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The multifractal dimension®?’ andD%" of the energy spectrum and eigenfunctions, respectively, are
shown to determine the asymptotic scaling of the width of a spreading wave packet. For systems where

the shape of the wave packet is preserved ktihemoment increases a& with 8 = D% /DQ/', while,
in general,t*# is an optimal lower bound. Furthermore, we show that idimensions asymptotically

in time the center of any wave packet decreases spatially as a power law with exméﬁnenti, and
present numerical support for these results. [S0031-9007(97)04057-X]

PACS numbers: 03.65.—w, 05.45.+b, 71.30.+h

For the case of a free particle, the spreading of a quan- In search forequalities relating the growth of the mo-
tum mechanical wave packet is a textbook example. Onments of a wave packet to fractal properties of the spec-
finds that asymptotically the width increases linearly intrum, numerical studies of the Harper model [9,10], the
time, and the corresponding energy spectrum is absolutely
continuous. In the case of a point spectrum, on the other A )
hand, there is asymptotically no increase of the width of a |, v)
wave packet, if the eigenfunctions are semiuniformly lo-
calized [1]. Between these extremes flourishes the world
of quantum systems with fractal energy spectra and eigen-
functions. They include systems studied in the early days
of quantum mechanics, such as Bloch electrons in a mag-
netic field [2] as well as quasicrystals [3] and disordered
systems, e.g., at the Anderson transition [4] or in the quan-
tum Hall regime [5]. A natural question then arises: What
determines their long-time dynamical properties, e.g., the
spreading of wave packets (quantum diffusion) and the
decay of temporal correlations?

Very few rigorous and general answers are known so no»n
far. Temporal correlations decay as> [6], where Dy’
is the correlation dimension of the spectral meaguee., i ) - i

: ; t site ng. The staying probability decays as?:, whereas
the local density of states). For the spreading of a wav 0 taying p y y '
e kth moment increases adf+. If the form of the wave

packet, on the other hand, tarequalitieswere deri\zzd_by packet remains unchanged (uniform scaling), Eq. (1) leads to
Guarneri. The growth of theth momentm, () ~ P+ is B, =B =DY/D! for k > 0. For the case of multiscaling

bounded from below b)Dﬁ = B« [7], and the entropic  dynamics, we find the lower boung = B, for k >0
width grows faster than? [8], where D{‘ is another [EQ. (2)]. In any cass, the center of the wave packet spatially
generalized dimension of the spectral measure. decreases ag — ng|P2 7! for |[n — no| < 1A,

FIG. 1. Quantum diffusion of a wave packet initially started
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Fibonacci model [11,12], and the kicked Harper model [13]and

were performed, suggesting, e.8, = Dy, in agreement . )

with a heuristic argument [7,10], whei®, is the fractal S(r, ) = 2 f g SNe? 2, 1). 6)
(box-counting) dimension of the spectrum. More recently, ™ t

numerical studies [14,15] showed that this simple relation
does not hold exactly. These studies also revealed thﬁte
one often finds multiscaling in time [16], i.e3; varies

with k. For a restricted class of systems, Mantica showed 5 5 o
that Br = DI", whereas in general it is at best approxi- S& =1, @) = D> 1gimo)Ply(no? ~ 0™ (7)
mate [17]. The similar relatio®, = D;_, now with the it <o

multifractal dimension of the (“global”) density of states,

was proposed to hold after averaging the dynamicallof and

wave packets started at different initial sites [18]. There- oY

fore, the basic question, of what determines the spreading S(r,0 = wmin) ~ x°2, 8

of asinglewave packet, still remains open. h s th llest le where th i
In this paper we derive a partial answer to this questiorYV Eréwmin 1S th€ Smallest energy scale where the scaling

(Fig. 1) by including, for the first time, fractal properties of Eq_. (tp S.ti” holds ]Ict); atgiven Enite system. Pﬁ%Sica”%'
of the eigenfunctions. For systems where asymptoticalgami“ IS the inverse ot the ime when a wave packet reaches

the kth moment of a wave packet increases proportion € bog_ndary 3n_d when the power-law moment grqwth
to t*# we show Is modified. D5 is the (standard) correlation dimension

o of the spectral measure, alﬂff denotes the correlation
B =Dy/D;, (1) dimension of the averaged eigenfunctions [21].
We will first study the special case that the overall shape

where Df is the correlation dimension of the (suitably R i
81# the wave packet stays the same during its time evolution,

averaged) eigenfunctions. For the more general case ith. of ling in width and litude. A
multiscaling in time, we derive an optimal lower bound With, OT course, a scaling in width and ampiitude. Assum-

for positive moments under reasonable assumptions: Ing a _power-la\_/v scaling, one therefore has a functj_bn
P P of a single variable defined bg(x/1%) = g(x,t). This

Br = DY/Dy . (2) is equivalent to the property that the positike= 0) mo-

. . . . ~ ¢k i i -
We verify these results numerically for the on-site Fi-Ments scale aguy (1) ~ ¢ #, which we call uniform scal
bonacci chain and the Harper model, where it is a muc

For the special case = 1 the spectral function simpli-
s, and we assume the following scaling behavior [20]:

ing. From Eq. (6) and the properties 6f, we find that

better lower bound than the previously obtainefl [7], > @) isafunction ofrw? only. Together with the scal-
which did not make use of fractal properties of the eigeni"d behaviors of Egs. (7) and (8), one easily finds the re-
functions. Surprisingly, we find from these dynamicalSult 8 = D2/D> [Eq. (1)]. From Eg. (5) we ck%n thus
properties that, in/ dimensions asymptotically in time, €Ven determine all negative momentsy(z) ~ 1*~ for

_p? ~ ;DY _
the center of any wave packet decreases spatially as ky= —D; , whereasn(r) ~ 1~ fork = —D,. . .
. W . Second, we now want to study the case of multiscaling
power law with an exponerd, — d (see Fig. 1).

The moment o a nave bkt ). il located ST, We carnet do s i the et gnerl o
on site ng, are given bym(t) = 3,.,, In — nol* X P '

lo(n. ). where for convenience we use a finite that forxw? < 1 the spectral functior§(x, ) is deter-

PUL DT ¥ ' . ; = mined by its limiting scaling behaviors [Eqgs. (7) and (8)],

one-dimensional lattice. To derive the scaling properties D' pF )

of the moments we need a relation between the integratet@Mely,S(x, @) ~ x72 w™ [22]. Using Egs. (5) and (6),
this implies uniform scaling for the center of the wave

wave packet, -

P packet only, i.e.g(x,t) = (w;(x/tf) for x < tA. In fact,

g, 1) = Z lo(n. D)2, ®) it follows that g(x, 7) ~_xD2 t7P2 for x < 1. Remark-
ably, this even determines the shape of the center of the

wave packet, namely, an algebraic deday— no|P> !
for |n — no| < t#. In addition, we assume that outside
. . this region it decays faster thgn — ng|P- !, which it
Slx, 0) = Z Z i (no)r; (no)ipi(n)ip; (n), certainly has to do asymptotically in order to stay nor-
In=nol<x malized. Under these assumptions, it follows that, for
_ o _ _ (4)_ a large enough timel’, there exists anX such that
with E; gnde,//,- denoting eigenenergies and elgenfunctlons_ X, T) = DY for x = X, and that, for allz > T with
respectively. For systems described by a real symmetri (£(1).1) = g(X,T), the relation(s)/1# = X /T# must

matrix these are simply related by hold. Using a result by Guarneri and Mantica [7], stat-
ing that all 8, (for k = 0) are larger than the scaling ex-
ponent of&(z), it then follows that all positive moments

|n—nol<x

and the spectral function [19],

o
|Ei—Ejl<w

glx,1) = f dw COoSwt iS(x,a)) (5)
0 dw
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FIG. 2. The momentsn(¢t) for k = 1,2,...,10 of a wave
packet initially started at a symmetric site of a Fibonacci
chain with Vv =2 and 17711 sites. The insets show the
determination of D} = 0.072 (left) and Dé" = 0.151 (right)
from the limiting scaling behavior of(x, ), yielding 8 =
Df/Dé" = 0.477, which is much larger than the information
dimensionD{" = 0.153.

scale ag*f« with 8, = B. Thereforeg is a lower bound

in Egs. (7) and (8) defining exponenis’ andDéﬁ, which
replaceD5’ andDéﬁ in the above results [23].

One can try to understand the derived results in an
intuitive way: The temporal decay of the center of the
wave packet is known to be given by?: [6]. Naively,
normalization then requires a spreading described by an
exponentB = D5 /d in d dimensions. If the spreading,
however, takes place in a space with an effectively reduced
dimensioan’ instead ofd [5], we haveB = Dﬁ‘/DQp.
Similarly, the integrated wave packef(x,), which
usually increases initially as?, here increases with??
instead. This leads immediately to a power-law decay
|n — nOIDZW*d for the center of the wave packet in the
d-dimensional embedding space.

In the remainder of this paper, we will give examples and
numerical evidence supporting the above analysis [24].

For disordered systems at the metal-insulator transition
in 2 (with strong magnetic field or symplectic symme-
try) and 3 dimensions, Eq. (1) is already known. These
systems are simpler in the sense that the fractal dimen-
sion Dy of the spectrum is 1, and it was shown that
DY = dD¥ holds [5,25,26], wherel = 2,3 is the spa-
tial dimension. On the other hand,= 1/d follows from

on the scaling of the positive moments that incorporateshe nonfractal value ob, using heuristic arguments, as

multifractal properties of the eigenfunctions. In fact, for
negative moment& < 0), we find that3 = B, is an up-
per bound. In that sensg,is an optimal lower bound for
all positive moments.

in Refs. [7,10,12], and was numerically confirmed for the
second moment [5,27]. The prediction that the asymp-
totic shape of the wave packet follows the power law

[ . . .
|n — nolP> ¢ waits to be observed in disordered systems.

Furthermore, note that this analysis can be readily ex- we now consider the on-site Fibonacci chain, which

tended to systems in higher dimensiahBy appropriately
generalizing the definitions gf andS. Under the condi-

is a one-dimensional model of a quasicrystal [3] given
by a tight-binding Hamiltonian where the on-site energy

tion Dy < 1, Egs. (1) and (2) remain unchanged, and they, takes the values-V and —V, arranged according to
spatial decay of the center of the wave packet has an expo-

nenth' — d. Finally, this formalism can easily describe

the averaged dynamics of wave packets started at differ-

ent initial sitesny. To this end, we introduce an average

10!

10°

10!

L
10*

FIG. 3. The scaled momentis,(z)/t*# of a Fibonacci chain
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FIG. 4. The spectral functios(x, w) for the Harper model
with o = 6765/10946, an approximant of the golden mean,
and » = 0 of a wave packet initially started at) = 0. It

shows the scaling behaviorx?: wP for small x and w, as
we have assumed for deriving Eq. (2). (Deviations close to

corresponding to the parameters of Fig. 2 are (on average)(x,®) = 1 might be the cause for multiscaling in time.) We

constant, thus confirming Eqg. (1).

find DY = 0.134 andDy = 0.291.
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