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The effective gauge field actions generated by charged fermions in; @B® QCOQ can be made
invariant under both small and large gauge transformations at any temperature by suitable regularization
of the Dirac operator determinant, at the price of parity anomalies. We resolve the paradox that
the perturbative expansion is not invariant, as manifested by the temperature dependence of the
induced Chern-Simons term, by showing that large (unlike small) transformations and hence their Ward
identities are not perturbative order preserving. Our results are illustrated through concrete examples
of field configurations, where the interplay between gauge and parity anomalies is also exhibited.
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Three-dimensional gauge theories are of physical invation, similar to that in the familiar axial anomaly in
terest in the condensed matter context [1], but displayven dimensions. All these features are illustrated in de-
special features requiring understanding different frontail by explicit consideration of some nontrivial configu-
their four-dimensional counterparts. In particular, we will rations that enable us to “parametrize” the Chern-Simons
be concerned with the complex of problems associatedspects in both the Abelian and non-Abelian context.
with the presence of Chern-Simons (CS) terms [2], the Let us begin with the peculiar properties of large gauge
necessary quantization of their coefficients [2,3] in thetransformations that invalidate the usual Ward identity
action stemming from the possibility of making homo- counting. For U(1) in particular, and restoring (for the
topically nontrivial “large” gauge transformations, and moment) explicit dependence on, we haveA, —
the effect of quantum loop corrections on this sector [4-A4,, + ¢ 'd,f. Normally, we can merely redefing =
6]. While large transformations are always relevantinthee=!'f. This is also true at finite temperature for the
non-Abelian case, they also come into play in the physismall gauge transformations singeis required to be
cally most interesting case of Qg[at finite tempera- periodic only in Euclidean timg8 = (xT)~'. Thus a
tures where the compactified Euclidean time/temperaturperturbative expansion will be small gauge invariant order
provides a nontrivialS! geometry. These exotic fea- by order. But for large ones, the periodicity condition
tures have been the subject of a large literature [7], abecomesf(0,r) = f(B,r) + 27n, with n € Z, and a
they seemingly lead to a paradox: on the one hand, largescaling will merely hide the ! factor in the boundary
gauge invariance appears to require quantization of theonditions, leaving the large shifty — A + 27n/e
CS term’s coefficient; on the other, matter loop contribu-unaffected. This intrinsic dependence means that only
tions to the effective gauge field action at finite temperathe full effective action (as we will show), but not
tures yield a perturbative expansion in which the CS ternits individual expansion terms (including CS parts) will
acquires temperature-dependent, hence nonquantized, gemain invariant. [Perturbative noninvariance will also
efficients that seem to signal a gauge anomaly. This isharacterize any other expansion that fails to commute
particularly puzzling since both the matter action and thevith the above boundary condition.] We are therefore
process of integrating out its excitations should be intrinsidriven to a careful treatment of the induced effective
cally gauge invariant. We will establish that the effectiveaction I'[A] resulting from integrating out the charged
action is indeed invariant under both small and large transmatter, for us massive fermions, according to the usual
formations using the classic results of [8] that gave a clearelation exgp—I'[A]) = de{(ip + im) where D, is the
definition of the Dirac operator's functional determinantU(1) covariant derivative. The extensionibflavors and
by means of{-function regularization. Instead, we will to the non-Abelian case will be seen to be straightforward.
see that it is the perturbative expansion that is noninvari- Our three-space ha$'(time) X 3 topology, > being
ant because large transformations necessarily introduge compact Riemann two-surface such as a splérer
nonanalytic dependence on the charge so that expansia@ntorus 72, depending on the desired spatial boundary
in e? and large gauge invariance are mutually incompateonditions. We work with a finite two-volume in order to
ible: the induced Chern-Simons term’s noninvariance isavoid infrared divergences associated with the continuous
precisely compensated by further nonlocal contributionspectrum in an open space. Before proceeding, let us
in the effective action. We will also note the neces-see how gauge invariance constrains the form of the
sary clash between gauge invariance and parity consedeterminant. [To avoid irrelevant spatial homotopies, we
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shall here take3 to be the sphere.] Because of theof a nonlocal functional off and of the two-geometry
existence of the nontrivia§! cycle we can construct times a phase expmia). We may take the constant
(besidesF,,) the gauge invariant holonomy)(r) = called the flat connection, to represent this new degree of
exdi f{f Ao(t',r) dt']. The new information carried b§ freedom; it transforms according @@ — a + 1 under

is encoded entirely in a topological degree of freedonlarge transformations. Consequently, the determinant is
that inherits the nontrivial behavior of, under large @ functional of bothF,, anda, obeying the additional
gauge transformations. Sin€kis unimodular and obeys Ward identitye '@+ 15u) = ¢~T(@Fuw): it js periodic in

vQ =iQ [PE(,r)dr, it follows that it is the product| « (actually alsdl” is). Then we may Fourier expand it

exd-T(Funa)] = > [[V(F.)cos2mka + TP (F,,) sin2mka]
e 0 @) 1)
= ¢lles > AT (Fuy) cosm2k — ®(F)la + T (Fu,) sinm[2k — ®(F)]a},

k=—0o

where®(F) = (1/4m) [ d*x€e F,; is the electromagnetid regularized, its full gauge invariance reduces to that of its
flux through S? and Ics = (1/47) [(dx)e*"?A,d,A,. eigenvalue spectrum. But small transformations do not
To write this representation of the effective action weaffect thea, at all, while the large ones merely permute
have used the fact that Chern-Simons actigg can them, as in usual illustrations of index theorems [11];
be rewritten asma®(F) plus a functional ofF only. every well-defined symmetric function of the spectrum,
[Effectively, we represent the “large” aspects througl,  such a</(s) and hencd[A], is unchanged.
or a, and the “small” ones through,,.] In the second The price paid for preserving gauge invariance is (as
equality, we have factored out an explicit CS part, whichusual) an intrinsic parity anomaly, i.e., one present even
is also the intrinsic parity anomaly, as we shall see; then the limit when the explicitly parity violating fermion
second form will be realized in our explicit examples mass term is absent. [That parity can be sacrificed for
below. These two representations also make clearer hogauge invariance was effectively noted in [12].] Under
explicit CS terms can be present without loss of gauge\, — —A% so that{”(s) # £(s). It is easy to express
invariance. the parity violating partl"®V)[A] = 1/2[£'(0) — ¢'P(0)]

We now return to the definition of the effective explicitly in terms of the eta function in this limit:{ =
action. Within our framework, the Dirac operator is a0). Here
well-defined elliptic operator [8] whose determinant can
be rigorously and uniquely specified. Thefunction  f(s) — (F(s) = (1 — e '™) ( Z (A) 7% — Z (—/\n)‘f>
regularization [9] defines the formal product of all the >0 A, <0

eigenvalues\, as =(1—-e")n(s) (4)

: — — _ sl
deti(p) + m) = I14, = exd—{'(0)], @ so thatl'®V)[A] = iz /21(0). At m = 0, the continuous
£(s) = Z()‘ ) part of n(0) is given in closed form by the CS action
)= " [11,13]; being local means it can be removed by a differ-

with ImpIICIt repetition over degenerate eigenvalues. Forent choice of regulariza‘tion_ Fat #+ 0 an expansion in
s >3 in D =3 [8], the above series converges andpowers of the mass can be presented

its analytic extension defines a meromorphic function | d
with only simple poles. It is regular at = 0, thereby T®V)(4) = 7 g )~ £P(9)]
S

assuring the meaningfulness of (2). A careful definition 5=0 (5)
of A,° is required to avoid ambiguities. We take it P i m(2k+1)
. o . k
to be exp—slna,) where the cut is chosen to be over =i m0) —i > (=1 w12k + D,
the positive real axis) = argA, < 27, enabling us to ) k=0 _ '
rewrite £ (s) in the more convenient form while the analogous expansion for the parity-conserving

part involves even powers of the mass. Several remarks
L(s) = Z (X)) + exp(—ims) Z (=A,)"%. (3) about (5) are in order. (a) The presence of the odd
ReA, >0 ReA, <0 powers can be understood as a consequence of the
Changing the cut alters the determinant only if it intersect®ehavior of the mass term under parity. Instead, the
the line Imz = m, in which case the only relevant anomalous contributiom(0) (proportional to the evem’
difference is the sign of the exponential in (3). Thispower) originates in a compensation between vanishing
alternative choice does not affect gauge invariance, bund divergent terms. Similarly, for the parity-preserving
does change the sign of the parity anomaly termE[ia]  part there are, besides the even powers, two other possible
as was noted in [10] by more complicated considerationscontributions in three dimensions, one proportionahito
Once the determinant of the Dirac operator has beeand one ton?, coming from an analogous compensation.
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(b) In explicit computations, the expansion, like its analog For concrete illustrations of how the perturbative non-
for the parity preserving part, must be treated carefullyjnvariance paradox is circumvented, let us now consider
because, even though gauge-invariant order by ordesome explicit examples of actions and large gauge trans-
the coefficients of such expansions are not continuoutrmations both in the Abelian and non-Abelian sec-
functionals of the gauge field. [Recall, for example, thattors. The simplest is the pur&' (0 + 1)-dimensional
1(0) jumps by =2 when an eigenvalue crosses zero ortoy model of [14], with Dirac operatdii(d/dt) + A(t) +

see the Ink’[A] form in the example below.] The total im] and large transformations obeying8) — f(0) =
effective action is, instead, a continuous functional. (cRwn. Charge conjugatiom — —A plays the role of

It would be interesting to compare our mass expansionparity, which is violated bymn, all as in(2 + 1). Both
with the one presented in [13], obtained from low the eigenvalues andl(s) can be obtained exactly in terms
and high temperature limits in four dimensional gaugeof the average: = (1/2) ng(;) dt. We give only the
theories. | final result here, fo charged fermions:

exd—I'4)] = {2[005(’87’”)0057751 — isinl(’%qq)sinn-a}ex;{iﬂa - %)}N

= [exp(—Bm + 2mia) + 1]".

(6)

Note that with our regularization, the action depends:on essentially because there is no equivalent of the Abelian
only via theS' holonomy ex27ia). Expanding (6) in CS, [A.

terms of sikkwa and cokma shows the consistency of A more realistic(2 + 1) example is the U(1) field

this result with the general expression (1). A large trans- 2

formation a« — a + 1 leaves (6) invariant for any, Aultr) = <? a,A(l‘)>, (7)
even or odd, through a sign cancellation between the sepa- i ] | ,
rate factors in the middle term. Note the necessary pred¥heré a is a flat connection along’. A lives on

ence of an “intrinsic” charge conjugation anomaly even>: With nonvanishing, necessarily integer, fldx(F) =
atm = 0: In[[A] = iN(a — [a]). This is what allows " We concentrate on large transformations— a +

us to preserve large gauge invariance independently.of 1+ @lthough in higher genug. one could also have
Had we opted instead (as in [14]) for tk@ + 1) equiva- large transformations affecting. Because of the time
lent of the more usual, parity preserving (hefepre- independence, we have a tractable eigenvalue equation for
serving), regularization the etV a) factor would have A,. After some work, it follows that the effective action
been missing and only eveN would have kept invari- factorizes into twd0 + 1)-dimensional contributions like

ance. The non-Abeliafd + 1) scheme is not instructive, (6) and a reduced expression dependingdor, and the
| holonomy exg2ia),

exd—I'(A)] = [exp(—Bm + 2mia) + 11" [expd(—Bm — 2mia) + 117~

X

—_— 2
l_[[l + eXF(—B\/,U,i + m2 + 27Tla)] eXdzﬂg(Bz/4ﬂz)(¢z+mz)(_1/2) - (V+ + V_)mﬁ]. (8)
M

Here ) is the reduced Dirac operator OB, uy its | lows from the fact thaf, = c+/Ik| [8]. The invariance
nonvanishing eigenvalues. [A simple field configu-of (8) undera — a + 1 is manifest and its structure is
ration for which even thew, can be computed consistent with (1). It is clear that a perturbative (i.e.,
explicitly is the instanton on the flat unit torus: in powers ofa) expansion of (8) loses periodicity ia

A; = —mne;x/.  Here u? = 4mlnk| with degener- and hence does not see large invariance order by order.
acy 2n, while 27 g2 /a2y m2) (—1/2) = n(4mwn)'/2 x  For example, the Chern-Simons teriir{ = man) has
Blu(—1/2,m?/2mn) — (vs + v_)mB; {y is the Hur- @ coefficient 1 — tann(Bm/2). The usually quoted
witz function.] The number of positive/negative chiral coefficient omits thel that represents the intrinsic parity-
zero modesv+ of [ is represented by, with the anomaly price of our gauge-invariant regularlzatl_on_and
conventions(ys ¥ 1)v= = 0, and the (parity odd) flux hence persists at = 0. There is actually an ambiguity
is just - — v,. (In (0 + 1) dimensions, there is no in its sign [reflecting the choice of cut in (3)], also present
chirality, but an “opposite sign” holonomy can be arti- in other regularizations—for example, through the factor
ficially introduced by considering also fermions subject!iMy—z+=sign(M) in Pauli-Villars. Irrespective of
to a “conjugate” Dirac operatoi—id/dt — A(r) + im] @ €xpansion, the largen Ilmlt of I' is dellcate:_ with
which would change the sign @fria in the last equality Our intrinsic anomaly choice (gauge preserving), we
of (6).) That the infinite product in (8) is convergent fol- find I'(4) — I'(0) — (2,0)Ics as m — (=, +); the
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parity-reversing choice of cut in (3) would yiel®, —2).  (order-violating) nature of the Ward identities when a
Any other choice of intrinsicg = 0) anomaly coefficient nontrivial homotopy is present, the action itself being
would, of course, translate these limiting values. Thesdully gauge invariant with suitable regularization, one
asymptotic properties are independent of the backgroundhat necessarily entails parity anomalies. This has been
The analogous finite temperature “problem” arises inllustrated by explicit Abelian and non-Abelian field
the context of the non-Abelian theory as well. At zeroconfigurations. Details will be given elsewhere.
temperature the loop correction preserves the integer na- This work is supported by NSF Grant No. PHY-
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