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A scheme for protecting quantum states from both independent and cooperative decohere
proposed. The scheme operates by pairing each qubit (two-state quantum system) with an ancill
and by encoding the states of the qubits into corresponding coherence-preserving states of qub
In this scheme, amplitude damping (loss of energy) as well as phase damping (dephasing) is pre
by a strategy called “free-Hamiltonian elimination.” We further extend the scheme to include qua
gate operations and show that loss and decoherence during such operations can also be pr
[S0031-9007(97)03897-0]
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Soon after the idea of quantum computation beca
an active part of current research, through the inno
tive work of Shor on factorization [1,2], decoherence w
recognized as a major problem that cannot be igno
[3], especially when one is interested in practical app
cations. Quantum computers act as sophisticated n
linear interferometers. The coherent interference pat
between the multitude of superpositions is essential
taking advantage of quantum parallelism. However,
coherence of the qubits caused by the interaction w
environment will collapse the state of the quantum co
puter and make the information no longer correct.
overcome this fragility of quantum information, Shor, a
independently Steane, inspired by the theory of class
error correction, proposed the first two quantum err
correcting codes (QECCs), i.e., the nine-bit code [4] a
the seven-bit code [5], which are able to correct err
that occur during the storage of qubits. Furthermore
general theory for quantum error correction was presen
by Calderbank and Shor [6], and independently by Ste
[7]. Following this work, many new QECCs have sin
been discovered [8–21]. The discovery of QECCs
revolutionized the field of quantum information.

Quantum errors are induced by the interaction of
qubits with environment. If we know more about th
interaction, simpler codes can be found. In the pre
ous analyses of decoherence [3], the qubits are assu
to interact independently with separate environments.
practice, however, cooperative effects may take place
tween the qubits. For example, the qubits in ion-trapp
computers are believed to be decohered cooperati
[22,23]. References [24,25] considered another extre
case, i.e., all the qubits interact with the same envir
ment. If only the phase damping is considered, as
result, the qubits are found to be decohered collectiv
For some of the input states (called the subdecohe
states), the qubits are decohered much slower; and
some others (called the superdecoherent states), the
decohered much faster. The phenomenon of superd
herence vs subdecoherence is very similar to, but
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the same as, the process of superradiance vs subradi
more commonly encountered in literature [26]. As w
pointed out in Ref. [24], superradiance is a process
collective radiation by a group of closely spaced atom
while superdecoherence is due to collective entang
ment between qubits and environment. A simple co
has been suggested in [24] for reducing this collect
decoherence.

Independent decoherence and collective decohere
are extreme cases. With these two ideal circumstan
we ask, what about the real situation? It seems a co
bination of these two cases may be more practical. If
qubits are close, they tend to be decohered collectively;
if they are departed, the assumption of independent de
herence may be more reasonable. In this Letter, we p
pose a scheme for reducing decoherence in general ca
The scheme operates by pairing each qubit with an anc
The two qubits in each pair are set close so that they
teract with the same modes of the environment. But
qubits in different pairs are allowed to be decohered
dependently or cooperatively. Because of the collect
dissipation in each pair, coherence-preserving states of
qubit pairs are found to exist. The stored information
protected from decoherence by encoding the states of
qubits into the corresponding coherence-preserving st
of the qubit pairs. In fact, the use of coherence-preserv
states for preventing errors induced by the pure dephas
has been described by Chuang and Yamamoto [27,28]
also by Palmaet al. [24]. Here we adopt the previously
known idea of using such states of qubit pairs. We propo
a strategy called the “free-Hamiltonian elimination” to pro
vide a general method to set up the coherence-preser
states. By this strategy, amplitude damping is prevented
well as phase damping. Amplitude damping sometimes
the main source of decoherence [23,29,30]. Furthermo
we show in this Letter that the scheme can be exten
to prevent decoherence in quantum gate operations.
herence is preserved in the gate operations by substitu
the logic gates for the qubits with those for the qubit pai
Preserving coherence during quantum gate operations
© 1997 The American Physical Society 1953
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significant step towards realizing the fault-tolerant qua
tum computation [15].

First, we consider the stored information, i.e., the qub
in quantum memory, which can be described by Paul
operators$sl (l marks different qubits). The environmen
is modeled by a bath of oscillators with infinite degrees
freedom. Each qubit interacts with some (usually infinit
modes of the environment. The bath modes coupli
with the l qubit are indicated byavl (v varies from
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0 to `). For different l1 and l2, some of the modes
avl1 and avl2 are possibly the same and some of the
are different. We use the notation

SL
l1 Al to indicate

the joint sum of Al, where all Al are bath operators
For example,

S2
l1 Al  A1 1 A2 if A1 and A2 belong

to different modes; and
S2

l1 Al  A1 if A1 and A2 are
the same. With this notation, the whole Hamiltonia
describing the general dissipation of the qubits, includ
the phase damping and the amplitude damping, has
following form (settingh̄  1):
ation of
HL  v0

LX
l1

sz
l 1

X
v

L[
l1

sva1
vlavld 1

LX
l1

X
v

fsls1ds
x
l 1 ls2ds

y
l 1 ls3dsz

l dgvlsa1
vl 1 avldg , (1)

whereL is the number of qubits and the coupling constantsgvl may be dependent ofv andl. The ratiols1d:ls2d:ls3d is
determined by the type of dissipation. For example, ifls1d  ls2d  0, it describes the phase damping; and ifls3d  0,
it is the amplitude damping.

Now we pair each qubit with an ancilla. The ancilla of thel qubit is indicated byl0. The two qubitsl and l0 in the
pair are set close so that they interact with the same modes of the environment. With this condition, the dissip
theL qubit pairs is described by the Hamiltonian

H2L  v0

LX
l1

ssz
l 1 sz

l0d 1
X
v

L[
l1

sva1
vlavld

1

LX
l1

X
v

hfls1dssx
l 1 s

x
l0d 1 ls2dssy

l 1 s
y
l0d 1 ls3dssz

l 1 sz
l0dggvlsa1

vl 1 avldj . (2)
o-

ed
The following step of our strategy is to eliminate the
fluence of the free HamiltonianH0  v0

PL
l1ssz

l 1 s
z
l0d

of the qubits. To attain this goal, we introduce a hom
geneous classical driving electromagnetic field which a
on all the qubit pairs. The ancillary Hamiltonian descr
ing the driving process is

Hdrv 
LX

l1

fgss1
l 1 s1

l0 d 1 gpss2
l 1 s2

l0 dg


LX

l1

fg1ssx
l 1 s

x
l0d 1 g2ssy

l 1 s
y
l0dg .

(3)

By adjusting the intensity and the phase of the driv
field, we can choose the driving constantsg1 and g2 to
-

-
ts
-

g

satisfyg1:g2:v0  ls1d:ls2d:ls3d. Then the whole Hamil-
tonian is simplified to

H  H2L 1 Hdrv


LX

l1

(
sSl 1 Sl0d

"
v0

ls3d 1
X
v

gvlsa1
vl 1 avld

#)

1
X
v

L[
l1

sva1
vlavld , (4)

where we have letSl  ls1ds
x
l 1 ls2ds

y
l 1 ls3ds

z
l .

Suppose the initial state of the qubit pairs is a c
eigenstate of all the operatorsSl 1 Sl0 , with the eigenval-
uesml , respectively. The environment state is indicat
by jCenvs0dl. Under the Hamiltonian (4), at timet the
state of the whole system evolves into
jCstdl  e2iHtsjCs0dl ≠ jCenv s0dld  jCs0dl ≠ e
2it

nPL

l1
ml

h
v0yls3d1

P
v

gvlsa1
vl 1avl d

i
1
P

v

SL

l1
sva1

vlavld
o
jCenvs0dl . (5)
ing

of a
tate
So in this case all the qubit pairs undergo no de
herence, though they are interacting with the enviro
ment. Because of this property, we call the eigensta
of all the operatorsSl 1 Sl 0 the coherence-preservin
states.

We briefly discuss the coherence-preserving states.
Hermitian operatorSl satisfiestrsSld  0, so its two eigen-
states, without loss of generality, can be indicated byj61ll ,
with the eigenvalues6a, respectively. The computatio
basis statesj6ll are eigenstates of the operators

z
l . The
o-
n-
tes

he

statesj61ll may differ withj6ll by a single-qubit rotation
operationRlsud, i.e.,j61ll  Rlsud j6ll, whereu depends
on the type of the dissipation. The coherence-preserv
states can be easily constructed from the statesj 61ll .
The largest eigenspace of the operatorSl 1 Sl0 is a two-
dimensional space spanned by the eigenstatesj11, 21ll

andj21, 11ll, with the eigenvalueml  0. So there ex-
ists a one-to-one map from the two-dimensional space
qubit onto the two-dimensional coherence-preserving s
space of a qubit pair. The general input states ofL qubits
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can be expressed as

jCLl 
X
hil j

chiljjhiljl , (6)

wherehilj is an abbreviation of the notationi1, i2, . . . , iL

andil  61, l  1, 2, . . . , L. We encode the state (6) into
the following coherence-preserving state ofL qubit pairs

jC2Llcoh 
X
hilj

chiljjhil , 2iljl , (7)

wherehil , 2ilj indicatesi1, 2i1, i2, 2i2, . . . , iL, 2iL. The
encoding can be fulfilled by the quantum CNOT (Con
trolled NOT) operationsCij, where the first subscript ofCij

refers to the control bit and the second to the target. T
ancillas are prearranged in the statejC1020···L0 l  j11l10 ≠

j11l20 ≠ · · · ≠ j11lL0 . Let the joint operationC0
ijsud 

RisudRjsudCijRis2udRjs2ud, whereRisud is the rotation
operation acting on thei qubit, we thus have

jCLl ≠ jC1020···L0 l
C0

110 sudC0

220 sud···C0

LL0 sud
! jC2Llcoh . (8)

The decoding can be similarly realized by applying th
operationC0

110sudC0
220 sud · · · C0

LL0sud again. The encoded
statesjC2Llcoh undergo no decoherence in the memory.

By pairing the qubits, the number of qubits is expand
from L to 2L. So the efficiencyh of this scheme is1

2 .
There is a possible way to raise the efficiency. If 2mqubits
are set close so that they all interact with the same mo
of the environment, the largest eigenspace of the opera
.
y
a
f
b
i

e

-

e
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S1 1 S2 1 · · · 1 S2m becomes as 2m
m d-dimensional state

space, with the eigenvalueml  0. By encoding the input
states of 2mLqubits into the coherence-preserving states
the qubit clusters, each cluster consisting of 2m qubits, the
maximum efficiencyhm attains

hm 
L

2mL
log2

µ
2m
m

∂
ø 1 2

1
4m

log2spmd , (9)

where the approximation is taken under the conditi
m ¿ 1. So the efficiencyhm is near to one ifm is
large. Of course, withm increasing, it becomes harde
and harder to set all them qubits close so that they are
decohered collectively.

In the above, we have dealt with the qubits in th
memory. Now we extend the scheme to include quantu
gate operations. In quantum error-correction schem
a significant step forward in this direction has recent
been made by the idea of fault-tolerant implementati
of quantum logic gates [15–17]. Here we show o
coherence-preserving scheme can, at least in princi
prevent decoherence during the gate operations as we
during the storing process. The Hamiltonian for the ga
operation is indicated byHg. The initial statejCs0dlhml j
of the qubit pairs is a co-eigenstate of all the operato
Sl 1 Sl0 , with the eigenvalueml , respectively. If the gate
HamiltonianHg satisfies the following condition:

fHg, Sl 1 Sl0g  nl , l  1, 2, . . . , L , (10)

where all nl are numbers, at timet the whole system,
including the environment, will evolve into
jCstdl  e2iHgtjCs0dlhmlj ≠ e
2it

nPL

l1
sml2s1y2dnld

h
v0yls3d1

P
v

gvl sa1
vl1avld

i
1
P

v

SL

l1
sva1

vlavld
o
jCenvs0dl . (11)
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e
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Therefore, in this case no decoherence occurs during
gate operation. Equation (10) is also a necessary con
tion for preserving coherence during the gate operation

Now we show, with the constraint (10), any unitar
transformations can still be constructed. To demonstr
this, we need only give a universal gate operation satis
ing Eq. (10). It has been proven that almost any two-
gates are universal [31,32]. In particular, the following
a universal gate operation [33]:

Ul1l2  j21ll1l1 k21jIl2 1 j11ll1l1 k11jVl2 , (12)

whereIl2 is a2 3 2 unit matrix and the unitary matrixVl2

is given by

Vl2 sa, u, fd 

µ
eia cossud 2ieisa2fd sinsud

2ieisa1fd sinsud eia cossud

∂
.

(13)

The parametersa, u, f are irrational multiples ofp and
of each other. Now we consider the following gat
operation for two qubit pairsl1l0

1, l2l0
2:

Ul1l0
1l2l0

2
 j21, 11ll1l0

1l1l0
1
k21, 11jIl2l0

2

1 j11, 21ll1l0
1l1l0

1
k11, 21jVl2l0

2
, (14)
the
di-

te
y-
it
s

where Il2l0
2

is a 4 3 4 unit matrix andVl2l0
2

becomes (in
the basishj21, 21l, j 21, 11l, j11, 21l, j11, 11lj)

Vl2l0
2
sa, u, fd



0BBB@
1

eia cossud 2ieisa2fd sinsud
2ieisa1fd sinsud eia cossud

1

1CCCA .

(15)

After decoding the coherence-preserving states of
qubit pairs into the original states of the qubits, th
operation (14) for the qubit pairs just corresponds
the operation (12) for the qubits. So Eq. (14) gives
universal gate operation for the qubit pairs. For a
parametersa, u, f, it is easy to check thatUl1l0

1l2l0
2

satisfies

fUl1l0
1l2l0

2
, Sl1 1 Sl0

1
g  fUl1l0

1l2l0
2
, Sl2 1 Sl0

2
g  0 , (16)

so the generators ofUl1l0
1l2l0

2
, i.e., the gate Hamiltonians

also commute with the operatorsSl 1 Sl0 . The constraint
(10) is therefore satisfied.

In the above, we have shown coherence can be p
served during gate operations if one substitutes the g
1955
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for the qubits with those for the qubit pairs. Of course, a
ter this substitution, the demonstration of these logic ga
becomes more involved.

Finally, we compare this scheme with quantum err
correction. In the error correction schemes, the decoh
ence time for a qubit is not increased. One retrieves
useful information from the decohered state by introdu
ing some redundancy. Contrary to this, in our schem
the decoherence time for the qubits is much increased.
the ideal case, it is increased to infinity.) We prevent e
ror rather than correct error. So, like Refs. [34,35], th
scheme belongs to the class of error prevention schem
The schemes of Refs. [34,35] are based on the quan
Zeno effect. The decoherence is reduced by continuou
measuring the qubits in some basis. The critical idea
our scheme is pairing the qubits and substituting the g
operations for the qubits with those for the qubit pair
This scheme has some attractive features. First, it cove
large range of decoherence, including the cooperative
coherence and the independent decoherence. The sch
works whether the decoherence is caused by the amplit
damping or by the phase damping. Second, it has a h
efficiency. We need at most two qubits to encode a qub
Third, the encoding and the decoding in this scheme
quite simple. It needs onlyL times quantum CNOT op-
erations and some single-bit rotation operations to enco
and decode the qubits. Last, the scheme is relatively e
to extend for preventing decoherence in quantum gate
erations. Of course, compared with QECCs, this sche
also has an obvious disadvantage, that is, the noise para
terslsid in the Hamiltonian (1) should be known accurate
and must not change in an unknown way.

A crucial assumption for this scheme is that two qub
can be set close so that they are decohered collectiv
Reference [36] shows this is the case if distanced between
the two qubits satisfiesd ø l, where l is the mean
effective wave length of the noise field. In practice
such as in the ion-trapped quantum computers, where
noise is from the thermal variation of the qubits [23], th
assumption seems reasonable. It is now well understo
that quantum errors are harder to correct than class
errors, since there appear new kinds of errors, such as ph
errors and bit-phase errors. Here we show, if we ha
some knowledge of the interaction of the qubits with th
environment, quantum errors are easier to prevent. T
supports a commonplace, but fundamentally importa
observation that the more one knows about the noise,
easier it is to correct for it.
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