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Induced Parity-Breaking Term at Finite Temperature
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We compute the exact induced parity-breaking part of the effective actiof2fer 1) massive
fermions in QEDR at finite temperature by calculating the fermion determinant in a particular
background. The result confirms that gauge invariance of the effective action is respected even when
large gauge transformations are considered. [S0031-9007(97)04004-0]

PACS numbers: 11.10.Wx, 11.30.Er

Because of its relevance in both field theory and conand in perturbation theory, the effective action for the
densed matter physics, much effort has been devoted in tlgauge field cannot contain a smoothly renormalized CS
past decade to the study of three-dimensional gauge theoeefficient at nonzero temperature. More recently, the ex-
ries coupled to matter. An important ingredient in theseact result for the effective action of @ + 1) analog of
theories is the parity anomaly [1] which induces, throughthe CS system [18] as well as a zeta-function analysis of
fluctuation of massive Fermi fields, a Chern-Simons ternthe fermion determinant & # 0 in the (2 + 1) model
in the effective action of the gauge field [2]. [19] have explicitly shown that although the perturbative

As originally stressed in [1], a fundamental property ofexpansion leads to a smooth temperature-dependent and
the Chern-Simons (CS) action is the existence of a quarkence nonquantized CS coefficient, the complete effective
tization law: Because of the noninvariance of the CSaction can be made gauge invariant; the induced CS term’s
term under gauge transformations of “nonzero” windingnoninvariance revealed by perturbation theory being com-
number, the coefficient which appears in front of the (nonpensated by nonlocal contributions to the effective action.
Abelian) Chern-Simons three for$ts should be quan- Originally [2], the parity anomaly for fermions @ = 0
tized so that ex@iScs) is single valued. Even in the was analyzed by considering a particular gauge field back-
Abelian case, “large” gauge transformations come intgground configuration which allowed the closed computa-
play whenever the theory is formulated in an appropriatelftion of the anomalous part of the fermion current. In the
compactified manifold [3,4] and in that case the quantizasame vein, we compute in this work the induced parity-
tion law also holds. Putting together all these facts, one cahbreaking part of the effective action for three-dimensional
state that, in three-dimensional gauge theories with Fermihassive fermions in QEDat finite temperature by consid-
fields, calculations of the effective action for the gaugeering a particular gauge field configuration which allows
field using gauge-invariant regularizations lead to a parthe attainment of a closed exact result for the fermion de-
ity anomaly which manifests through the occurrence of aerminant. Our result confirms that gauge invariance, even
CS term with a quantized coefficient which depends on theinder large gauge transformations, is respected, and at the
number of fermion species. same time reproduces in the appropriate limits the pertur-

A natural gquestion raised when the analysis of threebative and zero-temperature results.
dimensional gauge theories was extended to the case of We define the total effective actiohi(4), as usual, by
finite temperature was whether quantization of the CS coethe formula
ficient induced by fermion fluctuations survives the effects
of temperature or is smoothly renormalized. The questiop~I'(4.M) :f Dy Dy
was originally discussed in [5], where it was argued that

the coefficient of the CS term in the effective action for the B y - .
gauge field should remain unchanged at finite temperature. X exp — o dr | d°x¢(§ + ied + M)y |.
Contrasting with this analysis, perturbative calculations for 1)

both relativistic and nonrelativistic theories, Abelian and
non-Abelian, have yielded induced actions with CS coeffi-We are using Euclidean Dirac’s matrices in the representa-
cients which are smooth functions of the temperature [6+iony, = o,,andB = % is the inverse temperature. The
15], this seeming to signal a kind of gauge anomaly at finitdabel 3 is used to denote the Euclidean time coordinate
temperature. The fermionic (gauge) fields in (1) obey antiperiodic (pe-
The problem of renormalization of the CS coefficient in- riodic) boundary conditions in the timelike direction. We
duced by fermions & # 0 was revisited in Refs. [16,17], are concerned with the mass-dependent parity-odd piece
where it was concluded that, on gauge invariance groundB,qq of I', which, as a parity transformation changes the
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sign of the mass term (the only odd term under parity inwe can always perform a gauge transformation in order

the Euclidean action), can be obtained as follows:

2I'0qa(A, M) = T(A,M) — T'(A,—M). 2

to pass to an equivalent expression, where the gauge field
A, = A, + 0,0 is constant in time. For the particular
set of configurations (3), such a transformation rendérs

In any gauge-invariant regularization scheme there is alseonstant. We see that there is a family(@fs achieving
a mass-independent (and temperature-independent) conttfiis while respecting the boundary conditions (5),

bution (the parity anomaly) which corresponds to a CS
term with a coefficient such that it changes in multiples

of i7 under large gauge transformations [19,20].
The calculation of (2) foany gauge field configuration

is not something we can do exactly. Instead of making a
perturbative calculation dealing with a small but otherwise
arbitrary gauge field configuration, we shall consider a re
stricted set of gauge field configurations which can, how

ever, be treated exactly. Moreover, as we want to make

calculation which preserves the symmetry for gauge trans-

formations with nontrivial winding around the time coor-
dinate, any approximation assuming the smallnes4;of
could put this symmetry in jeopardy.

A convenient class of configurations from this point o
view is that of time-independent magnetic fields in a gaug
such that

Az = A3(7), Aj=A;x)(j =12, (3)

namely,As is only a function ofr, andA; is independent
of 7. Under these assumptions, we see that the enly
dependence of the Dirac operator comes frégn This
dependence can, however, be erased by a redefinition

Q(T) = — j;)Td%A3(7')
1

(5

2mn

B
— j;) d’f'A3(7~') +

)T, (7)

wheren is an arbitrary integer. The freedom to choase

could be used to further restrict the values of the constant

A} to a finite interval. In this sense, the value of the con-
&ant in such an interval is the only “essential,” i.e., gauge

B

invariant,As-dependent information contained in the con-
figurations (3), describing the holonomﬁg d7 As3(7).
However, we will limit ourselves to small gauge transfor-

fmations(n = 0) in order to avoid any assumption about
éarge gauge invariance of the fermionic measure in (6)

and safely discuss the effect of large gauge transforma-
tions on the final results. Thus the constant figldsim-

ply takes the mean value df(7), A; = %f(’f dr A5(7).
Note that the spatial componentsAf remainr indepen-
dent after this transformation.

It is convenient to perform a Fourier transformation on
e time variable fows and¢, since the Dirac operator is

W invariant under translations in that coordinate,

t
f

the integrated fermionic fields. The set of allowed gauge

transformations in the imaginary time formalism is defined

in the usual way:
Y(r,x) = e “CTyY(r,x),
Pr,x) = 20 (7).
Au(r,x) = Ap(r,x) + 9,Q(7,x),

(4)

where() (7, x) is a differentiable function vanishing at spa-
tial infinity (]x| — <), and whose time boundary condi-

n Lol )
elw/XT¢n (x) b

%]

™|~

MMl

n

(8)

%]

e_iwnlen(x) >

®©

P(r,x) =

™| =

n

wherew, = (2n + 1) % is the usual Matsubara frequency
for fermions. Then the Euclidean action is written as an
infinite series of decoupled actions, one for each Matsubara

tions are chosen in order not to affect the fields’ boundarynode,

conditions. It turns out tha® (7, x) can wind an arbitrary
number of times around the cyclic time dimension,
2
Q(B,x) = Q(0,x) + —ﬂ-n, (5)
e

wheren is an integer which labels the homotopy class o
the gauge transformation.

As we are interested in evaluating the fermionic dete
minant in a gauge-invariant way,

det§y + ied + M) =[ Dy D

B
X ex —j drfdzx
0

X P + ieh + M)¢],
(6)

> [ @xinold + M+ iys(on + Ay,

1
B WL
()

fwhere d = y;(9; + ieA;) is the Dirac operator corre-

sponding to the spatial coordinates and the spatial com-

(ponents of the gauge field.

As the action splits up into a series and the fermionic
measure can be written as
n=+ow
Dy(r,x)Di(r,x) = [ D)D),
the (2 + 1) determinant is an infinite product of the
correspondingl + 1) Euclidean Dirac operators,
n=-+ow®

detd + ied + M) = [] defd + p,e”?],

n=—x

(10)

(11)
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where we have also defined odd piece of the effective action in Qg Rt finite tempera-
_ ture for the restricted set of configurations (3). Several
pn = M + (w, + €As)?, important features of this result should be stressed.
w, + eAs (12) First, this result has the proper zero-temperature limit:
b = avcta @) v
lIim Cogqg = == 8
T—0 odd 2 |M| CS
Explicitly, the (1 + 1) determinant for a given mode is a ) 5
functional integral ovef1l + 1) fermions, _iM e ]d3xé vaA i d,A, . (19)
2 |M| 4n pratip
defd + p,e’” ] Zf D xn D xn As is well known, in the zero-temperature case the mass-
dependent part of the parity breaking is not invariant under
X expl — f d2x (%) large gauge tra}nsformgtions. The quantization of tzhwe flux
of the magnetic field in the last factor of (18) gs.-

. shows that (19) changes by the additionie§ 7 under a
X (4 + pue ") xn() large gauge transformation (5). The gauge noninvariance,
appearing whem and ¢ are odd, is compensated by
(13) : : e
the parity anomaly when the result is regularized in a
We now realize that the change of fermionic variables, gauge-invariant scheme. Notice also that only in the zero-
A temperature limit is the result nonanalytici.
i6n/D7s, The same situation occurs in the finite-temperature result
(14) (18). A large gauge transformation with odd winding
numbern = 2p + 1 shifts the argument of the tangent
makes the action in (13) independentdf. Concerning in 2p + 1)ar. Although the tangent is not sensitive to
the fermionic measure, it picks up an anomalous Fujikawauch a change, one has to keep track of it by shifting the

i(¢u/2)ys

Xn(x) = e~ o). () = x,(xe”

Jacobian [21] so that one ends with branch used for arctan definition. This amounts to exactly
_ the same result as in tife — 0 limit.
defd + M + iys(w, + eA3)] = J,defd + p,], Next, we observe that an expansion in powers yields
(15)  the usual perturbative result,
J M
where Toqa = é tanl'<’BT>Scs + 0(64), (20)
J, = ex;{—i ezisn ] d*x €ji ajAk>, (16)  where the coefficient of the Chern-Simons term acquires
. a smooth temperature dependence. Were we consider-

with €;; denoting the(1 + 1) Euclidean Levi-Civita ing only the first nontrivial order ire, we would find a
symbol. clash between temperature dependence and gauge invari-
Recalling the definition of 44, we see that the second ance [16,17]. Now we learn, as it was first stressed in [18]

factor in expression (15) does not contribute to it, since itisn a (0 + 1)-dimensional example and in [19] in a setting
invariant unded — —M. As a consequence, the parity- similar to ours, that one has to consider the full result in
odd piece of the effective action is given in terms of theorder to analyze gauge invariance. The apparent impos-
infinite set ofrn-dependent Jacobians, sibility of respecting gauge invariance shown by (20) is,

=t o Nt in fact, compensated by nonlocal higher order terms in the
Toqd = — Z InJ, =i — Z d’"f d*x €19 Ax . perturbative expansion.
n=—o 27 Finally, we observe that the result (18) is not an

(17)  extensive quantity in Euclidean time. It is, however, ex-

There only remains to perform the summation over thdensive in space, and that is indeed all one expects in finite-
$.’s, whose sign will obviously depend on the signiaf temperature field thgory. In contrast, tﬁé_= 0 I|m|t_
Using standard finite-temperature techniques, this seriddCOmes an extensive quantity in space-time, as is ex-

can be exactly evaluated, yielding pected from zero temperature fie'Id theory.
We shall now extend the previous results to the some-

Ty — iiarcta{tanr<B—M>tar<i [ﬂdrA3(r))} what more general situation of gauge fields satisfying the
27 2 2 Jo constraint ofA;, being again time independent, but al-
lowing for a smooth spatial dependencedafbesides the
X fdzx €k 0 A . (18)  previous arbitrary time dependence.
The fermionic determinant we should calculate, after
This is one of the main results in our paper: We havegetting rid of ther dependence ofi; will have a form
been able to compute thexactmass-independent parity- analogous to (11) with the only difference being of having
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an x dependence i, and ¢,. The determinant corre- which made use of the calculation of thie + 1) anom-
sponding to the mode is again written as in Eqg. (13), and aly, can be also applied to the analysis of the non-Abelian
we can perform the two-dimensional chiral rotation (14).case; details of this case will be given elsewhere.
Thex dependence of the phase fac#for produces, in this The authors would like to thank S. Deser, L. Griguolo,
case, a different anomalous Jacobian, and D. Seminara for discussions and comments on the
original manuscript. G.L.R. thanks R. Jackiw for kind
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