [21] which, in turn, also quite disagree
o1} o o 1 with each other. To clarify the situation, we thoroughly
o ® analyzed the convergence and found that for such nar-
005 L bound state o0 ° | row resonances the width is very sensitive to all the pa-
rametersN, M, and R..x, and to achieve convergence
for dtu was more difficult than forep. We also per-
formed calculations fowldu, which is computationally

ImE (a.u.)
(=]
a

-0.05 ®o,

TABLE I. L = 0 bound states oéep (in a.u.) anddru (in
pa.u.). E—present resultss,,, —variational calculations.

—E —Ear Ref.

0.5277497 0.5277510 [14]
0.5274454  0.5274459 [14]
0.5385939 0.5385949 [15]
0.4880628 0.4880653 [15]

-0.1

System

resonances
I

s I::(, -0.4 02 0 0.2 0.4 0.6 eep, mp = *®
ReE (au.) eep, m, = 1836.1527
dtu
FIG. 1. Basis-independent Siegert eigenenergieséer cal- g7,
culated forRy.x = 70.
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TABLE II. Lowest L = 0 resonances ireep (in a.u)and the Green function implemented via Siegert pseudo-states
dip (in pa.u.). Resonance positions and widths are related tomay find wide applications for a variety of collision
Siegert eigenenergies 1y, = Ey, — iI'/2. The numbers in  yrocesses, including chemical reactions [25].

parentheses give the uncertainty in the last digit quoted. Resultg OLT ihanks all participants of the Matsuzawa-

of Refs. [16—-18] are fom, = . > ’ !
Watanabe seminar at UEC for useful discussions.

Method v —Eres I’ x 10 Ref. V.N.O. is thankful for support from the Ministry of
cep(1S9), a = 4 Education, Science, Culture, and Sports of Japan for
Kohn variational 0 0.148774 0.1735 [16] his stay at IMS as a visiting professor. This work is

Feshbach formalism 0 0.148777(2) 0.17334(7) [17] partly supported by a Grant-in-Aid for Scientific Research
Complex rotation 0 0.148777(2) 0.1731(4) [18] on Priority Area “Quantum Tunneling of the Group of

Present/m, = o 0 0.148776(1) 0.1734(1) Atoms as Systems with Many Degrees of Freedom” from
Presentn, = 1836.1527 0 0.148695(1) 0.1731(1) the Ministry.
dtp, a =9
Variational 0 0.1591945 [19]
1 0.1453017
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