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The effective gauge field actions generated by charged fermions in QED3 and QCD3 can be made
invariant under both small and large gauge transformations at any temperature by suitable regular
of the Dirac operator determinant, at the price of parity anomalies. We resolve the paradox
the perturbative expansion is not invariant, as manifested by the temperature dependence
induced Chern-Simons term, by showing that large (unlike small) transformations and hence their
identities are not perturbative order preserving. Our results are illustrated through concrete exa
of field configurations, where the interplay between gauge and parity anomalies is also exhi
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Three-dimensional gauge theories are of physical
terest in the condensed matter context [1], but displ
special features requiring understanding different fro
their four-dimensional counterparts. In particular, we wi
be concerned with the complex of problems associat
with the presence of Chern-Simons (CS) terms [2], th
necessary quantization of their coefficients [2,3] in th
action stemming from the possibility of making homo
topically nontrivial “large” gauge transformations, and
the effect of quantum loop corrections on this sector [4
6]. While large transformations are always relevant in th
non-Abelian case, they also come into play in the phy
cally most interesting case of QED3 at finite tempera-
tures where the compactified Euclidean time/temperatu
provides a nontrivialS1 geometry. These exotic fea-
tures have been the subject of a large literature [7],
they seemingly lead to a paradox: on the one hand, la
gauge invariance appears to require quantization of
CS term’s coefficient; on the other, matter loop contrib
tions to the effective gauge field action at finite temper
tures yield a perturbative expansion in which the CS ter
acquires temperature-dependent, hence nonquantized,
efficients that seem to signal a gauge anomaly. This
particularly puzzling since both the matter action and th
process of integrating out its excitations should be intrins
cally gauge invariant. We will establish that the effectiv
action is indeed invariant under both small and large tran
formations using the classic results of [8] that gave a cle
definition of the Dirac operator’s functional determinan
by means ofz -function regularization. Instead, we will
see that it is the perturbative expansion that is noninva
ant because large transformations necessarily introd
nonanalytic dependence on the charge so that expans
in e2 and large gauge invariance are mutually incompa
ible: the induced Chern-Simons term’s noninvariance
precisely compensated by further nonlocal contributio
in the effective action. We will also note the neces
sary clash between gauge invariance and parity cons
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vation, similar to that in the familiar axial anomaly in
even dimensions. All these features are illustrated in d
tail by explicit consideration of some nontrivial configu
rations that enable us to “parametrize” the Chern-Simo
aspects in both the Abelian and non-Abelian context.

Let us begin with the peculiar properties of large gaug
transformations that invalidate the usual Ward identi
counting. For U(1) in particular, and restoring (for th
moment) explicit dependence one, we have Am °!

Am 1 e21≠mf. Normally, we can merely redefinẽf ­
e21f. This is also true at finite temperature for th
small gauge transformations sincef is required to be
periodic only in Euclidean timeb ­ skT d21. Thus a
perturbative expansion will be small gauge invariant ord
by order. But for large ones, the periodicity conditio
becomesfs0, rd ­ fsb, rd 1 2pn, with n [ Z, and a
rescaling will merely hide thee21 factor in the boundary
conditions, leaving the large shiftA0 °! A0 1 2pnye
unaffected. This intrinsic dependence means that o
the full effective action (as we will show), but not
its individual expansion terms (including CS parts) wi
remain invariant. [Perturbative noninvariance will als
characterize any other expansion that fails to commu
with the above boundary condition.] We are therefo
driven to a careful treatment of the induced effectiv
action GfAg resulting from integrating out the charged
matter, for us massive fermions, according to the usu
relation exps2GfAgd ­ detsiDy 1 imd where Dm is the
U(1) covariant derivative. The extension toN flavors and
to the non-Abelian case will be seen to be straightforwa

Our three-space hasS1stimed 3 S topology, S being
a compact Riemann two-surface such as a sphereS2 or
a torus T 2, depending on the desired spatial bounda
conditions. We work with a finite two-volume in order to
avoid infrared divergences associated with the continuo
spectrum in an open space. Before proceeding, let
see how gauge invariance constrains the form of t
determinant. [To avoid irrelevant spatial homotopies, w
© 1997 The American Physical Society
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of

t is
shall here takeS to be the sphere.] Because of th
existence of the nontrivialS1 cycle we can construct
(besidesFmn) the gauge invariant holonomyVsrd ;
expfi

Rb

0 A0st0, rd dt0g. The new information carried byV
is encoded entirely in a topological degree of freedo
that inherits the nontrivial behavior ofA0 under large
gauge transformations. SinceV is unimodular and obeys
=V ­ iV

Rb

0 Est0, rd dt0, it follows that it is the product
e

m

of a nonlocal functional ofE and of the two-geometry
times a phase exps2piad. We may take the constanta,
called the flat connection, to represent this new degree
freedom; it transforms according toa °! a 1 1 under
large transformations. Consequently, the determinan
a functional of bothFmn and a, obeying the additional
Ward identitye2Gsa11,Fmnd ­ e2Gsa,Fmnd: it is periodic in
a (actually alsoG is). Then we may Fourier expand it
expf2GsFmn , adg ­
X̀

k­2`

fĜs1d
k sFmnd cos2pka 1 Ĝ

s2d
k sFmnd sin2pkag

­ eiICS

X̀
k­2`

hGs1d
k sFmnd cospf2k 2 FsFdga 1 G

s2d
k sFmnd sinpf2k 2 FsFdgaj ,

(1)
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whereFsFd ­ s1y4pd
R

d2xeijFij is the electromagnetic
flux through S2 and ICS ­ s1y4pd

R
sdxdemnrAm≠nAr .

To write this representation of the effective action w
have used the fact that Chern-Simons actionICS can
be rewritten aspaFsFd plus a functional ofF only.
[Effectively, we represent the “large” aspects throughICS,
or a, and the “small” ones throughFmn.] In the second
equality, we have factored out an explicit CS part, whic
is also the intrinsic parity anomaly, as we shall see; t
second form will be realized in our explicit example
below. These two representations also make clearer h
explicit CS terms can be present without loss of gau
invariance.

We now return to the definition of the effective
action. Within our framework, the Dirac operator is
well-defined elliptic operator [8] whose determinant ca
be rigorously and uniquely specified. Thez -function
regularization [9] defines the formal product of all th
eigenvaluesln as

detisDy 1 md ­ Pln ; expf2z 0s0dg ,

z ssd ;
X

slnd2s
(2)

with implicit repetition over degenerate eigenvalues. F
s . 3 in D ­ 3 [8], the above series converges an
its analytic extension defines a meromorphic functio
with only simple poles. It is regular ats ­ 0, thereby
assuring the meaningfulness of (2). A careful definitio
of l2s

n is required to avoid ambiguities. We take
to be exps2slnlnd where the cut is chosen to be ove
the positive real axis,0 # argln , 2p, enabling us to
rewritez ssd in the more convenient form

z ssd ­
X

Reln.0

slnd2s 1 exps2ipsd
X

Reln,0

s2lnd2s. (3)

Changing the cut alters the determinant only if it intersec
the line Im z ­ m, in which case the only relevan
difference is the sign of the exponential in (3). Th
alternative choice does not affect gauge invariance,
does change the sign of the parity anomaly terms inGfAg
as was noted in [10] by more complicated consideratio
Once the determinant of the Dirac operator has be
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regularized, its full gauge invariance reduces to that of
eigenvalue spectrum. But small transformations do n
affect theln at all, while the large ones merely permu
them, as in usual illustrations of index theorems [11
every well-defined symmetric function of the spectrum
such asz ssd and henceGfAg, is unchanged.

The price paid for preserving gauge invariance is (
usual) an intrinsic parity anomaly, i.e., one present ev
in the limit when the explicitly parity violating fermion
mass term is absent. [That parity can be sacrificed
gauge invariance was effectively noted in [12]. ] UnderP,
ln °! 2lp

n so thatz Pssd fi z ssd. It is easy to express
the parity violating partGsPVdfAg ­ 1y2fz 0s0d 2 z 0Ps0dg
explicitly in terms of the eta function in this limit (m ­
0). Here

z ssd 2 z Pssd ­ s1 2 e2ipsd

0@ X
ln.0

slnd2s 2
X

ln,0

s2lnd2s

1A
; s1 2 e2ipsdhssd , (4)

so thatGsPVdfAg ­ ipy2hs0d. At m ­ 0, the continuous
part of hs0d is given in closed form by the CS action
[11,13]; being local means it can be removed by a diffe
ent choice of regularization. Form fi 0 an expansion in
powers of the mass can be presented

GsPVdsAd ­
1
2

d
ds

fz ssd 2 z Pssdg
Ç
s­0

­ i
p

2
hs0d 2 i

X̀
k­0

s21dk ms2k11d

2k 1 1
hs2k 1 1d ,

(5)

while the analogous expansion for the parity-conserv
part involves even powers of the mass. Several rema
about (5) are in order. (a) The presence of the o
powers can be understood as a consequence of
behavior of the mass term under parity. Instead,
anomalous contributionhs0d (proportional to the evenm0

power) originates in a compensation between vanish
and divergent terms. Similarly, for the parity-preservin
part there are, besides the even powers, two other poss
contributions in three dimensions, one proportional tom
and one tom3, coming from an analogous compensatio
1977
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(b) In explicit computations, the expansion, like its analo
for the parity preserving part, must be treated carefull
because, even though gauge-invariant order by ord
the coefficients of such expansions are not continuo
functionals of the gauge field. [Recall, for example, tha
hs0d jumps by 62 when an eigenvalue crosses zero o
see the ImGfAg form in the example below.] The total
effective action is, instead, a continuous functional. (
It would be interesting to compare our mass expansio
with the one presented in [13], obtained from low
and high temperature limits in four dimensional gaug
theories.
:
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For concrete illustrations of how the perturbative no
invariance paradox is circumvented, let us now consid
some explicit examples of actions and large gauge tra
formations both in the Abelian and non-Abelian se
tors. The simplest is the pureS1 s0 1 1d-dimensional
toy model of [14], with Dirac operatorfisdydtd 1 Astd 1

img and large transformations obeyingfsbd 2 fs0d ­
2pn. Charge conjugationA °! 2A plays the role of
parity, which is violated bym, all as in s2 1 1d. Both
the eigenvalues andz ssd can be obtained exactly in term
of the averagea ­ s1y2pd

Rb

0 Astd dt. We give only the
final result here, forN charged fermions:
expf2GsAdg ­

Ω
2

∑
cosh

µ
bm

2

∂
cospa 2 i sinh

µ
bm

2

∂
sinpa

∏
exp

µ
ipa 2

bm
2

∂æN

; fexps2bm 1 2piad 1 1gN .
(6)
lian

n for
n

Note that with our regularization, the action depends ona
only via theS1 holonomy exps2piad. Expanding (6) in
terms of sinkpa and coskpa shows the consistency of
this result with the general expression (1). A large tran
formation a °! a 1 1 leaves (6) invariant for anyN ,
even or odd, through a sign cancellation between the se
rate factors in the middle term. Note the necessary pre
ence of an “intrinsic” charge conjugation anomaly eve
at m ­ 0: ImGfAg ­ iNsa 2 fagd. This is what allows
us to preserve large gauge invariance independently ofN .
Had we opted instead (as in [14]) for thes0 1 1d equiva-
lent of the more usual, parity preserving (hereC pre-
serving), regularization the expsiNpad factor would have
been missing and only evenN would have kept invari-
ance. The non-Abelians0 1 1d scheme is not instructive,
s-

pa-
s-
n

essentially because there is no equivalent of the Abe
CS,

R
A.

A more realistics2 1 1d example is the U(1) field

Amst, rd ;
µ

2p

b
a, Asrd

∂
, (7)

where a is a flat connection alongS1. A lives on
S, with nonvanishing, necessarily integer, fluxFsFd ­
n. We concentrate on large transformationsa °! a 1

1, although in higher genusS one could also have
large transformations affectingA. Because of the time
independence, we have a tractable eigenvalue equatio
ln. After some work, it follows that the effective actio
factorizes into twos0 1 1d-dimensional contributions like
(6) and a reduced expression depending onA, S, and the
holonomy exps2piad,
expf2GsAdg ­ fexps2bm 1 2piad 1 1gn1 fexps2bm 2 2piad 1 1gn2

3

Ç Y
mk

f1 1 exps2b

q
m

2
k 1 m2 1 2piadg

Ç2
expf2pzsb2y4p2d sD̂y21m2ds21y2d 2 sn1 1 n2dmbg . (8)
,

er.
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Here D̂y is the reduced Dirac operator onS, mk its
nonvanishing eigenvalues. [A simple field configu
ration for which even themk can be computed
explicitly is the instanton on the flat unit torus
Ai ­ 2pneijxj . Here m

2
k ­ 4pjnkj with degener-

acy 2n, while 2pzsb2y4p2dsD̂y1m2ds21y2d ­ ns4pnd1y2 3

bzH s21y2, m2y2pnd 2 sn1 1 n2dmb; zH is the Hur-
witz function.] The number of positive/negative chira
zero modesy6 of D̂y is represented byn6, with the
conventionssg5 7 1dy6 ­ 0, and the (parity odd) flux
is just n2 2 n1. (In s0 1 1d dimensions, there is no
chirality, but an “opposite sign” holonomy can be art
ficially introduced by considering also fermions subje
to a “conjugate” Dirac operatorf2idydt 2 Astd 1 img
which would change the sign of2pia in the last equality
of (6).) That the infinite product in (8) is convergent fol
-

l

-
t

lows from the fact thatmk . c
p

jkj [8]. The invariance
of (8) undera °! a 1 1 is manifest and its structure is
consistent with (1). It is clear that a perturbative (i.e.
in powers ofa) expansion of (8) loses periodicity ina
and hence does not see large invariance order by ord
For example, the Chern-Simons term (ICS ­ pan) has
a coefficient 1 2 tanhsbmy2d. The usually quoted
coefficient omits the1 that represents the intrinsic parity-
anomaly price of our gauge-invariant regularization an
hence persists atm ­ 0. There is actually an ambiguity
in its sign [reflecting the choice of cut in (3)], also presen
in other regularizations—for example, through the facto
limM°!6` signsMd in Pauli-Villars. Irrespective of
a expansion, the largem limit of G is delicate: with
our intrinsic anomaly choice (gauge preserving), w
find GsAd 2 Gs0d °! s2, 0dICS as m °! s2, 1d`; the
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parity-reversing choice of cut in (3) would yields0, 22d.
Any other choice of intrinsic (m ­ 0) anomaly coefficient
would, of course, translate these limiting values. The
asymptotic properties are independent of the backgroun

The analogous finite temperature “problem” arises
the context of the non-Abelian theory as well. At zer
temperature the loop correction preserves the integer
ture of the Chern-Simons coefficient [5], but at finite tem
perature a puzzling temperature dependence appears
However, the general discussion presented above can
shown to extend naturally to the non-Abelian case, ass
ing the gauge invariance of the action. To illustrate thi
consider the simplest, formally non-Abelian, generaliza
tion of the U(1) instanton field considered above: a co
stant magnetic SU(2) fieldFb

ij ­ 2pneijfb on S1 3 T 2,
whose gauge potential isAb

m ; fs2pybda, 2pneijxjgfb ,
wherefb is a unit color vector andn an integer. Despite
appearances, the relevant mechanism here is actually q
different from the Abelian case. There the spectral asym
metry entailing the parity anomaly was governed by th
flux FsFd on S: geometrically,FsFd represents a non-
vanishing Chern class for the reduced two-dimension
field. But the Chern class of aD ­ 2 non-Abelian gauge
field vanishes: the asymmetry of the spectrum is not d
to the difference in chirality of the zero modes of th
reduced Dirac operator onT2 (the kernel being chirally
symmetric), but rather to their different structure as mult
plets of SUs2d. Consequently, the determinant yields th
Abelian result, withn6 replaced by2n6. To see this,
imagine aligningfb along, say, the three direction. Then
the eigenvalue problem effectively splits into two U(1)’s
coupled, respectively, to6A, so that we just get a dou-
bling of the one-component Abelian result. [For SU(N),
one would alignfb along the Cartan sub-algebra, thereb
again splitting into various Abelian sectors, with differen
charges, in a well-defined way.] In this non-Abelian con
text, the general characteristics we have considered h
such as parity anomalies and large gauge-invariance p
sist at zero temperature and have been discussed, with
plicit examples in [15]

In conclusion, we have shown that the apparent lar
gauge anomalies resulting from a perturbative expansi
of the full effective action are due to the more complicate
se
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(order-violating) nature of the Ward identities when a
nontrivial homotopy is present, the action itself being
fully gauge invariant with suitable regularization, one
that necessarily entails parity anomalies. This has be
illustrated by explicit Abelian and non-Abelian field
configurations. Details will be given elsewhere.
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