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Vortices and 2D Bosons: A Path-Integral Monte Carlo Study
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The vortex system in a high-Tc superconductor has been studied numerically using the mappin
2D bosons and the path-integral Monte Carlo method. We find a single first-order transition fro
Abrikosov lattice to an entangled vortex liquid. The transition is characterized by an entropy
DS ø 0.4kB per vortex and layer (parameters for YBa2Cu3O7) and a Lindemann numbercL ø 0.25.
The increase in density at melting is given byDr ø 6.0 3 1024ylsTd2. The vortex liquid corresponds
to a bosonic superfluid, withrs ­ r even in the limitl ! `. [S0031-9007(97)03960-4]
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Our understanding of the phase diagram of type II s
perconductors has improved significantly since the mix
state was introduced by Abrikosov in 1957 [1]. The vo
tex state is of particular interest for the high-Tc supercon-
ductors, where strong thermal fluctuations lead to melt
of the vortex lattice and the appearance of a vortex l
uid phase. Experimental evidence for a first-order vor
lattice melting transition has been obtained from the o
servation of jumps in the resistivity and in the magnetiz
tion [2–4]. More recently, the latent heat of the transitio
has been measured directly in an untwinned YBa2Cu3O7

(YBCO) single crystal [5]. Theoretically, vortex lattic
melting has been studied using various approximate te
niques, including the renormalization group, perturbat
expansions, density functional theory, and the Lindema
criterion [6]. The absence of one simple and reliable th
ory has provoked large interest in numerical simulatio
A number of models, such as the 3D frustratedXY model,
the lattice London model, and the lowest Landau level
proximation, have been used, with no consistent pict
emerging, however [7]. A careful analysis of the 3D vo
tex system has been carried out byŠá̌sik and Stroud [8],
using the lowest Landau level approximation at const
appliedfield. They obtained a jump in the magnetizatio
and could accurately trace the first-order melting transit
in YBCO.

A very fruitful concept was introduced by Nelson [9
who showed that the classical statistical mechanics of
vortex system can be mapped onto the quantum statis
mechanics of a 2D system of Yukawa bosons, i.e., bos
interacting with the potentialV sRd ­ g2K0sRyld, where
K0 is a modified Bessel function,l is the London pene-
tration depth, andg2 is a coupling constant to be define
below. We will refer to this system as the Bose model
the vortex system. A consequence of this mapping is
prediction of a melting transition into anentangledvortex
liquid, corresponding to a lattice to superfluid transition
the Bose system. Unfortunately, perturbation theory d
not work for strongly interacting 2D bosons, and the on
quantitative results are from ground-state Monte Ca
simulations [10], which have not studied the superflu
0031-9007y97y79(10)y1925(4)$10.00
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density or the excitation spectrum. In this Letter, w
present the first path-integral Monte Carlo results for 2
Yukawa bosons. Both the casesl finite andl ­ ` (2D
Bose Coulomb liquid) are considered. The results a
interpreted for the solid-liquid transition in the vorte
system.

In the Feynman path-integral formulation, ad-
dimensional system of massive quantum particles
equivalent to a classicalsd 1 1d-dimensional system of
interacting elastic strings. The dimensionless imagina
time action forN Yukawa bosons is given by

S yh̄ ­
Z b

0
dt

(X
i

1
2L2

√
dRi

dt

!2

1
X
i,j

K0

√
Rij

l

!)
,

(1)

where all energies are measured in units ofg2 and all
lengths in units of the particle distancea0 in the crystal,
a2

0 ­ 2yr
p

3, with r being the density. The de Boer pa
rameterL, L2 ­ h̄2yma2

0g2, measures the size of quantum
fluctuations,b ­ g2yTB is the inverse temperature, an
the Ri denote the particle positions. The partition fun
tion is the sum over all world lines weighted by this actio
and subject to the boundary conditionsRisbd ­ Rjs0d;
i.e., every line ends on itself or on some other line. Th
action is also valid in the limitl ! ` if a uniform back-
ground charge is subtracted. In this case, the Bessel fu
tion reduces to a logarithm.

Redefining parameters, Eq. (1) can be interpreted as
free energy for the vortex system in a type II supercond
tor, S yh̄ ­ F yT [9], with

L ­
T

a0
p

2´l´0
, b ­

2´0Lz

T
, (2)

whereT is the temperature of the vortex system andLz is
the thickness of the sample. For an anisotropic superc
ductor, the elasticity iś l ø ´2´0, where´2 ­ myM , 1
is the anisotropy parameter. Two approximations are
quired for this mapping from bosons to vortices. Firs
the original London functional for the free energy co
tains retarded and advanced interactions between the
tex lines, which are mediated by gauge fields in the Bo
© 1997 The American Physical Society 1925
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picture [11]. Here, retardation is neglected, equivalent
keeping only the first term in an expansion around straig
lines. Second, it has been argued that vortex loops in
ab planes are important for vortex lattice melting [12]. A
simple estimate for the free energy of a loop of lengthL,
F ø sLyjd s´´0j 2 T ln 3d, shows that loops proliferate
in the critical regime close toHc2. We do not consider the
critical regime in this work.

The phase diagram for the Bose model, shown sc
matically in Fig. 1, contains three phases: a classi
high temperature normal liquid phase, a crystal for lo
temperatures and small quantum effects, and a superfl
as quantum effects start to dominate at low temperatur
This can be understood by considering the three ene
scales involved. The transition from a normal liquid t
a lattice is determined by the competition between t
thermalenergyTB ­ g2yb and thepotentialenergyg2.
In the limit l ! ` andL ­ 0, the transition takes place
at bm ø 140 [13]. With increasing quantum effects, we
find a transition from a normal liquid to a superfluid whe
the thermal energy matches thekineticenergy,L2b ø 1.
At low temperatures, the competition between potent
and kinetic energies determines whether the system
crystal or a superfluid. Forb, l ­ `, it is known that
Lm ø 0.062 [10].

The boson phase diagram can be reinterpreted in te
of the vortex system, whereb is proportional to the
sample thickness andL measures the strength ofthermal
fluctuations. For thin samples,b , bm, 1yL2, we find
a disentangledvortex liquid. In thicker samples, the
system is either a lattice or anentangledvortex liquid,
depending on temperature and magnetic field. Note
nontrivial mapping between theH-T and L-b phase
diagrams. In a thin sample, the constant field line (das

FIG. 1. Schematic phase diagram for a system of 2D charg
bosons in terms ofL and b. The solid lines represent
phase transitions, and quantum effects are relevant in
shaded region. In the vortex system, the parameters map
L2 ­ T 2y2´l´0a2

0 and b ­ 2´0LzyT . The constant field line
for a thin sample (Lz , 70Ty´0) is shown (dash-dotted) as it
runs through all three phases. For thicker samples, this line
pushed upward.
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dotted in Fig. 1) passes through the crystalline phase (lo
T ), the disentangled liquid phase (intermediateT ), and the
entangled liquid phase (highT ). With increasingLz, this
line moves to higher values ofb, and the vortex lattice
melting line is determined solely by the value ofLm.

The simulations are carried out using the path integr
Monte Carlo technique, which is exact for bosons [14
Typical runs involveN ­ 64 world lines, though systems
as large asN ­ 100 have been used for analyzing finite-
size effects. Withb ­ 300 we accurately capture the
ground-state behavior; e.g., we reproduce theT B ­ 0
result of Ref. [10] to within less than 1%. We find
that M ­ 100 Trotter slices are sufficient to eliminate
systematic errors in the bosonic quantum phase transitio
see Ref. [19] for details. For the largest systems we us
roughly 30 000 sweeps to equilibrate and 80 000 sweeps
measure.

The lattice to liquid transition is identified through the
vanishing of the first Bragg peak (Q ­ Q1, t ­ 0) in the
structure factor

SsQ, td ­
1
N

krQstdr2Qs0dl , (3)

whererQstd is the partial Fourier transform of the density
operator, rsR, td ­

P
i dfR 2 Ristdg. The superfluid

density of the Bose system is measured using the windi
number [14],

rs

r
­

kW2l
2L2bN

, (4)

with the winding vectorW ­
P

i

Rb

0 dt ≠tRi measuring
the diffusion of the center-of-mass of the system i
imaginary time. As the equilibration of the winding
number is very slow for large systems, we use system
with N ­ 36 to compute the superfluid density. For
larger systems, we define the parameterre according to

re

r
­

entangled lines
total number of lines

, (5)

where a line isentangledif it does not end on itself,
Risbd fi Ris0d. The parameterre measures the impor-
tance of quantum effects in the system, and is therefo
relatedto superfluidity. We emphasize, however, thatre

is not the superfluid density.
We begin by considering the incompressible case wi

l ­ `. In Fig. 2 we show the results for the first Bragg
peak and the parameterre. The lattice disappears in a
sharp transition atLm ø 0.062, in perfect agreement with
ground-state simulations of the same model [10]. Th
height of the Bragg peak is related to the Lindeman
number according toSsQ1d ­ N exps28p2c2

Ly3d, and we
find cL ø 0.25. Using Eq. (2), we obtain the melting line

BmsTd ­
4L2

mF0
p

3

´l´0

T 2
, (6)
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FIG. 2. The first Bragg peak and the entanglement param
re for a system with 64 lines andb ­ 300. A sharp transition
from a crystal to an entangled liquid is found atLm ­ 0.062.
The structure factors just before and after the melting transit
are displayed. The inset shows the superfluid density fo
system with 36 lines.

as expected from a Lindemann criterion withLm ~ c2
L

[11], giving good agreement with experimental results
YBCO. Its universal character applies only to large ma
netic fields; the finiteness ofl leads to a reentrant melting
line at low fields [15].

If the vortex lattice melts in a single transition, symmet
requires it to be first order [16]. In Fig. 3, we plo
the energy per line and unit lengthe ; kF lyNLz. The
corresponding energy of the vortex system is defined
ef ; T2≠T ln ZyNLz, with Z the partition function [17].
Using the scaling formF ­ ´0a0ffhRijya0jg, valid for
large l, we obtainef ­ es1 1 t2dys1 2 t2d, wheret ­
TyTc. The jump in entropy at the transition is given b

FIG. 3. The energye per line of the vortex system (righ
axis) for l ­ ` (solid line) and l ø 1.06a0 (dotted line).
The energy of a perfect lattice with the same density h
been subtracted in both cases. In the compressible system
transition shows a jump in the density (left axis, dashed lin
Note the (small) shift inLm as the interaction range is reduce
ter
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TmDsf ­ Def. From Fig. 3 we obtainDe ø 0.015´0
and therefore

DsfkBylengthg ø 0.03´0s0dyTm . (7)

Using parameters for YBCO (layer separationd ­ 12 Å,
lab ø 1400 Å, and Tm ø Tc), we obtainDsf ø 0.4kB

per vortex and layer, which compares favorably with th
experimental result ofDsf ø 0.45kB [5].

For the compressible case withl finite, the statistical
attraction between the bosons produces an increase of
density upon melting. This maps to a densified vorte
liquid due to the entanglement of the flux lines [18]. I
order to study this effect, we have developed an isoba
Monte Carlo algorithm which allows us to fix the externa
pressure and let the volume adjust [19]. The results a
shown in Fig. 3 for a system withl ø 1.06a0. The
transition is shifted to a slightly smaller value ofLm due to
the weaker interaction between the lines. The small sh
less than4%, shows that Eq. (6) gives a good descriptio
of the melting for a large range of fields. The change
density depends on the value oflya0; in the present case
Dryr ø 0.0003, which is consistent with the result (7) via
the Clausius-Clapeyron relation,Dey´0 ­ 8pDrl2sTd2.

We turn to the discussion of the liquid phase. I
Fig. 2 we show the entanglement parameterre which rises
sharply at the transition, indicating that the vortex liq
uid entanglesimmediatelyupon melting. This result is in
agreement with recent flux transformer experiments, sho
ing that the vortex correlation along the magnetic field di
appears at the melting transition [20]. The possibility o
a disentangledvortex liquid has attracted much interest i
recent years [21]. Two theoretical arguments have be
put forward in favor of the existence of this phase. T
begin with, the melting of the vortex lattice into an entan
gled vortex liquid involves the change of two symmetrie
The transverse translational symmetry of the lattice and
longitudinal gauge symmetry. If these two symmetries d
not change simultaneously, an intermediate phase will a
pear. A second argument stems from the analysis of the
Bose Coulomb liquid. It can be shown that the suppre
sion of long wavelength density fluctuations in this syste
leads to enhanced phase fluctuations and an algebraic
cay of the off-diagonal long-range order (ODLRO) eve
in the ground state (T B ­ 0) [10]. However, the absence
of a TB ­ 0 Bose condensate has no straightforward im
plication for the superfluid density, which is related to th
excitation spectrum rather than to the ground-state pro
erties. In the inset of Fig. 2 we show the superfluid de
sity measured by the winding number. Apart from a slig
broadening of the transition due to the smaller system si
the result shows thatrs ­ r as soon as the translationa
symmetry is restored in the liquid. Retardation may mo
ify this result in the following ways: (i) The decrease in
the effective mass of the bosons (elastic tension of t
vortices) favors the entangled state. (ii) The retardati
may render the entanglement unstable, thereby favorin
1927
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FIG. 4. The excitation spectrásQd in units ofg2 for a system
of 64 lines. Increasing the rangel of the interaction shifts
the sound mode to the plasma frequency, but leaves the ro
minimum unchanged. The latter collapses upon crystallizatio

disentangled liquid. Thus, the question regarding the po
sibility of a disentangled liquid phase in the retarded mod
has not been completely settled.

Additional information on the properties of the Bose su
perfluid/vortex liquid is provided through the analysis o
the dynamic structure factor. Following Nelson [9], th
partial Fourier transformSsQ, td takes the formSsQ, td ø
SsQ, 0d exph2´sQd jtjj, wheré sQd is the excitation spec-
trum of the Bose system. Thus, the bosonic excitati
spectrum defines a longitudinal correlation lengthlr ­
Ty2Dr´0 in the vortex fluid, whereDr denotes the roton
minimum. We compute the excitation spectrum from o
simulations by fitting the measuredSsQ, td to the single
mode approximation,

SsQ, ivnd ­
CsQd

fvn 1 GsQdg2 1 ´sQd2
, (8)

where´sQd andGsQd are the energy and inverse lifetime
of the excitations. In Fig. 4 we show the resulting spect
both for the incompressible (l ­ `) and the compressible
(l , `) fluids. Most interestingly, the phonon branch a
small Q turns into a plasmon branch asl ! `, while the
roton minimum undergoes no visible change. From th
roton minimumDr ø 0.027, we determine the correlation
or entanglement length at the melting transition,lr ø
1.6a0

p
´ly´0, independentof the interaction rangel. Note

that in our simulations the roton gap is much larger tha
the temperature and we expect to probe the ground s
behavior of the system.

In conclusion, our simulation of the 2D Coulomb Bos
model reveals a singleTB ø 0 quantum phase transi-
tion from a crystal to a superfluid phase atLm ø 0.062.
This translates to a first-order melting transition of th
1928
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Abrikosov vortex lattice into an entangled vortex liquid
phase. The long-range interaction changes the bosonic
citation spectrum from phonons to plasmons for smallQ,
but does not modify the roton minimum. We find that su
perfluidity is stable against static long-range interactions
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