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The multifractal dimensionsD
m

2 andD
c

2 of the energy spectrum and eigenfunctions, respectively, are
shown to determine the asymptotic scaling of the width of a spreading wave packet. For systems where
the shape of the wave packet is preserved, thekth moment increases astkb with b ­ D

m

2 yD
c

2 , while,
in general,tkb is an optimal lower bound. Furthermore, we show that ind dimensions asymptotically
in time the center of any wave packet decreases spatially as a power law with exponentD

c
2 2 d, and

present numerical support for these results. [S0031-9007(97)04057-X]

PACS numbers: 03.65.–w, 05.45.+b, 71.30.+h

For the case of a free particle, the spreading of a quan-
tum mechanical wave packet is a textbook example. One
finds that asymptotically the width increases linearly in
time, and the corresponding energy spectrum is absolutely
continuous. In the case of a point spectrum, on the other
hand, there is asymptotically no increase of the width of a
wave packet, if the eigenfunctions are semiuniformly lo-
calized [1]. Between these extremes flourishes the world
of quantum systems with fractal energy spectra and eigen-
functions. They include systems studied in the early days
of quantum mechanics, such as Bloch electrons in a mag-
netic field [2] as well as quasicrystals [3] and disordered
systems, e.g., at the Anderson transition [4] or in the quan-
tum Hall regime [5]. A natural question then arises: What
determines their long-time dynamical properties, e.g., the
spreading of wave packets (quantum diffusion) and the
decay of temporal correlations?

Very few rigorous and general answers are known so
far. Temporal correlations decay ast2D

m

2 [6], whereD
m
2

is the correlation dimension of the spectral measurem (i.e.,
the local density of states). For the spreading of a wave
packet, on the other hand, twoinequalitieswere derived by
Guarneri. The growth of thekth momentmkstd , tkbk is
bounded from below byD

m
1 # bk [7], and the entropic

width grows faster thantD
m

1 [8], where D
m
1 is another

generalized dimension of the spectral measure.

In search forequalities, relating the growth of the mo-
ments of a wave packet to fractal properties of the spec-
trum, numerical studies of the Harper model [9,10], the

FIG. 1. Quantum diffusion of a wave packet initially started
at site n0. The staying probability decays ast2D

m

2 , whereas
the kth moment increases astkbk . If the form of the wave
packet remains unchanged (uniform scaling), Eq. (1) leads to
bk ­ b ; D

m

2 yD
c

2 for k . 0. For the case of multiscaling
dynamics, we find the lower boundb # bk for k . 0
[Eq. (2)]. In any case, the center of the wave packet spatially
decreases asjn 2 n0j

D
c

2 21 for jn 2 n0j ø tb.
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Fibonacci model [11,12], and the kicked Harper model [13]
were performed, suggesting, e.g.,b2 ­ D0, in agreement
with a heuristic argument [7,10], whereD0 is the fractal
(box-counting) dimension of the spectrum. More recently,
numerical studies [14,15] showed that this simple relation
does not hold exactly. These studies also revealed that
one often finds multiscaling in time [16], i.e.,bk varies
with k. For a restricted class of systems, Mantica showed
that bk ­ D

m

12k, whereas in general it is at best approxi-
mate [17]. The similar relationbk ­ D12k, now with the
multifractal dimension of the (“global”) density of states,
was proposed to hold after averaging the dynamics ofall
wave packets started at different initial sites [18]. There-
fore, the basic question, of what determines the spreading
of a singlewave packet, still remains open.

In this paper we derive a partial answer to this question
(Fig. 1) by including, for the first time, fractal properties
of the eigenfunctions. For systems where asymptotically
the kth moment of a wave packet increases proportional
to tkb , we show

b ­ D
m
2 yD

c
2 , (1)

where D
c
2 is the correlation dimension of the (suitably

averaged) eigenfunctions. For the more general case of
multiscaling in time, we derive an optimal lower bound
for positive moments under reasonable assumptions:

bk $ D
m
2 yD

c
2 . (2)

We verify these results numerically for the on-site Fi-
bonacci chain and the Harper model, where it is a much
better lower bound than the previously obtainedD

m
1 [7],

which did not make use of fractal properties of the eigen-
functions. Surprisingly, we find from these dynamical
properties that, ind dimensions asymptotically in time,
the center of any wave packet decreases spatially as a
power law with an exponentD

c
2 2 d (see Fig. 1).

The moments of a wave packetwsn, td, initially located
on site n0, are given bymkstd ­

P
nfin0

jn 2 n0j
k 3

jwsn, tdj2, where for convenience we use a finite
one-dimensional lattice. To derive the scaling properties
of the moments we need a relation between the integrated
wave packet,

gsx, td ­
X

jn2n0j,x

jwsn, tdj2, (3)

and the spectral function [19],

Ssx, vd ­
X

i,j

jEi 2Ej j,v

X
jn2n0j,x

cp
i sn0dcjsn0dcisndcp

j snd ,

(4)
with Ei andci denoting eigenenergies and eigenfunctions,
respectively. For systems described by a real symmetric
matrix these are simply related by

gsx, td ­
Z `

0
dv cosvt

d
dv

Ssx, vd (5)

and

Ssx, vd ­
2
p

Z `

0
dt

sinvt
t

gsx, td . (6)

For the special casex ­ 1 the spectral function simpli-
fies, and we assume the following scaling behavior [20]:

Ssx ­ 1, vd ­
X

i,j

jEi 2Ej j,v

jcisn0dj2jcjsn0dj2 , vD
m

2 (7)

and

Ssx, v ­ vmind , xD
c

2 , (8)

wherevmin is the smallest energy scale where the scaling
of Eq. (7) still holds for a given finite system. Physically,
vmin is the inverse of the time when a wave packet reaches
the boundary and when the power-law moment growth
is modified. D

m
2 is the (standard) correlation dimension

of the spectral measure, andD
c
2 denotes the correlation

dimension of the averaged eigenfunctions [21].
We will first study the special case that the overall shape

of the wave packet stays the same during its time evolution,
with, of course, a scaling in width and amplitude. Assum-
ing a power-law scaling, one therefore has a functionG
of a single variable defined byGsxytbd ­ gsx, td. This
is equivalent to the property that the positivesk $ 0d mo-
ments scale asmkstd , tkb , which we call uniform scal-
ing. From Eq. (6) and the properties ofG, we find that
Ssx, vd is a function ofxvb only. Together with the scal-
ing behaviors of Eqs. (7) and (8), one easily finds the re-
sult b ­ D

m
2 yD

c
2 [Eq. (1)]. From Eq. (5) we can thus

even determine all negative moments:mkstd , tkb for
k $ 2D

c
2 , whereasmkstd , t2D

m

2 for k # 2D
c
2 .

Second, we now want to study the case of multiscaling
dynamics. We cannot do this in the most general form,
but need two reasonable assumptions. We first assume
that for xvb ø 1 the spectral functionSsx, vd is deter-
mined by its limiting scaling behaviors [Eqs. (7) and (8)],
namely,Ssx, vd , xD

c

2 vD
m

2 [22]. Using Eqs. (5) and (6),
this implies uniform scaling for the center of the wave
packet only, i.e.,gsx, td ­ Gsxytbd for x ø tb . In fact,
it follows that gsx, td , xD

c

2 t2D
m

2 for x ø tb. Remark-
ably, this even determines the shape of the center of the
wave packet, namely, an algebraic decayjn 2 n0j

D
c

2 21

for jn 2 n0j ø tb. In addition, we assume that outside
this region it decays faster thanjn 2 n0j

D
c

2 21, which it
certainly has to do asymptotically in order to stay nor-
malized. Under these assumptions, it follows that, for
a large enough timeT , there exists anX such that
gsx, T d ~ xD

c

2 for x # X, and that, for allt . T with
gsssjstd, tddd ­ gsX, T d, the relationjstdytb $ XyTb must
hold. Using a result by Guarneri and Mantica [7], stat-
ing that allbk (for k $ 0) are larger than the scaling ex-
ponent ofjstd, it then follows that all positive moments
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FIG. 2. The momentsmkstd for k ­ 1, 2, . . . , 10 of a wave
packet initially started at a symmetric site of a Fibonacci
chain with V ­ 2 and 17 711 sites. The insets show the
determination ofD

m

2 ­ 0.072 (left) and D
c

2 ­ 0.151 (right)
from the limiting scaling behavior ofSsx, vd, yielding b ­
D

m

2 yD
c
2 ­ 0.477, which is much larger than the information

dimensionD
m

1 ­ 0.153.

scale astkbk with bk $ b. Thereforeb is a lower bound
on the scaling of the positive moments that incorporates
multifractal properties of the eigenfunctions. In fact, for
negative momentssk , 0d, we find thatb $ bk is an up-
per bound. In that sense,b is an optimal lower bound for
all positive moments.

Furthermore, note that this analysis can be readily ex-
tended to systems in higher dimensionsd by appropriately
generalizing the definitions ofg andS. Under the condi-
tion D

m
2 , 1, Eqs. (1) and (2) remain unchanged, and the

spatial decay of the center of the wave packet has an expo-
nentD

c
2 2 d. Finally, this formalism can easily describe

the averaged dynamics of wave packets started at differ-
ent initial sitesn0. To this end, we introduce an average

FIG. 3. The scaled momentsmkstdytkb of a Fibonacci chain
corresponding to the parameters of Fig. 2 are (on average)
constant, thus confirming Eq. (1).

in Eqs. (7) and (8) defining exponentsD̄
m
2 andD̄

c
2 , which

replaceD
m
2 andD

c
2 in the above results [23].

One can try to understand the derived results in an
intuitive way: The temporal decay of the center of the
wave packet is known to be given byt2D

m

2 [6]. Naively,
normalization then requires a spreading described by an
exponentb ­ D

m
2 yd in d dimensions. If the spreading,

however, takes place in a space with an effectively reduced
dimensionD

c
2 instead ofd [5], we haveb ­ D

m
2 yD

c
2 .

Similarly, the integrated wave packetgsx, td, which
usually increases initially asxd , here increases withxD

c

2

instead. This leads immediately to a power-law decay
jn 2 n0j

D
c

2 2d for the center of the wave packet in the
d-dimensional embedding space.

In the remainder of this paper, we will give examples and
numerical evidence supporting the above analysis [24].

For disordered systems at the metal-insulator transition
in 2 (with strong magnetic field or symplectic symme-
try) and 3 dimensions, Eq. (1) is already known. These
systems are simpler in the sense that the fractal dimen-
sion D0 of the spectrum is 1, and it was shown that
D

c
2 ­ dD

m
2 holds [5,25,26], whered ­ 2, 3 is the spa-

tial dimension. On the other hand,b ­ 1yd follows from
the nonfractal value ofD0 using heuristic arguments, as
in Refs. [7,10,12], and was numerically confirmed for the
second moment [5,27]. The prediction that the asymp-
totic shape of the wave packet follows the power law
jn 2 n0j

D
c

2 2d waits to be observed in disordered systems.
We now consider the on-site Fibonacci chain, which

is a one-dimensional model of a quasicrystal [3] given
by a tight-binding Hamiltonian where the on-site energy
Vn takes the values1V and 2V , arranged according to

FIG. 4. The spectral functionSsx, vd for the Harper model
with s ­ 6765y10 946, an approximant of the golden mean,
and n ­ 0 of a wave packet initially started atn0 ­ 0. It
shows the scaling behavior,xD

c

2 vD
m

2 for small x and v, as
we have assumed for deriving Eq. (2). (Deviations close to
Ssx, vd ­ 1 might be the cause for multiscaling in time.) We
find D

m

2 ­ 0.134 andD
c

2 ­ 0.291.
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FIG. 5. The valuesbk (diamonds) of the power-law scal-
ing momentsmkstd , tkbk of the Harper model withs ­
10 946y17 711 and n ­ 0 of a wave packet initially started at
n0 ­ 0. One can see thatb ­ D

m

2 yD
c

2 ­ 0.460 is a much
better lower bound for all positive moments thanD

m

1 ­ 0.227.
For negative moments,k # 21, we findkbk ­ 2D

m

2 . The in-
set shows the power-law behavior of the integrated wave packet
gsx, t ­ 3 3 106d , xD

c

2 corresponding to a power-law decay
jwsn, tdj2 , jn 2 n0j

D
c

2 21.

the Fibonacci sequence. Figures 2 and 3 show that the
ratio b ­ D

m
2 yD

c
2 ­ 0.477 coincides, within numerical

accuracy, with the scaling behavior of the moments, thus
confirming Eq. (1) [28].

In general, though, quantum systems with a fractal
energy spectrum generate multiscaling dynamics [14–
16]. As an example we consider the Harper model
[29] which describes an electron in a two-dimensional
periodic potential and a perpendicular magnetic field [2].
For s the number of magnetic flux quanta per unit
cell it is given by a tight-binding Hamiltonian, where
now Vn ­ 2 coss2psn 1 nd holds. Figure 4 shows that
the scaling assumption forSsx, vd is fulfilled [30], and
Fig. 5 shows thatb # bk is a good lower bound for
the positive moments. We have verifiedb # bk also
for wave packets started at other sitesn0 as well as
for a few other irrationals. In fact, in all cases,b
considerably improves the lower boundD

m
1 deduced from

spectral properties [7]. In addition, we have confirmed the
prediction for the shape of the center of the wave packet,
namely, a power-law decay with exponentD

c
2 2 1, i.e.,

gsx, td , xD
c

2 (Fig. 5 inset).
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