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Vortices and 2D Bosons: A Path-Integral Monte Carlo Study
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The vortex system in a highi: superconductor has been studied numerically using the mapping to
2D bosons and the path-integral Monte Carlo method. We find a single first-order transition from an
Abrikosov lattice to an entangled vortex liquid. The transition is characterized by an entropy jump
AS = 0.4kp per vortex and layer (parameters for YBa50;) and a Lindemann number, =~ 0.25.

The increase in density at melting is given by =~ 6.0 X 10~*/A(T)2. The vortex liquid corresponds
to a bosonic superfluid, witp, = p even in the limitA — o, [S0031-9007(97)03960-4]

PACS numbers: 74.60.Ec, 05.30.Jp, 74.20.De

Our understanding of the phase diagram of type Il sudensity or the excitation spectrum. In this Letter, we
perconductors has improved significantly since the mixegbresent the first path-integral Monte Carlo results for 2D
state was introduced by Abrikosov in 1957 [1]. The vor-Yukawa bosons. Both the casgdinite andA = « (2D
tex state is of particular interest for the hi@h-supercon- Bose Coulomb liquid) are considered. The results are
ductors, where strong thermal fluctuations lead to meltingnterpreted for the solid-liquid transition in the vortex
of the vortex lattice and the appearance of a vortex ligsystem.
uid phase. Experimental evidence for a first-order vortex In the Feynman path-integral formulation, d-
lattice melting transition has been obtained from the obdimensional system of massive quantum particles is
servation of jumps in the resistivity and in the magnetiza-equivalent to a classicdld + 1)-dimensional system of
tion [2—4]. More recently, the latent heat of the transitioninteracting elastic strings. The dimensionless imaginary-
has been measured directly in an untwinned YBa0O; time action forN Yukawa bosons is given by
(YBCO) single crystal [5]. Theoretically, vortex lattice B | [ dR 2 R..

; . ) ) . ; ij
melting has been studied using various approximate tech- S /n = ] dT[z —2< ) + ZK()(_)]
niques, including the renormalization group, perturbative 0 2A%\ dT i<j A
expansions, density functional theory, and the Lindemann (1)

criterion [6]. The absence of one simple and reliable they are g energies are measured in unitsgdfand all

ory has provoked large interest in numerical simulationslengthS in units of the particle distaneg in the crystal

A number of models, such as the 3D frustrai&d model, a2 = 2/p~/3, with p being the density. The de Boer F;a'
the lattice London model, and the lowest Landau level aPrameterA Ag’ — 12 /mak 42, measures the size of quantum
proxim_ation, have been used, with no c_onsistent piCturﬁuctuatiohs,,B _ gQ/TBp is,the inverse temperature, and
emerging, however [7]. A'carefulvaDegSB of the 3D VO™ the R; denote the particle positions. The partition func-
tex system has been carried out 8gik and Stroud [8], gon is the sum over all world lines weighted by this action

using the lowest Landau level approximation at constan . o w0
appliedfield. They obtained a jump in the magnetization. nd subject to the boundary conditioRs(f) = R,;(0);

: i .. i.e., every line ends on itself or on some other line. This
and could accurately trace the first-order melting transition, 01 'is ‘also valid in the limifi — o if a uniform back-
in YBCO.

A very fruitful concept was introduced by Nelson [9], ground charge is subtracted. In this case, the Bessel func-

; o . tion reduces to a logarithm.
who showed that the classical statistical mechanics of the Redefining parameters, Eq. (1) can be interpreted as the

vortex system can be mapped onto the quantum Stat'sucf’]'lee energy for the vortex system in a type Il superconduc-
mechanics of a 2D system of Yukawa bosons, i.e., bosong . S/k = F/T [9], with

interacting with the potentia¥ (R) = g?Ko(R/A), where ' ’

K, is a modified Bessel functior is the London pene- A= L’ _ 2e0L; i )
tration depth, ang? is a coupling constant to be defined ao~/2€1&9 T

below. We will refer to this system as the Bose model ofwhereT is the temperature of the vortex system dnds

the vortex system. A consequence of this mapping is théhe thickness of the sample. For an anisotropic supercon-
prediction of a melting transition into antangledvortex  ductor, the elasticity is; = &?g, wheres? = m/M < 1
liquid, corresponding to a lattice to superfluid transition inis the anisotropy parameter. Two approximations are re-
the Bose system. Unfortunately, perturbation theory doeguired for this mapping from bosons to vortices. First,
not work for strongly interacting 2D bosons, and the onlythe original London functional for the free energy con-
gquantitative results are from ground-state Monte Carldains retarded and advanced interactions between the vor-
simulations [10], which have not studied the superfluidtex lines, which are mediated by gauge fields in the Bose

i
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picture [11]. Here, retardation is neglected, equivalent talotted in Fig. 1) passes through the crystalline phase (low

keeping only the first term in an expansion around straight’), the disentangled liquid phase (intermedi@jeand the

lines. Second, it has been argued that vortex loops in thentangled liquid phase (high). With increasingL., this

ab planes are important for vortex lattice melting [12]. A line moves to higher values ¢g#, and the vortex lattice

simple estimate for the free energy of a loop of lenfth melting line is determined solely by the value &f,.

F = (L/¢&)(egpé — TIn3), shows that loops proliferate  The simulations are carried out using the path integral

in the critical regime close té.,. We do not consider the Monte Carlo technique, which is exact for bosons [14].

critical regime in this work. Typical runs involveN = 64 world lines, though systems
The phase diagram for the Bose model, shown scheas large agv = 100 have been used for analyzing finite-

matically in Fig. 1, contains three phases: a classicasize effects. Withg = 300 we accurately capture the

high temperature normal liquid phase, a crystal for lowground-state behavior; e.g., we reproduce #fe= 0

temperatures and small quantum effects, and a superflurésult of Ref. [10] to within less than 1%. We find

as quantum effects start to dominate at low temperaturethat M = 100 Trotter slices are sufficient to eliminate

This can be understood by considering the three energgystematic errors in the bosonic quantum phase transition;

scales involved. The transition from a normal liquid to see Ref. [19] for details. For the largest systems we used

a lattice is determined by the competition between theoughly 30 000 sweeps to equilibrate and 80 000 sweeps to

thermalenergyT? = g2/ and thepotentialenergyg?>.  measure.

In the limit A — «© and A = 0, the transition takes place  The lattice to liquid transition is identified through the

at B,, = 140 [13]. With increasing quantum effects, we vanishing of the first Bragg peaQ(= Q;, 7 = 0) in the

find a transition from a normal liquid to a superfluid when structure factor

the thermal energy matches tkimeticenergy,A?8 =~ 1.

At Iovx_/ temperatures, the co_mpetition between potent_ial S(Q,7) = l(pQ(T)p_Q(O», 3)

and kinetic energies determines whether the system is a N

crystal or a superfluid. FoB,A = =, it is known that wherepq(7) is the partial Fourier transform of the density

Ay = 0.062 [10]. rTi)éerator,p(R, ) =Y,8[R — Ri(r)]. The superfluid

The boson phase diagram can be reinterpreted in Mg, siry of the Bose system is measured using the winding
of the vortex system, wher@ is proportional to the number [14]

sample thickness andl measures the strength thfermal

fluctuations. For thin sampleg < B,,,1/A?, we find ps (W%

a disentangledvortex liquid. In thicker samples, the ; ~ 2A2BN° 4)
system is either a lattice or antangledvortex liquid, ) o 5 )
depending on temperature and magnetic field. Note thwith the winding vectoW = 3, [ d7,;R; measuring
nontrivial mapp|ng between thé/-T and A_B phase the diffusion of the center-of-mass of the SyStem n

diagrams. In a thin sample, the constant field line (dashimaginary time. As the equilibration of the winding
number is very slow for large systems, we use systems

with N = 36 to compute the superfluid density. For
B U orystal larger systems, we define the parametgaccording to

pe _ _ entangled lines
p total number of lines

(5)

where a line isentangledif it does not end on itself,
R;(B) # R;(0). The parametep, measures the impor-
tance of quantum effects in the system, and is therefore

Bm . superfuid relatedto superfluidity. We emphasize, however, tpat
RN is not the superfluid density.
NG, We begin by considering the incompressible case with
normal liguid A = . In Fig. 2 we show the results for the first Bragg
0 . + peak and the parameter,. The lattice disappears in a

sharp transition aA,, = 0.062, in perfect agreement with
FIG. 1. Schematic phase diagram for a system of 2D chargedround-state simulations of the same model [10]. The
bosons in terms ofA and B. The solid lines represent hejght of the Bragg peak is related to the Lindemann

phase transitions, and quantum effects are relevant in th . _ o .22
shaded region. In the vortex system, the parameters map umber according t§(Q,) = N exp(—8w°c;/3), and we

A2 = T?/28,80a8 and B = 2&,L./T. The constant field line 11Nd ¢z = 0.25. Using Eq. (2), we obtain the melting line
for a thin sample [, < 70T /&) is shown (dash-dotted) as it N2 D

runs through all three phases. For thicker samples, this line is B, (T) = —™ 0 &i%0 (6)
pushed upward. J3oT1?
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TnAsgy = Aey. From Fig. 3 we obtaimde = 0.015g,

) = 1o and therefore
/
- f As[ks/length] = 0.03&0(0)/T), . 7
8— o J\J‘[ . pe/p Using parameters for YBCO (layer separatidr= 12 A,
U‘-’) i 0050005 00500358 A = ] Agp = 1400 A, and T,, = T.), we obtainAs¢ = 0.4kp
per vortex and layer, which compares favorably with the
106 experimental result ofs, =~ 0.45kp [5].
10 } For the compressible case withfinite, the statistical
attraction between the bosons produces an increase of the
40.4 - . . o
density upon melting. This maps to a densified vortex
s liquid due to the entanglement of the flux lines [18]. In
! do2 order to study this effect, we have developed an isobaric
: Monte Carlo algorithm which allows us to fix the external
i ] pressure and let the volume adjust [19]. The results are
0 Le- cetea-- R L . 0.0 shown in Fig. 3 for a system withh = 1.06a9. The

0.055 0.060 0085 A transition is shifted to a slightly smaller value &f, due to
FIG. 2. The first Bragg peak and the entanglement parametdhe weaker interaction between the lines. The small shift,
p. for a system with 64 lines and = 300. A sharp transition  less thart%, shows that Eq. (6) gives a good description
from a crystal to an entangled liquid is found &}, = 0.062.  of the melting for a large range of fields. The change in
The structure factors just before and after the melting transmoraensity depends on the value dfag; in the present case

displayed. The inset shows th fluid density f L . . .
2{,§terlﬁr\),v%e36 Iineg. inset shows the supertluid density for 6Ap/p ~ Q.OOO3,WhICh 5 con§|stentW|th the result (7) via
the Clausius-Clapeyron relatioAe/sg = 87 Ap A%(T)>.
5 We turn to the discussion of the liquid phase. In

as expected fr(zjm a L'”dema’."r‘] criterion W'ﬁ}" * CIL Fig. 2 we show the entanglement parametewhich rises
[11], giving good agreement with experimental results orgpa 1y ot the transition, indicating that the vortex lig-

YBCO. lIts universal character applies only to large magyiq entanglesmmediatelyupon melting. This result is in

r_letic fields;_the finiteness of leads to a reentrant melting agreement with recent flux transformer experiments, show-
line at low fields [.15]' . . " ing that the vortex correlation along the magnetic field dis-
Ifthe vortex [attice melts in a single transition, symmetry g e arq ot the melting transition [20]. The possibility of
requires it to be first order [16]. _In Fig. 3, we PIot 5 disentangled/ortex liquid has attracted much interest in
the energy per line and unit length= <~7:>/N_LZ' T_he recent years [21]. Two theoretical arguments have been
Correspgndlng energy (_)f the vortex system Is defined 85ut forward in favor of the existence of this phase. To
¢¢ = ThaT In %./NI}Z' with Z the partition functlci_r:j [1:}7]' begin with, the melting of the vortex lattice into an entan-
Using the scaling orr_nj]-" = SO%Of[{RU/‘;O}]’ valia for- gjed vortex liquid involves the change of two symmetries:
large A, we tha'n.e‘f’ = e(l+7)/(1 - t) Whergt — _ Thetransverse translational symmetry of the lattice and the
T/T.. The jump in entropy at the transition is given by |,ngitudinal gauge symmetry.” If these two symmetries do
not change simultaneously, an intermediate phase will ap-

r - 0.030 pear. A second argument stems from the analysis of the 2D
12045 |- 1 Bose Coulomb liquid. It can be shown that the suppres-
1 0.025 sion of long wavelength density fluctuations in this system
o 1 y leads to enhanced phase fluctuations and an algebraic de-
©/%, cay of the off-diagonal long-range order (ODLRO) even

in the ground stateT?? = 0) [10]. However, the absence

1.2935 |- 0.015 . R
] of aT? = 0 Bose condensate has no straightforward im-
0010 plication for the superfluid density, which is related to the
ressor excitation spectrum rather than to the ground-state prop-
0.005 erties. In the inset of Fig. 2 we show the superfluid den-
129251 sity measured by the winding number. Apart from a slight
Py Y R e——— . o060 ooem ool broadening of the transition due to the smaller system size,

. . the result shows that, = p as soon as the translational
FIG. 3. The energye per line of the vortex system (right symmetry is restored in the liquid. Retardation may mod-
axis) for A = o (solid line) and A ~ 1.06a, (dotted line). ity this result in the following ways: (i) The decrease in

The energy of a perfect lattice with the same density ha - . .
been subtracted in both cases. In the compressible system tin@e effective mass of the bosons (elastic tension of the

transition shows a jump in the density (left axis, dashed line)Vortices) favors the entangled state. (ii) The retardation
Note the (small) shift in\,, as the interaction range is reduced. may render the entanglement unstable, thereby favoring a
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025¢ R Abrikosov vortex lattice into an entangled vortex liquid
—a— solid, A infinite / . . .

- —e—superfiuid, Ainfinte A7)’ phase. The long-range interaction changes the bosonic ex-
--4---s0lid, A finite /p citation spectrum from phonons to plasmons for sngsll
--#---superfluid, 2 finite but does not modify the roton minimum. We find that su-

perfluidity is stable against static long-range interactions.
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FIG. 4. The excitation specteQ) in units of g? for a system
of 64 lines. Increasing the range of the interaction shifts
the sound mode to the plasma frequency, but leaves the roton
minimum unchanged. The latter collapses upon crystallization.
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