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We compute the exact induced parity-breaking part of the effective action fors2 1 1d massive
fermions in QED3 at finite temperature by calculating the fermion determinant in a particu
background. The result confirms that gauge invariance of the effective action is respected even
large gauge transformations are considered. [S0031-9007(97)04004-0]
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Because of its relevance in both field theory and co
densed matter physics, much effort has been devoted in
past decade to the study of three-dimensional gauge th
ries coupled to matter. An important ingredient in the
theories is the parity anomaly [1] which induces, throug
fluctuation of massive Fermi fields, a Chern-Simons te
in the effective action of the gauge field [2].

As originally stressed in [1], a fundamental property o
the Chern-Simons (CS) action is the existence of a qu
tization law: Because of the noninvariance of the C
term under gauge transformations of “nonzero” windin
number, the coefficient which appears in front of the (no
Abelian) Chern-Simons three formSCS should be quan-
tized so that expsiSCSd is single valued. Even in the
Abelian case, “large” gauge transformations come in
play whenever the theory is formulated in an appropriate
compactified manifold [3,4] and in that case the quantiz
tion law also holds. Putting together all these facts, one c
state that, in three-dimensional gauge theories with Fe
fields, calculations of the effective action for the gaug
field using gauge-invariant regularizations lead to a p
ity anomaly which manifests through the occurrence o
CS term with a quantized coefficient which depends on t
number of fermion species.

A natural question raised when the analysis of thre
dimensional gauge theories was extended to the cas
finite temperature was whether quantization of the CS co
ficient induced by fermion fluctuations survives the effec
of temperature or is smoothly renormalized. The questi
was originally discussed in [5], where it was argued th
the coefficient of the CS term in the effective action for th
gauge field should remain unchanged at finite temperatu
Contrasting with this analysis, perturbative calculations f
both relativistic and nonrelativistic theories, Abelian an
non-Abelian, have yielded induced actions with CS coef
cients which are smooth functions of the temperature [
15], this seeming to signal a kind of gauge anomaly at fin
temperature.

The problem of renormalization of the CS coefficient in
duced by fermions atT fi 0 was revisited in Refs. [16,17],
where it was concluded that, on gauge invariance groun
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and in perturbation theory, the effective action for th
gauge field cannot contain a smoothly renormalized C
coefficient at nonzero temperature. More recently, the e
act result for the effective action of as0 1 1d analog of
the CS system [18] as well as a zeta-function analysis
the fermion determinant atT fi 0 in the s2 1 1d model
[19] have explicitly shown that although the perturbativ
expansion leads to a smooth temperature-dependent
hence nonquantized CS coefficient, the complete effect
action can be made gauge invariant; the induced CS term
noninvariance revealed by perturbation theory being co
pensated by nonlocal contributions to the effective actio

Originally [2], the parity anomaly for fermions atT ­ 0
was analyzed by considering a particular gauge field ba
ground configuration which allowed the closed comput
tion of the anomalous part of the fermion current. In th
same vein, we compute in this work the induced parit
breaking part of the effective action for three-dimension
massive fermions in QED3 at finite temperature by consid-
ering a particular gauge field configuration which allow
the attainment of a closed exact result for the fermion d
terminant. Our result confirms that gauge invariance, ev
under large gauge transformations, is respected, and at
same time reproduces in the appropriate limits the pert
bative and zero-temperature results.

We define the total effective actionGsAd, as usual, by
the formula

e2GsA,Md ­
Z

D c D c̄

3 exp

"
2

Z b

0
dt

Z
d2x c̄s≠y 1 ieAy 1 Mdc

#
.

(1)

We are using Euclidean Dirac’s matrices in the represen
tiongm ­ sm, andb ­

1
T is the inverse temperature. The

label 3 is used to denote the Euclidean time coordinatet.
The fermionic (gauge) fields in (1) obey antiperiodic (pe
riodic) boundary conditions in the timelike direction. W
are concerned with the mass-dependent parity-odd pi
Godd of G, which, as a parity transformation changes th
© 1997 The American Physical Society
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sign of the mass term (the only odd term under parity in
the Euclidean action), can be obtained as follows:

2GoddsA, Md ­ GsA, Md 2 GsA, 2Md . (2)

In any gauge-invariant regularization scheme there is als
a mass-independent (and temperature-independent) con
bution (the parity anomaly) which corresponds to a CS
term with a coefficient such that it changes in multiples
of ip under large gauge transformations [19,20].

The calculation of (2) foranygauge field configuration
is not something we can do exactly. Instead of making
perturbative calculation dealing with a small but otherwise
arbitrary gauge field configuration, we shall consider a re
stricted set of gauge field configurations which can, how
ever, be treated exactly. Moreover, as we want to make
calculation which preserves the symmetry for gauge tran
formations with nontrivial winding around the time coor-
dinate, any approximation assuming the smallness ofA3
could put this symmetry in jeopardy.

A convenient class of configurations from this point of
view is that of time-independent magnetic fields in a gaug
such that

A3 ­ A3std, Aj ­ Ajsxd s j ­ 1, 2d , (3)

namely,A3 is only a function oft, andAj is independent
of t. Under these assumptions, we see that the onlyt

dependence of the Dirac operator comes fromA3. This
dependence can, however, be erased by a redefinition
the integrated fermionic fields. The set of allowed gaug
transformations in the imaginary time formalism is defined
in the usual way:

cst, xd ! e2ieVst,xdcst, xd ,

c̄st, xd ! eieVst,xdc̄st, xd , (4)

Amst, xd ! Amst, xd 1 ≠mVst, xd ,

whereVst, xd is a differentiable function vanishing at spa-
tial infinity sjxj ! `d, and whose time boundary condi-
tions are chosen in order not to affect the fields’ boundar
conditions. It turns out thatVst, xd can wind an arbitrary
number of times around the cyclic time dimension,

Vsb, xd ­ Vs0, xd 1
2p

e
n , (5)

wheren is an integer which labels the homotopy class o
the gauge transformation.

As we are interested in evaluating the fermionic deter
minant in a gauge-invariant way,

dets≠y 1 ieAy 1 Md ­
Z

D c D c̄

3 exp

(
2

Z b

0
dt

Z
d2x

3 c̄s≠y 1 ieAy 1 Mdc

)
,

(6)
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we can always perform a gauge transformation in ord
to pass to an equivalent expression, where the gauge fi
A0

m ­ Am 1 ≠mV is constant in time. For the particular
set of configurations (3), such a transformation rendersA0

3
constant. We see that there is a family ofV’s achieving
this while respecting the boundary conditions (5),

Vstd ­ 2
Z t

0
dt̃ A3st̃d

1

√
1
b

Z b

0
dt̃ A3st̃d 1

2pn
eb

!
t , (7)

wheren is an arbitrary integer. The freedom to choosen
could be used to further restrict the values of the consta
A0

3 to a finite interval. In this sense, the value of the con
stant in such an interval is the only “essential,” i.e., gaug
invariant,A3-dependent information contained in the con
figurations (3), describing the holonomy

Rb

0 dt̃ A3st̃d.
However, we will limit ourselves to small gauge transfor
mationssn ­ 0d in order to avoid any assumption abou
large gauge invariance of the fermionic measure in (
and safely discuss the effect of large gauge transform
tions on the final results. Thus the constant fieldA0

3 sim-
ply takes the mean value ofA3std, Ã3 ­

1
b

Rb

0 dt A3std.
Note that the spatial components ofAm remaint indepen-
dent after this transformation.

It is convenient to perform a Fourier transformation o
the time variable forc andc̄, since the Dirac operator is
now invariant under translations in that coordinate,

cst, xd ­
1
b

n­1`X
n­2`

eivntcnsxd ,

c̄st, xd ­
1
b

n­1`X
n­2`

e2ivntc̄nsxd ,

(8)

wherevn ­ s2n 1 1d p

b is the usual Matsubara frequency
for fermions. Then the Euclidean action is written as a
infinite series of decoupled actions, one for each Matsuba
mode,

1
b

1X̀
n­2`

Z
d2x c̄nsxd fdy 1 M 1 ig3svn 1 eÃ3dgcnsxd ,

(9)

where dy ­ gjs≠j 1 ieAjd is the Dirac operator corre-
sponding to the spatial coordinates and the spatial co
ponents of the gauge field.

As the action splits up into a series and the fermion
measure can be written as

D cst, xdD c̄st, xd ­
n­1`Y
n­2`

D cnsxdD c̄nsxd , (10)

the s2 1 1d determinant is an infinite product of the
correspondings1 1 1d Euclidean Dirac operators,

dets≠y 1 ieAy 1 Md ­
n­1`Y
n­2`

detfdy 1 rneig3fn g , (11)
1981
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where we have also defined

rn ­
p

M2 1 svn 1 eÃ3d2 ,

fn ­ arctan

µ
vn 1 eÃ3

M

∂
.

(12)

Explicitly, the s1 1 1d determinant for a given mode is a
functional integral overs1 1 1d fermions,

detfdy 1 rneig3fn g ­
Z

D xn D x̄n

3 exp

(
2

Z
d2x x̄nsxd

3 sdy 1 rneig3fn dxnsxd

)
.

(13)

We now realize that the change of fermionic variables,

xnsxd ­ e2isfny2dg3x 0
nsxd , x̄nsxd ­ x̄ 0

nsxde2isfny2dg3 ,
(14)

makes the action in (13) independent offn. Concerning
the fermionic measure, it picks up an anomalous Fujikaw
Jacobian [21] so that one ends with

detfdy 1 M 1 ig3svn 1 eÃ3dg ­ Jn detfdy 1 rng ,
(15)

where

Jn ­ exp

√
2i

efn

2p

Z
d2x ejk≠jAk

!
, (16)

with ejk denoting the s1 1 1d Euclidean Levi-Civita
symbol.

Recalling the definition ofGodd, we see that the second
factor in expression (15) does not contribute to it, since it
invariant underM ! 2M. As a consequence, the parity
odd piece of the effective action is given in terms of th
infinite set ofn-dependent Jacobians,

Godd ­ 2

n­1`X
n­2`

ln Jn ­ i
e

2p

n­1`X
n­2`

fn

Z
d2x ejk≠jAk .

(17)

There only remains to perform the summation over th
fn ’s, whose sign will obviously depend on the sign ofM.
Using standard finite-temperature techniques, this ser
can be exactly evaluated, yielding

Godd ­ i
e

2p
arctan

"
tanh

µ
bM

2

∂
tan

√
e
2

Z b

0
dt A3std

!#

3
Z

d2x ejk≠jAk . (18)

This is one of the main results in our paper: We hav
been able to compute theexactmass-independent parity-
1982
a

is
-
e

e
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e

odd piece of the effective action in QED3 at finite tempera-
ture for the restricted set of configurations (3). Severa
important features of this result should be stressed.

First, this result has the proper zero-temperature limit:

lim
T!0

Godd ­
i
2

M
jMj

SCS

­
i
2

M
jMj

e2

4p

Z
d3x emnaAm≠nAa . (19)

As is well known, in the zero-temperature case the mass
dependent part of the parity breaking is not invariant unde
large gauge transformations. The quantization of the flu
of the magnetic field in the last factor of (18) asq 2p

e
shows that (19) changes by the addition ofinqp under a
large gauge transformation (5). The gauge noninvarianc
appearing whenn and q are odd, is compensated by
the parity anomaly when the result is regularized in a
gauge-invariant scheme. Notice also that only in the zero
temperature limit is the result nonanalytic inM.

The same situation occurs in the finite-temperature resu
(18). A large gauge transformation with odd winding
numbern ­ 2p 1 1 shifts the argument of the tangent
in s2p 1 1dp. Although the tangent is not sensitive to
such a change, one has to keep track of it by shifting th
branch used for arctan definition. This amounts to exactl
the same result as in theT ! 0 limit.

Next, we observe that an expansion in powers ofe yields
the usual perturbative result,

Godd ­
i
2

tanh

µ
bM

2

∂
SCS 1 Ose4d , (20)

where the coefficient of the Chern-Simons term acquire
a smooth temperature dependence. Were we conside
ing only the first nontrivial order ine, we would find a
clash between temperature dependence and gauge inva
ance [16,17]. Now we learn, as it was first stressed in [18
in a s0 1 1d-dimensional example and in [19] in a setting
similar to ours, that one has to consider the full result in
order to analyze gauge invariance. The apparent impo
sibility of respecting gauge invariance shown by (20) is
in fact, compensated by nonlocal higher order terms in th
perturbative expansion.

Finally, we observe that the result (18) is not an
extensive quantity in Euclidean time. It is, however, ex-
tensive in space, and that is indeed all one expects in finite
temperature field theory. In contrast, theT ­ 0 limit
becomes an extensive quantity in space-time, as is e
pected from zero temperature field theory.

We shall now extend the previous results to the some
what more general situation of gauge fields satisfying th
constraint ofAj , being again time independent, but al-
lowing for a smooth spatial dependence ofA3 besides the
previous arbitrary time dependence.

The fermionic determinant we should calculate, afte
getting rid of thet dependence ofA3 will have a form
analogous to (11) with the only difference being of having
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an x dependence inrn and fn. The determinant corre-
sponding to then mode is again written as in Eq. (13), and
we can perform the two-dimensional chiral rotation (14)
Thex dependence of the phase factorfn produces, in this
case, a different anomalous Jacobian,

detfdy 1 rnsxdeig3fnsxdg ­ J 0
n detfdy0 1 rnsxdg , (21)

wheredy0 ­ dy 2
i
2 ≠yfng3. This affects the result in two

ways. First, as the fermionic operator in the right-han
side depends on the sign ofM, there will be a contribution
to Godd coming from the determinant ofdy0 1 rnsxd.
Second, the Jacobian is a slightly more involved functio
of fn [21],

J 0
n ­ exp

(
2 i

e
2p

Z
d2x

3

"
fnsxdejk≠jAk 1

1
4

fnsxdDfnsxd

#)
. (22)

In a first approximation, we shall only take into accoun
the contribution coming from the Jacobian, since the on
that follows from the determinant of the Dirac operato
is of higher order in a derivative expansion (and w
are assuming that thex dependence of̃A3 is smooth).
Moreover, the contribution which is quadratic infn is
irrelevant to the parity-breaking piece, since it is invarian
under the changeM ! 2M. Thus, neglecting the terms
containing derivatives of̃A3, we have forGodd a natural
generalization of Eq. (18),

Godd ­ i
e

2p

Z
d2x

3 arctan

"
tanh

√
bM

2

!
tan

√
e
2

Z b

0
dt A3st, xd

!#
3 ejk≠jAksxd . (23)

The approximation of neglecting derivatives ofÃ3 is
reliable if the conditionje≠jÃ3j ø M2 is fulfilled. To
end with this example, let us point out that all the remark
we made for the case of a space-independentA3 apply
also to this case.

In conclusion, using particular gauge field configu
rations, we have computed the mass-dependent pari
violating part of the effective action fors2 1 1d massive
fermions at finite temperature obtaining an exact resu
Once the standard parity anomaly is taken into account, w
have shown that gauge invariance holds even when lar
gauge field configurations are considered. Our metho
.
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which made use of the calculation of thes1 1 1d anom-
aly, can be also applied to the analysis of the non-Abeli
case; details of this case will be given elsewhere.
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[16] N. Bralić, C. D. Fosco, and F. A. Schaposnik, Phys. Let

B 383, 199 (1996).
[17] D. Cabra, E. Fradkin, G. L. Rossini, and F. A. Schaposni

Phys. Lett. B383, 434 (1996).
[18] G. Dunne, K. Lee, and C. Lu, Phys. Rev. Lett.78, 3434

(1997).
[19] S. Deser, L. Griguolo, and D. Seminara, preceding Lette

79, 1976 (1997).
[20] R. E. Gamboa Saravı´, G. L. Rossini, and F. A. Schaposnik

Int. J. Mod. Phys. A11, 2643 (1996).
[21] K. Fujikawa, Phys. Rev. Lett.42, 1195 (1979); Phys. Rev.

D 21, 2848 (1980).
1983


