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Virial Approach to Hard-Sphere Demixing
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We propose a perturbative modification of the Carnahan-Starling equation of state for a binary hard-
sphere mixture which brings its virial coefficients into better agreement with recent numerical findings.
The resulting analytic equation of state predicts a demixing transition whose spinodals and binodals are
in qualitative agreement with recent numerical and experimental findings. [S0031-9007(97)03986-0]

PACS numbers: 64.75.+g, 05.70.Ce, 82.60.Lf

Demixing transitions whereby a multicomponent equi-asymmetry [9]. All current equations of state of HS
librium fluid separates into phases of different composi-mixtures [2,5] do, however, miss this qualitatively new
tion are ubiquitous in nature [1]. It is generally believedfeature. Although the relation between the depletion
that a necessary condition for the occurrence of demixingnechanism and a negative fifth virial coefficient is not ob-
is a sufficiently large asymmetry between the parametergious, we note that both point towards many-body inter-
characterizing the like- and unlike-particle interactions. Inactions with a strong dependence on the size asymmetry.
the case of hard-sphere (HS) mixtures there can be na what follows we will present an alternative approach to
asymmetry between the energy scales involved since HBS demixing which focuses mainly on this virial aspect.
interactions are governed solely by the geometric charac- We consider a mixture aV; (additive) hard spheres of
teristics of the different species. In the particular case ofliameteto; enclosed in a volum¥ at the equilibrium tem-
additive HS there is also no geometric asymmetry becaugeeraturel’. The thermodynamic properties of this mixture
the contact distance;; between speciesand; is related can be described in terms of either the partial number den-
to the diametew; of speciesi by the additivity relation, sitiesp; = N;/V, or the total density = >, p; and the
o;=(o; +0;)/2, and hence2o;; — oy — oj;; =0. Itis  partial number fractions; = N;/N, with >, x; = 1 and
thus very much the question whether the only remainV = Y ; N; being the total number of spheres. We first fo-
ing asymmetry, namely, the size asymmetoy,— o;,  cus our attention on the equation of state or compressibility
is sufficient to drive, by a purely entropic mechanism,factor,Z = Bp/p, p being the pressur@ = 1/kgT, and
a demixing transition in fluid mixtures of additive HS. kp is Boltzmann’s constant. The virial coefficients of the
It came thus as no surprise when the analytic resultmixture, B, are defined byz = >~ B,p""! (see, e.g.,
obtained within the Percus-Yevick (PY) closure of the[10]). From simulations [11] of binary mixtures & 1,2)
Ornstein-Zernike (OZ) equations indicated the absence aif weak to moderate size asymmetry, say> 0.3 where
demixing in (additive) HS mixtures with any number of y = o,/0; = 1 measures the size asymmetry, it is known
components [2]. Recently, numerical evidence has beethatZ is well approximated by the Carnahan-Starling (CS)
found that more elaborate closures of the OZ equationsxpression, sa¥cs (see [12]). In order to take advan-
do, however, predict demixing in a very asymmetric bi-tage of this fact we will write in a perturbative fashion,
nary HS mixture [3]. Experiments performed on colloidal Z = Zcs + AZ with AZ =Y (B, — BSS)p"™!, where
systems which are thought to approximate HS mixtures8$S denotes the CS approximation &, i.e., Zcs =

rather well seem to support this finding although it appear§” BSSpn~!, whereas the closed-form expressionZek
difficult to disentangle the demixing transition from a reads [10,12]

close-by freezing transition [4]. A theoretical study focus- | EE 33(3 — &)
ing from the start on very asymmetric binary HS mixtures 7. = + & €162 5+ £l 2 i ,
does lend further support to the presence of a spinodal (1 - &) (1= &) (1 = &)

instability in such systems [5]. A similar situation is (1)
found in the study of (HS-)colloid and (coil-)polymer where we have used the standard variables,
mixtures [6]. In analogy with the colloid-polymer studies, ¢, = T3 . p;of, and also &, =Y, xiof = &/&

the physical mechanism behind the HS-demixing transiwith k = 0, 1,2,3. For the mixture, onlyB,, B,, B; are
tion is usually also traced back to an osmotic depletiorknown explicitly, namely [13],

effect [7]. The underlying assumption being that the de- - = - == — =

pletion force is attractive although recent studies indicate Bi=2&o. By = &o&s T 3816,

that this is not always the case [8]. We would like there- ) == = =3

fore to draw attention here to another recent finding in- By = &o&3 + 6816285 + 363, (2)
dicating that the fifth virial coefficient of a binary HS where B, = E,,(%)”*l, while By and Bs have recently
mixture becomes negative in the region of strong sizébeen computed numerically in [9]. From (1) it follows
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thatAB, = B, — BSS vanishes fon = 1,2,3 and hence
AZ = p3AB, + p*ABs + ---, where the ellipses denote
terms which at present are unknown for the mixture. As
a first perturbative improvement dcs we propose to
approximateZ by Z with

Z = Zcs + éJABy + £JABs, (3)
although it is not known whether the virial expansion
of AZ = Z — Zcs really converges. To obtaidB, = 1.
= = v

By — Efs andABs = Bs — 35CS we use
—=CS _ 5 53 — == B -
By~ = 063 + 9£1£6:65 + 8E5E5, @)
—CS & =4 — =3 -3
Bs™ = £pé3 + 12£,6,&5 + 156,45,
as follows from (1), whereas faB,, Bs we use the exact

(Bs — Bg®)/o1?

decomposition [10], FIG. 1. The dimensionless deviatioBs — BS>)/o 2, of the
_ 1 =) fifth virial coefficient Bs from its CS approximation [12] for

B, = Zx{‘xé’ an (o1,02), (5) a binary HS mixture of size ratioy = o»/0, and number

k=0 fraction (concentration) of large spheres, The values of

B i : - L . Bs have been obtained [14] from a polynomial interpolation of
of B, into the (n + 1) partial virial coefficients of the bi the numerical results of [9]. It is seen that is everywhere

nary m]thureB,i (01, o) o their d3|m(eln8|]?nless counter- cjose toBS® but becomes negative in the region< y < 0.5
partsbiz '(y), with Eék)(o-l, o) =o""Vp¥(y)andy = and 0 < x; = 0.6, while BS® is always positive. When, as

oo /oy, and fit thebf;k)(y) and bgk)(y) functions to the proposed here, the CS theory is corrected perturbatively, the

ool £191 by usi o | . negative well in(Bs — BS®)/a1” can be viewed as providing
numerical data of [9] by using simple polynomial expres-an effective attraction which drives the HS fluid mixture into a
sions iny. Before doing so we observe that the sym-two-phase state.

(k) _ pn—k) (k) _
metry re(latllgn,Bn (o1,02) =8B, ((rkz, 1) Orbn (y)=
_ - 1 . . . — . .
Y31V’ 7(5) with, in particular, by (y) = y**~1 X pression obtained fof from Zcs. From the zeros of the

bé’,?(%) when n =2k implies that not all the functions determinant of the matrix%, we find that the mix-
b\ (y) are independent. In this way we obtain explicit an-ture presents a spinodal instability (see Fig. 2) not unlike
alytic expressions [14] faB4 andBs valid for any0 < x| =

1 —x, =1and0 =y =1. Itisfound thatB, is fairly close

to Ffs with (B, — BSS)/ o] always positive and never ex- ﬂ2
ceeding its one-component value. On the contrBgyhas

a negative well [9] which is missing iB<° = 0 leading 0.2
to negative values fofBs — BS>)/a1> when0 <y <0.5

and0 < x; = 0.6 (see Fig. 1). Because of the presence of

this negative well inBs, the correctionésAB, + £§ABs

to Zc¢s in (3) exhibits a similar negative well which can \
be viewed then as resulting from a density dependent ef- 01 "\‘

fective attraction, not between the real HS but between \ Y= 0.15

HS described by the CS approximation. We also ob- ’

serve thatay — 1,Z of (3) tendstaz”~! = 225 () +

0.3621° + 0.2379* with n = Zpoi, the packing frac- 0.0

tion of the one-component system (= o,). Our pres- 0.0 ' 0.2 ' 0.4

sure for the one-component system exceeds thus slightly
the CS pressure for large, a result in agreement with the FiG. 2. Spinodals (broken lines) and binodals (full lines) of
available computer simulations (see [10,11]). In the opthe demixing transition of a binary HS mixture in thg-n,

posite limit,y — 0, whereby the small spheres reduce toplane, withn; = Zo7p; being the packing fraction of species

p0|nt par“c'es 6-2 — 0) 7 reduces to the expected result l (l = 1,2) In this representa.tion the tie lines (dOt-daShed
101 777" = 1,7, + /(1 = 1), wh _ @ 3 lines) between the coexisting fluid phases (full dots) are oblique
[10], e n1), WNEr€n = ¢p10i  (for clarity only a few tie-lines are shown). The critical
andZ;, = Z”" (n,) is the compressibility factor of a one- (consolute) point is indicated by an open dot. The lower
component system of large spheres)( Next we con- curves correspond to a size ratip,= o»/0y, of y = 0.15
sider the Helmholtz free energy per particfe,which we ~ @nd the upper curves tp = 1/3. For the casey = 1/3, the

- . - . . i experiments of Dinsmoret al. (see [4]) clearly indicate that the
dgnote in Ehls approximation a6 with B8f = Bfcs + fluid mixture is stable (unstable) for the systems represented by

%AE + %AES, where fcs represents the analytic ex- * (+), in agreement with our theoretical spinodal.
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the one found in [3—-5]. To find the corresponding bin- In conclusion, we have shown that the possibility of
odals we can perform either a double-tangent constructiodemixing in binary mixtures of additive hard spheres can
on the Gibbs free energy per partige(8g = Bf + Z) be traced back to the occurrence in these systems of a
versusx; at constanp andT (or for HS at constanBp)  negative fifth virial coefficient for small size ratios and
or else solve the coexistence conditions of equality of themall to moderate concentrations of large spheres. A

pressures and chemical potentiafs, %f)) between Simple modification (3) of the CS equation of state (1) has

the coexisting phases (see Fig. 2). As already mentiong2e€n proposed and shown to lead to results in agreement
above, the demixing transition is not the only phase transiWith those obtained from other sources [3-5].

tion governing the HS mixture for smafl. Itis generally M. B. acknowledges financial support from the Fonds
believed [3-5] that there also is a close-by freezing tranNational de la Recherche Scientifique.

sition of the fluid mixture into a solid alloy whose struc-
ture is not known with precision but which could consist

of a crystal of large spheres permeated by a fluid of small
spheres. Such a partial freezing or sublattice melting tran-H
sition is typical of superionic conductors for which the size 2]
asymmetry between the positive and negative ions is also[
known to be crucial [15]. Here we have studied this tran-
sition for an HS mixture within the GELA (“generalized
effective liquid approximation”) of [16]. The correspond-
ing phase diagram is shown in Fig. 3. It is seen that for
pressures exceeding that of the lower consolute point of
the demixing transition both demixing and partial freezing [4]
can occur depending on whether the small spheres consti-
tute the majority or minority phase. Whenincreases the
demixing transition eventually becomes metastable, while
for y = 0.5 other solid phases come into competition with
the fluid mixture [17].
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FIG. 3. The pressure-composition phase diagram of a binary
HS mixture of size ratioy = 0.15 (broken lines) andy = [11]
0.30 (full lines). Here p* = Bpoi is the reduced pressure,

v = o,/01, while o; and x; correspond to the diameter and
number fraction of the large spheres. The phases considered
are the fluid mixture ¥) of compositionx; (x, =1 — x;) [12]
and a “solid” alloy §) of compositionx; in which the large
spheres form a face centered cubic structure while the small
spheres remain fluid. The latter phase has been assumed to
compete with the demixing transition for reduced pressures
p* of the order of the critical valug of the lower critical
consolute point (we fing = 29 for y = 0.30 and p;; = 22

for vy = 0.15). For larger pressures one expects solid alloys of
a different structure [17] to compete with the fluid mixture.
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