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DI 5 4 Bifurcation in Ground Bands of Even-Even Nuclei and the Interacting Boson Model
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(Received 28 October 1996)

We find a DI ­ 4 bifurcation phenomenon in many ground state rotational bands by performing
a staggering parameter analysis, which has been employed often for superdeformed bands. We find
also that a small modification of the intrinsic state of the interacting boson model wave function
in the sd-boson space, which has been used extensively for ground bands, is able to produce the
regular DI ­ 4 bifurcation pattern. Adding ag boson, we are able to generate even an irregular
pattern in theDI ­ 4 bifurcation phenomenon, which seems to be observed in some ground bands.
[S0031-9007(97)04011-8]

PACS numbers: 21.10.Re, 21.60.Fw, 27.70.+q, 27.90.+b
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Recently, extensive studies of superdeformed ban
revealed aDI ­ 4 bifurcation phenomenon by calculating
the staggering parameter [1,2],

DEgsId ­
3
8 hEgsId 2

1
6 f4EgsI 2 2d 1 4EgsI 1 2d

2 EgsI 2 4d 2 EgsI 1 4dgj (1)
introduced by Cederwallet al. [2]. Here, EgsId is the
transition energy from a spin state withI to I 2 2.
If the rotational energy follows theIsI 1 1d law, then
DEgsId ­ 0. However, in some superdeformed band
rotational energies are irregular andDEgsId shows a
zigzagging pattern between neighboring spin states.

Motivated by this finding in the superdeformed band
we focus our attention on the ground state bands of t
even-even rotational nuclei. Since there are many prec
experimental data on the ground state bands, we have m
a staggering parameter analysis of known ground sta
bands up to very high spins with the bandcrossing sp
more than 16,Ic . 16, over the nuclear chart. To our
surprise, we found theDI ­ 4 bifurcation phenomenon
in many ground bands (withIc . 16) for the following
nuclei: 162Dy, 174Yb, 230,232Th, 232,238U, 236,238,242,244Pu,
and 248Cm. Those of the Hf and Er isotopes are quit
smooth (no bifurcation). We show in Fig. 1 two example
of the dynamical moment of inertia of230Th and 232Th
and the corresponding staggering parameters. We
clearly the bifurcation patterns in these nuclei. The size
this anomalous behavior is about 0.3 keV, which is simila
to those in the superdeformed bands [1,2]. Interesting
note is that the signs of the zigzagging behavior in the
two neighboring even-even isotopes are opposite.

The observation ofDI ­ 4 bifurcation in superde-
formed bands has motivated various theoretical studi
Filbotte et al. suggested an explanation based on a fou
fold symmetry (C4 symmetry) in the nuclear shape [1]
Theoretical works were then made by including som
C4 symmetry term in the Hamiltonian, with a rotation
axis either along or vertical to the symmetry axis [4–6
The interacting boson model (IBM) withg bosons was
also employed to reproduce the Hamiltonian with th
C4 symmetry in the geometrical model by taking th
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limit of the boson numberN ! ` [7]. There were also
theoretical studies, whereDI ­ 4 bifurcation can arise
from the mixing of two bands near the yrast line [8
without the explicit use of theC4 symmetry or from an
intrinsic vortical motion [9].

In order to study this behavior theoretically, we tak
the simplest viewpoint and employ the interacting boso
model, which is extensively used for the analysis of grou
state bands [10]. In the SU(3) limit ofs andd bosons, the
intrinsic state reads [11]

Fint ­
1p

N!s1 1 b2dN
fsy 1 bd

y
0 gN j0l , (2)

whereb ­
p

2. The standard angular momentum proje
tion out of this intrinsic state provides only a smooth rota
tional band. sy andd

y
0 are the creation operators of thes

andd bosons (d
y
0 denotes the creation operator ofd boson

FIG. 1. Dynamical moments of inertia (upper) of the groun
state band in230Th and 232Th [3] and corresponding staggering
parameters (lower) plotted as a function of nuclear sp
Experimental errors are not provided for230Th except for
Egs2 ! 0d, Egs4 ! 2d, and Egs6 ! 4d with errors of 0.02,
0.02, and 0.5 keV, respectively, and, hence, we are not able
provide error bars in the staggering parameters.
© 1997 The American Physical Society
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with the magnetic quantum numberm ­ 0) andN is in-
terpreted as the number of bosons. This intrinsic state
is constructed by the standard group theory of SU(3) (s
e.g., Ref. [11]).

In Ref. [12], Ginocchio and Kirson get this intrinsic stat
by using the variation before projection (VBP) method
which is extensively used in the study of nuclear structu
[13]. They prove that any states in IBM can be projecte
out from general intrinsic states,

jFsN , b, gdl ­
1p

N!s1 1 b2dN

3 hsy 1 bfcosgd
y
0

1 singsdy
2 1 d

y
22dy

p
2gjN j0l .

This intrinsic state (2) is obtained by minimizing
kFsN , b, gd jHjFsN , b, gdl energy surface of the SU(3)
Hamiltonian, i.e., the equilibrium valuesg ­ 0 and
b ø

p
2 in jFsN, b, gdl. All of the rotational states

(with angular momentaI; I ­ 0, 2, . . . , 2N) of thes2N , 0d
(ground state band) representation of SU(3) can be p
jected out from (2). It means that the VBP gives th
exact rotational energy in the case of the SU(3) limit.
general, the VBP should also give a very good approxim
tion for the ground state bands, at least for the low-lyin
states [13]. Following their technique and considerin
the interactionn2fssydyd2sd̃d̃d2 1 H.c.g sn2 . 0d in a
general IBM Hamiltonian, we can give the equilibrium
at g ­ 0 and at someb by minimizing the same energy
surfacekFsN , b, gd jHjFsN , b, gdl, but b is a solution
of the equationdkFintjHjFintlydb ­ 0. It means that
jFsN , b, gdl is reduced into the intrinsic state (2) fo
ground state bands, where the value ofb may be arbitrary,
if the parameters in the IBM Hamiltonian take gener
values deviating from the SU(3) limit. As in the case o
the SU(3) limit, we then project our rotational states wit
good angular momenta from the intrinsic state (2) [12,13

The expectation value of the IBM Hamiltonian for the
members of the ground state band is written as

EI sbd ­

Rp

0 d cosuPIscosud kFintjH expsiuĴyd jFintlRp

0 d cosuPI scosud kFintj expsiuĴyd jFintl
.

(3)
HerePIscosud is the Legendre polynomial and̂Jy is they
component of the angular momentum operator.

We first show that the IBM Hamiltonian can provideb

at any value within the VBP. For instance, when the IBM
Hamiltonian has the form

H ­ ´ddyd̃ 1 n2fsdydyd2d̃s 1 H.c.g

1 C0sdydyd2sd̃d̃d0, (4)

we find various values ofb by changingC0. b ­ 2.67, if
Ed ­ 5 keV, n2 ­ 40 keV, andC0 ­ 284 keV. We show
in Fig. 2 the outcome of the numerical results onDEgsId
by changing the value ofC0, which result in various values
for b. It is interesting to note that the bifurcation behavio
appears and increases asb deviates from

p
2. Also of

interest is the fact that, by changing the boson number fro
(2)
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FIG. 2. The staggering parameter,DEgsId as a function of
the nuclear spin for variousb2, which is the ratio of thes
and d bosons. The zigzagging behavior increases with t
values ofb, which is determined by various values ofC0. The
parameters used aréd ­ 5 keV andn2 ­ 40 keV in (4). The
boson number isN ­ 12.

N ­ 12 to 11, the zigzag pattern ofDEgsId is reversed, as
shown in Fig. 3.

To understand this behavior, we show in the inset
Fig. 3 the overlap kernel,

N sud ­ kFintj expsiuĴyd jFintl

­ hs1 2 b2y2 1 3b2 cos2 uy2dys1 1 b2djN . (5)

If b ­
p

2, N sud ­ cos2N u, and there appear two peak
atu ­ 0 andp . If b .

p
2, there appears a new very sma

FIG. 3. The calculated staggering parametersDEgsId as a
function of the nuclear spin forN ­ 11, 12. The parameters
used are the same as in Fig. 2 andC0 ­ 284 keV. The inset
shows the overlap kernels. The kernel goes up to 1 smoot
at u ­ 0 and p. The values ofb determined by the VBP
method are 2.669 forN ­ 11 and 2.67 forN ­ 12. The signs
of the zigzagging behavior are opposite by changing the bos
number by 1.
2007
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peak atu ­ py2 besides the two original peaks with the
overlap kernel equal to 1 atu ­ 0 and p. We draw the
results of the overlap kernels forN ­ 11 and 12 in the inset
of Fig. 3, which shows that the signs of the small peaks
the two cases forN ­ 11 and 12 are opposite. The value
of the overlap kernel is about1026 at u ­ py2. This tiny
peak appears atu ­ py2 and changes sign withs2dN for
b .

p
2, because1 2 b2y2 in the numerator ofN sud in

(5) becomes negative while the cos2 u term is throughout
positive and becomes zero atu ­ py2. Furthermore, this
tiny peak with maximaN spy2d ­ s2dNfsB2 2 2dys2 1

2b2dgN fades away asN ! `. This appearance of the tiny
peak inN sud is related to the staggering phenomenon
the rotational band.

Knowing the property of the norm kernel, we can deriv
the approximate expression of the energyEIsbd in (3)
following the method used in deriving theIsI 1 1d low
[14]. The energyEIsbd can be expressed as
EIsbd 2 E0sbd ­ 2Gs2dN fPIs0d 2 P0s0dg 1 ErotsId .

(6)
The smooth rotational energyErotsId arises from the two
peaks atu ­ 0 andp and has theIsI 1 1d law behavior
in the first order approximation [14]. The factorG for the
Hamiltonian (4) is given as

G ­ 2NGd jN spy2djyG , (7)
where Gd ­ f´dsb2 2 b4y2d 2 sN 2 1d s

p
8y7n2b3 2

2C0b4y5dgys1 1 b2d2 and G being the width of the
peaks atu ­ 0 and p : G ­ 2s1 1 b2dys3b2Nd. The
new tiny peak atu ­ py2 makes the zero-point value
PI s0d of the Legendre polynomial come out, wher
PI s0d ­ s2dIy2sI 2 1d!!yI!! is responsible for the stagger
ing effect [8]. Meanwhile, the tiny peak also makes th
factor s2dN appear, which is the origin of the differen
signs of two neighboring nuclei. The boson number in th
factors2dN plays a role similar toa4 in Ref. [1]. If we use
the value´d ­ 5 keV, n2 ­ 40 keV, andC0 ­ 284 keV,
which provides the smooth rotational energy, we fin
the amplitude of the staggering to be about 0.1 keV.
general, the effect from a specific Hamiltonian appea
only in the factorGd . It is easily proven that the form of
(7) is valid for all kinds of Hamiltonians which can drive
b .

p
2. Only the effect of different Hamiltonians is to

provide the different forms forGd . The staggering term
in (6) fades away asN ! ` due to G ! 0. Numerical
calculation also proves this point. From the above ana
sis for the overlap kernel, it is not difficult to understan
the bifurcation phenomena. The tiny peaku ­ py2 is
the essential origin of theDI ­ 4 bifurcation. In order
to create the tiny peak, only two conditions are require
b .

p
2 and the boson number being finite. For a gene

Hamiltonian (4.4) in [12] with nine free parameters, ther
are many sets of parameters, which can give the sa
value ofb under the VBP principle. This seems to imply
that the staggering effect does not arise from the spec
dynamical property. Since the tiny peak or the factorG
disappears completely asN ! `, no matter how bigb is,
2008
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the most important source of the bifurcation phenomeno
is the fact that the boson number is finite.

The use of the general IBM Hamiltonian providesb .p
2 as required for theDI ­ 4 bifurcation. Ginnocchi and

Kirson gave a relation betweenb of the IBM and theb de-
formation of the geometrical model studied extensively b
Bohr and Mottelson (BM) under a certain approximation
as bsBMd # 1.18nbyA [12], wheren ­ 2N is the va-
lence nucleon number. If we takebsBMd , 0.3, N , 11,
andA , 230, then we findb $ 2.66. Warner and Casten
[15] also gave a slightly different relation, which isb ­
AbsBMdyn. For those nuclei mentioned above,Ayn ­
8 10 andbsBMd , 0.3, thenb ­ 2.4 3. These values
are very close to the value determined by minimizing th
Hamiltonian (4). For typical values ofb, one has, in rare-
earth nuclei (i.e., for nucleus near156Gd) b ø 6.5bsBMd
that coincides withb ø 6.33bsBMd given by Iachello and
Arima [16]; in the actinide region,b ø 9.2bsBMd. In all
cases,b .

p
2 is bsBMd . 0.25.

We discuss here the validity of the VBP method. Fo
this purpose, we take the full numerical diagonalizatio
method by using the computer codePHINT made by
Scholten [17]. We found almost perfect reproduction
on the rotational energies of the ground state ban
Concerning the staggering effect (very small quantity
the full diagonalization provides an even largerDI ­ 2
staggering. Since we know from the SU(3) limit, the
VBP provides a slightly smallerb value b ­

p
2f1 2

3y8N 1 Os1yN2dg, as compared with the exact one
bexact ­

p
2, we modify slightly theb value by a few

percent, which does not disturb the rotational spectra
all. We again get good agreement on the staggerin
phenomenon. We shall discuss this conclusion in mo
detail in a future publication [18].

In the experimental data, there exist cases where t
zigzagging pattern becomes irregular at some spin, su
as174Yb at spin 14,232Th at 24,234U at 16,236U at 18, and
242Pu at 16 which is shown in Fig. 4 as an example. A
demonstrated above, this irregular pattern is not expect
in the intrinsic states made of thesd bosons. Hence, we
add theg0 boson to thesdspace as

Cint ­
1p

N!s1 1 b2 1 ´2d
fsy 1 bd

y
0 1 ´g

y
0 gN j0l .

(8)
and do the same angular momentum projection as in t
case of thesd space. We plot the staggering paramete
of the HamiltonianHgd ­ Cgdfsgygyd4sd̃d̃d4 1 H.c.g in
the bottom of Fig. 4 to compare with the correspondin
experimental result of242Pu. In the calculation, we
took Cgd ­ 4040.0 keV. To simplify and view the
contribution of theg0 boson, we setb ­

p
2. We clearly

see the irregular pattern which may correspond to wh
the experimental data suggest, although the experimen
errors ought to be reduced. The purpose of showin
this comparison is merely to demonstrate that the IBM
with inclusion of theg boson is able to generate this
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FIG. 4. The staggering parameter for242Pu [3] as a function
of the nuclear spin. The calculated staggering paramete
obtained by adding theg boson withN ­ 19 and ´2 ­ 1.8,
andCgd ­ 4020.0 keV, while keepingb2 ­ 2.

irregular behavior. If we plot the overlap kernel, we s
two more peaks atums´d andp 2 ums´d, which depend
on the value of́ , in addition to those atu ­ 0, py2,
andp. So, roughly, the zigzagging part of the excitatio
energy is proportional toPI scospy2d 1 2PIscosumd,
which represents a sum of a regular staggering pat
provided byPIscospy2d and an irregular part provided b
2PI scosumd. Hence, we are able to describe even mo
irregular patterns in the IBM with theg boson.

We remark on the effect of the bandcrossing on t
staggering parameter. The bandcrossing can also
finite contributions to the staggering parameter, which
usually very large (of order of 10 keV) and concentrat
around the bandcrossing spin due to the definition of
staggering parameter. This, however, has nothing to
with the DI ­ 4 bifurcation phenomenon considered
this study. In order to avoid this trivial anomaly, w
have taken the rotational bands with the bandcrossing s
more than 16sIc $ 16d and have stopped the analys
before this anomaly sets in.

In conclusion, we have analyzed systematically t
ground state bands of all the nuclei using the stagger
parameter. We have found theDI ­ 4 bifurcation phe-
nomenon in many cases as found in the other rotatio
bands. We have even found cases where the zigzag
pattern becomes irregular. We have then taken the
teracting boson model and modified slightly the intrins
wave function of the SU(3) limit of IBM by using the
VBP principle. We have also found, in the experime
tal analysis, a case where the zigzagging pattern beco
opposite of a certain spin and they are given a natural
planation within IBM.

The DI ­ 4 bifurcation phenomenon seems a com
mon feature of rotational bands and seems not to dep
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strongly on the dynamical properties of a system. In ou
theory, the staggering effect depends only on the value
b and the boson number being finite. It means that th
effect is related only to the geometrical shape of a nucleu
sinceb is a renormalized geometrical quadrupole defor
mation.

In this connection it is very interesting to note that
the DI ­ 4 bifurcation phenomenon is also identified
recently in the rotational spectra of diatomic molecule
[19]. The finding of the present Letter may also be
applicable to the staggering pattern in the negative pari
bands of the even-even nuclei and in the rotational ban
in odd mass nuclei [20]. We are studying these totall
different systems in terms of the IBM by changing the
contents of the intrinsic state.

We hope our study induces experiments to study mo
carefully the ground state bands and to provide more e
amples ofDI ­ 4 bifurcation. In addition, it is interesting
to apply the modified IBM to the superdeformed bands.
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