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New Class of Random Matrix Ensembles with Multifractal Eigenvectors
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Three recently suggested random matrix ensembles (RME) are linked together to represent a class of
RME with multifractal eigenfunction statistics. The generic form of the two-level correlation function
for the case of weak and extremely strong multifractality is suggested. [S0031-9007(97)03707-1]
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Random matrix ensembles turn out to be a natural and > 1 in the energy window. Such a quasi-Poisson be-
convenient language to formulate generic statistical prophavior was first predicted in Ref. [9]. Later the existence
erties of energy levels and transmission matrix elements iof the linear term in%,(N) was questioned [8], since for
complex quantum systems. Gaussian random matrix erhis term to appear the normalization sum rule should be
sembles, first introduced by Wigner and Dyson [1,2] forviolated. It has been shown recently [10] that the new
describing the spectrum of complex nuclei, became verygualitative feature responsible for the violation of the sum
popular in solid state physics as one of the main theorule and the existence of the finite “level compressibility”
retical tools to study mesoscopic fluctuations [3] in smally is themultifractality of critical wave functions [11,12].
disordered electronic systems. The success of the ran- The notion of multifractality is twofold. The first
dom matrix theory (RMT) [2] in mesoscopic physics is (and most widely accepted) property of multifractality is
due to its extension to the problem of electronic transportelated with the space structure osmglewave function
based on the Landauer-Bittiker formula [4] and the statisW,(r). It is defined through the moments of inverse
tical theory of transmission eigenvalues [5]. Another fieldparticipation ratio [11]:
where the RMT is exploited very intensively is the prob-
lem of the semiclassical approximation in quantum sys- I, = > (1P, (@)P) o Lo~ 1) 1)
tems whose classical counterpart is chaotic [6]. It turns ] r ] ) ] . )
out [6] that the energy level statistics in true chaotic sysWhere L is the system size/ is the dimensionality of
tems is described by the RMT, in contrast to that in theSPacep > lis aninteger. The set of exponeiily < d

Poisson statistics. |W,(r)| is larger than a certain value that increases with

Apparently the nature of the energy level statistics igncreasingp. _ _
related to the structure of eigenfunctions, and more pre- The second, far less appreciated property of multifractal-
cisely, to the overlapping between different eigenfuncJty. is related to the overlapping dffferentwave functions
tions. This is well illustrated by spectral statistics in aWith energiest, andE,,. The main effect of multifractal-
system of noninteracting electrons in a random potenily On spectral statistics is given by the simple overlapping
tial which exhibits the Anderson metal-insulator transitionOf local densities p = 2). The corresponding fractal di-
with increasing disorder. At small disorder the electronmensionalityD, is the most important critical exponent.
wave functions are extended and essentially structureles§0r [Ex — En| > A (A = 1/pL4, wherep = (p(E))is
They overlap very well with each other, resulting in en-the mean densqy of states) the form of the Ioca! density
ergy level repulsion characteristic of the Wigner-Dysonco”?la“OU function has been suggested and confirmed nu-
statistics. On the other hand, in the localized phase eledperically in Ref. [12]:
trons are typically localized at different points of the (U,(0) | W,,(0)|?) = |E, — E,| 1P/ (2)
f:r:] zligéf rE gtHEy F‘Zirwgtdé\ rlls E‘%gg}'tomler.r,,e methsizs_A rer_narkable fgature of' multifractality is that the Iocal
case there is no correlation between eigenvalues, and ﬂ.(]j%_:‘ensny_ correlation function decreases very slowl_y with
. . ' increasinglE, — E,,| so that two fractal wave functions,
energy levels follow the Poisson statistics. h

The energy level statistics in the critical region near the owever sparse they are, should still overlap strongly [13].

Anderson transition turns out to be universal and differen} One of the consequences [10] of Eq. (2) is the anoma-
from both Wigner-Dyson statistics and the Poisson statis—o> Poisson-like term in the level number variaign)

tics [7,8]. A remarkable feature of the critical level statis-Wthh is characterized by the level compressibijty
tics is that the level number varians(N) = ((6N)?) = _d—D .
xN is asymptotically linear in the mean number of levels 2d

X )
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It is immediately seen from Eq. (3) that the critical level Il. Moreover, the level compressibility in the RME-II

compressibility never reaches the Poisson lippit=1.  for this particular choice of parameter turned out to be

For an infinitely sparse fractal — D, — d is maximal, very close to that found numerically for the 3D Anderson

yet y is equal to ¥2 and not to 1. This is because evenmodel.

the infinitely sparse critical fractal eigenfunctions overlap In this Letter we argue that RME-II and a certain criti-

strongly, in contrast to two localized states [10,13]. cal regime in RME-Ill studied in Ref. [17] are equivalent
One may assume that the universal critical level statisto RME-I and thus possess the multifractality. Altogether

tics which is described by a set of critical exponebts ~ they form a new class of RME which describes certain

applies to a wider class of physical systems and it is imemarkable features of critical level statistics.

fact generic for an intermediate situation between chaos We start with the definitions of RMEs studied in

and integrability. An example of such a system has beeRefs. [16,17]. The probability densit§(H) for a M X

proposed recently [14]. It turns out that the CoulombM random Hamiltoniarff from RME-II is given by

impurity inside an integrable square billiard leads to a

drastic reconstruction of eigenstates, however small is the Pu(H) = exd—p Tr V(H)], ()

strength of the po_tennal. In such a Coulomb_ b|II|ard_ where the “confinement potentiaV’(H) grows extremely

all eigenfunctions in the momentum representation eXh'b'Elowly with B

multifractality. ' ]
It is therefore natural to look for a RME with multifrac- V(H) = — In*H, H> 1. (6)

tal eigenvector and eigenvalue statistics similar to that at Y

the mobility edge in disordered electronic systems. Suclrhis is crucial for the universality of the eigenvalue statis-

a RMT would provide a description of generic features oftics in the limitM — o [20]. For V(H) growing slower

the critical level statistics. than H the full universality is no longer present [21,22],
One such ensemble is suggested in Ref. [15]. It is th@nd the eigenvalue statistics may, and does differ from the

Gaussian ensemble of X M Hermitian matrices/ with  \wigner-Dyson statistics [16]. Another important feature

independent random entries% j) defined by of Eq. (5) is that the distribution functioRyy(H) is in-
(Hijy =0, (HD»=B[1 + i —jI*/B", variant under the rotation of basis (unitary invariance):
(4) Pu(H) = Pu(UHUT). (7)

where H,’f are real random componenty & 1 for
i=j,u=1,...8fori>j);, B =124 for Dyson's
orthogonal, unitary and symplectic ensembles, &nis
a parameter. FoB > 1 this RME can be mapped onto
a nonlinear supersymmetric sigma model [15]. The case Pri(H) o ¢~ (B/2 T H ,=(B/2)b Te{{Q.H]Q.H]'} (8)
B < 1 corresponds to 2D Coulomb billiard considered in
Ref. [14]. The presence of multifractality, Eq. (1), and The properties of this RME depend on the choice(f
Eq. (3) has been proved [14,15] for this RME. In whatFor the reasons discussed below we consider as RME-III
follows we will use this RME (RME-I) as a reference the RME defined by Eq. (8) witl) = diage’?), where
point. 6; = 2mj/M. The relevant critical regime for this RME
There are two more RMEs [16,17] which were sug-corresponds to the symmetry breaking fiéldhat scales
gested recently as possible candidates to describe the critisth M — « asb = h>M?, whereh is a parameter.
cal level statistics. However, their definitions are so Now it is clear why the RMEs given by Egs. (5) and
drastically different that they were considered as two(8) seem so drastically different. The lack of unitary
alternative options, albeit the two-level correlation func- invariance of Pyyj(H) means a preferential basis. The
tions (TLCF) R(e,s) = (p(e)p(e + s5)). In the proper existence of such a basis implies a certain structure
regimes arédenticalfor both RMEs. It was first noted in of eigenfunctions (in this basis) which should lead to
Ref. [18] that since the energy level statistics is a “finger-spectral statistics different from the Wigner-Dyson one.
print” of the statistics of eigenfunctions, the latter in the However, it seems there is no way to get any structure
corresponding regimes of these two models should also b&f eigenfunctions in theunitary-invariant RME-II. It
similar. follows immediately from Eq. (7) that the distribution
The first quantitative link between the predictions of function Py1(H) depends only orE,, and the statistics
RME equivalent to that studied in Ref. [16] (RME-Il) of eigenfunctions in RME-II is trivial and the same as
and numerics on the 3D Anderson model at the mobilityfor standard Gaussian ensembles [2]. Then the physical
edge has been done in Ref. [19]. Surprisingly enouglpicture that the spectral statistics is related to the statistics
it was possible to fit very well the numerics for the of overlapping eigenfunctions seems to leave only one
critical level spacing distributio®(s) in the 3D Anderson single option: the Wigner-Dyson energy level statistics in
model by a proper choice of only one parameter in RME-RME-II.

In contrast to Eq. (5), the distribution function for RME
studied in Ref. [17] is Gaussian. However, the unitary
invariance is broken by a fixed unitary matfik
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Nonetheless, TLCRR(e,s) = 6(s) + Y,(e,s) proves
to beidentical in these RMEs and after unfolding [23]
it takes the form [16,17]:

2.2 i
T Sl poa), @)

sinkF[s72n /2]
wheren = y/7? < 1 or n = h < 1 for RME-Il and
RME-IIl, respectively, ande > |s|. Equation (9) coin-
cides with the density correlation function for a free elec-
tron gas at dinite temperaturener and differs from the
RMT result.

Y>(e,s) = —

o model B > 1) as follows:e, = 4B|n|, where for the
periodic boundary conditions = =1, =2,.... Making
use of the identity ! sinhx = [T_,(1 + x2/7%n%) we
immediately arrive at Eq. (9) witp = 1/2#7B). Using
the results of Ref. [15] one can express the multifractality
exponentD, in terms of B > 1. For 8 = 2 it appears
to beD, = 1 — 1/(2wB) which helps to identify the pa-
rametery in Eq. (9) asy = 1 — D,. Thus all three en-
sembles share the same TLCF, Eq. (9) which is generic to
RME with weak multifractalityn < 1.

The level compressibilityy in Eq. (3) is obtained by

The way out from this contradiction is suggested in,, _ . .
Ref. [18] where it was conjectured that the unitary invari—the integral of the TLCF [8;10]'
ance is broken in RME-I$pontaneously This means that =1+ f
the statistics of eigenfunctions in this ensemble should be —o
calculatedafter an infinitesimal symmetry-breaking term Using Eq. (9) one can calculate the level compressibility
similar to thatin Eq. (8) is added. Then the identical TLCFy = 5/2 + [1 — coth2/%)] in the limit of weak mul-
in RME-II and RME-III should be considered as evidencetifractality » < 1. Neglecting the exponentially small
that the proper procedure should result in similar eigenterms, we observe that Eq. (3) (with= 1) is fulfilled.
function statistics in RME-Il and RME-III. Note that both the linear level number variartgN)

The progress [17] in studying the level statistics inwith y # 1 and TLCF of the form Eq. (9) areot the
RME-IIl that lead to Eq. (9) is due to averaging over trivial consequences of the basis preference. A good
the unitary group(). The level statistics depend on counterexample is a Gaussian RME with the variance of
the configuration of eigenvalues? of Q. The main the fluctuating diagonal components different from that
contribution to the average is made by with the most  of the off-diagonal ones. Their ratip = M?/A*> sets
homogeneous configurations &f, the property known as the new energy scala > 1 in the problem, such that
an eigenvalue repulsion [2,17]. Therefore, one may expedbr s > A spectral correlations deviate from the Wigner-
that the spectral statistics obtainaier such an averaging Dyson form. However, the recent analytical results
is close to that corresponding tesagleunitary matrix(2  [25,26] show that this deviation is qualitatively different
with eigenvalued); = exd (27i/M);j] (RME-I). As a  from that described by Eq. (9) for> 1/7. Albeit the
matter of fact forh < 1 it turns out to be theame oscillations inY,(s) die out fors > A, there is still left a

In order to show that we note that in the lindif — % constant tailY,(s) = 1/7%A? that extends up te = A2
Eqg. (8) leads to Therefore the level number varian&(N) = (N/ 1)?

(=" for N < A2 andX,(N) = N for N > A2,
Y With increasingy and & or decreasing the fractal
If b/M? — 0, then we have a standard Gaussian endimensionalityDz decreases and Eg. (9) is no longer

. e valid. It is reasonable to assume that in the limity —
semblg [1,2] and ghe Wigner-Dyson statistics. In the,, or B — 0 the fractal eigenvector becomes infinitely
opposite caseb/M* — «, we have an ensemble of

random diagonal matrices and the Poisson statistics sparse,.D, — 0. For RME-l this is, indeed, the case
the critical case considered here for= h>M?, the [14]. n this limit Eq. (3) predicts — 1/2. Letus check

behavior of<(H,~’;-)2> is the same as in Eq. (4) defining this prediction using an exact form of TLCF given in

o Ref. [16].
RME-I. We conclude that tha/ — oo limits of RME-I : .
and RME-IIl coincide. Then TLCE for RME-IIl and First of all we note that even after unfolding, the TLCF

RME-I must be identical R(e,s) _in_RME-II is not invariant under a shift me
: . In the limit y — o« the TLCF has the same form in the
Fortunately, the latter can be calculated directly. TLCForthogonaI unitary, and symplectic ensembles [19,22];
can be expressed [24] in terms of the spectral determinant ’ ' e
Yo(e,s) = —0(1/4 — |s — &81), (14)

P(s) as follows:

Ya(e,s)ds. (13)

2>=l 1
B 1+ 4l

(10)

_j|2'

1 1 d? coq27s) _ : o
Ya(s) = — — = InP(s) + —==2p(s), Where—1 <46 <1 is a deviation ofde > 1 from the
2m2s? 4w ds? 2m2s? nearest odd integer, artdx) is a step function.
(112) The lack of translational invariance is a peculiarity of
where X the particular RME-Il. Only the TLCFsmoothenedy
s2) averaging overd can be physically meaningful. So we
P(s) = E!)(l + Z) ’ (12) " arrive at the TLCF of the triangle form:
ande, is a spectrum of the quasidiffusion modes. The lat- , (o, _ {2|SI — 1L Isl<1/2, (B =124) (15)
ter can be found from the mapping [15] onto the nonlinear 0 otherwise .
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