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We propose a perturbative modification of the Carnahan-Starling equation of state for a binary hard
sphere mixture which brings its virial coefficients into better agreement with recent numerical findings.
The resulting analytic equation of state predicts a demixing transition whose spinodals and binodals a
in qualitative agreement with recent numerical and experimental findings. [S0031-9007(97)03986-0]
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Demixing transitions whereby a multicomponent equ
librium fluid separates into phases of different compo
tion are ubiquitous in nature [1]. It is generally believe
that a necessary condition for the occurrence of demix
is a sufficiently large asymmetry between the parame
characterizing the like- and unlike-particle interactions.
the case of hard-sphere (HS) mixtures there can be
asymmetry between the energy scales involved since
interactions are governed solely by the geometric char
teristics of the different species. In the particular case
additive HS there is also no geometric asymmetry beca
the contact distancesij between speciesi andj is related
to the diametersi of speciesi by the additivity relation,
sij­ssi 1sjdy2, and hence,2sij 2 sii 2 sjj ­ 0. It is
thus very much the question whether the only rema
ing asymmetry, namely, the size asymmetry,si 2 sj,
is sufficient to drive, by a purely entropic mechanism
a demixing transition in fluid mixtures of additive HS
It came thus as no surprise when the analytic res
obtained within the Percus-Yevick (PY) closure of th
Ornstein-Zernike (OZ) equations indicated the absence
demixing in (additive) HS mixtures with any number o
components [2]. Recently, numerical evidence has b
found that more elaborate closures of the OZ equati
do, however, predict demixing in a very asymmetric b
nary HS mixture [3]. Experiments performed on colloid
systems which are thought to approximate HS mixtu
rather well seem to support this finding although it appe
difficult to disentangle the demixing transition from
close-by freezing transition [4]. A theoretical study focu
ing from the start on very asymmetric binary HS mixtur
does lend further support to the presence of a spino
instability in such systems [5]. A similar situation i
found in the study of (HS-)colloid and (coil-)polyme
mixtures [6]. In analogy with the colloid-polymer studie
the physical mechanism behind the HS-demixing tran
tion is usually also traced back to an osmotic deplet
effect [7]. The underlying assumption being that the d
pletion force is attractive although recent studies indic
that this is not always the case [8]. We would like ther
fore to draw attention here to another recent finding
dicating that the fifth virial coefficient of a binary HS
mixture becomes negative in the region of strong s
0031-9007y97y79(10)y1881(4)$10.00
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asymmetry [9]. All current equations of state of H
mixtures [2,5] do, however, miss this qualitatively ne
feature. Although the relation between the depletio
mechanism and a negative fifth virial coefficient is not o
vious, we note that both point towards many-body inte
actions with a strong dependence on the size asymme
In what follows we will present an alternative approach
HS demixing which focuses mainly on this virial aspect

We consider a mixture ofNi (additive) hard spheres of
diametersi enclosed in a volumeV at the equilibrium tem-
peratureT . The thermodynamic properties of this mixtur
can be described in terms of either the partial number d
sitiesri ­ NiyV , or the total densityr ­

P
i ri and the

partial number fractionsxi ­ NiyN, with
P

i xi ­ 1 and
N ­

P
i Ni being the total number of spheres. We first fo

cus our attention on the equation of state or compressibi
factor,Z ­ bpyr, p being the pressure,b ­ 1ykBT , and
kB is Boltzmann’s constant. The virial coefficients of th
mixture,Bn, are defined byZ ­

P`
n­1 Bnrn21 (see, e.g.,

[10]). From simulations [11] of binary mixtures (i ­ 1, 2)
of weak to moderate size asymmetry, sayg . 0.3 where
g ­ s2ys1 # 1 measures the size asymmetry, it is know
thatZ is well approximated by the Carnahan-Starling (C
expression, sayZCS (see [12]). In order to take advan
tage of this fact we will write in a perturbative fashion
Z ­ ZCS 1 DZ with DZ ­

P
nsBn 2 BCS

n drn21, where
BCS

n denotes the CS approximation ofBn, i.e., ZCS ­P
n BCS

n rn21, whereas the closed-form expression ofZCS

reads [10,12]

ZCS ­
1

s1 2 j3d
1 j0

3j1j2

s1 2 j3d2
1 j2

0
j

3
2s3 2 j3d

s1 2 j3d3
,

(1)

where we have used the standard variable
jk ­

p

6

P
i ris

k
i , and also jk ­

P
i xis

k
i ­ jkyj0

with k ­ 0, 1, 2, 3. For the mixture, onlyB1, B2, B3 are
known explicitly, namely [13],

B1 ­ j0, B2 ­ j0j3 1 3j1j2 ,

B3 ­ j0j
2
3 1 6j1j2j3 1 3j

3
2 , (2)

where Bn ­ Bnsp

6 dn21, while B4 and B5 have recently
been computed numerically in [9]. From (1) it follows
© 1997 The American Physical Society 1881
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thatDBn ­ Bn 2 BCS
n vanishes forn ­ 1, 2, 3 and hence

DZ ­ r3DB4 1 r4DB5 1 · · · , where the ellipses denote
terms which at present are unknown for the mixture. A
a first perturbative improvement ofZCS we propose to
approximateZ by Z with

Z ­ ZCS 1 j3
0DB4 1 j4

0DB5 , (3)

although it is not known whether the virial expansio
of DZ ­ Z 2 ZCS really converges. To obtainDB4 ­
B4 2 B

CS
4 andDB5 ­ B5 2 B

CS
5 we use

B
CS
4 ­ j0j

3
3 1 9j1j2j

2
3 1 8j

3
2j3 ,

B
CS
5 ­ j0j

4
3 1 12j1j2j

3
3 1 15j

3
2j

2
3 ,

(4)

as follows from (1), whereas forB4, B5 we use the exact
decomposition [10],

Bn ­
nX

k­0

xk
1 xn2k

2 B
skd
n ss1, s2d , (5)

of Bn into the sn 1 1d partial virial coefficients of the bi-
nary mixtureB

skd
n ss1, s2d or their dimensionless counter

partsb
skd
n sgd, with B skd

n ss1, s2d ­ s
3sn21d
1 b

skd
n sgd andg ­

s2ys1, and fit theb
skd
4 sgd and b

skd
5 sgd functions to the

numerical data of [9] by using simple polynomial expre
sions in g. Before doing so we observe that the sym
metry relation,B skd

n ss1, s2d ­ B
sn2kd
n ss2, s1d or b

skd
n sgd ­

g3sn21db
sn2kd
n s 1

g d with, in particular,b
skd
2k sgd ­ g3s2k21d 3

b
skd
2k s 1

g d when n ­ 2k implies that not all the functions

b
skd
n sgd are independent. In this way we obtain explicit an

alytic expressions [14] forB4 andB5 valid for any0 # x1 ­
1 2 x2 # 1 and0 # g # 1. It is found thatB4 is fairly close
to B

CS
4 with sB4 2 BCS

4 dys
9
1 always positive and never ex

ceeding its one-component value. On the contrary,B5 has
a negative well [9] which is missing inBCS

5 $ 0 leading
to negative values forsB5 2 BCS

5 dys
12
1 when0 , g & 0.5

and0 , x1 & 0.6 (see Fig. 1). Because of the presence
this negative well inB5, the correctionj3

0DB4 1 j
4
0DB5

to ZCS in (3) exhibits a similar negative well which can
be viewed then as resulting from a density dependent
fective attraction, not between the real HS but betwe
HS described by the CS approximation. We also o
serve that asg ! 1, Z of (3) tends toZg­1

­ Z
g­1
CS shd 1

0.362h3 1 0.237h4 with h ­
p

6 rs
3
1 , the packing frac-

tion of the one-component system (s1 ­ s2). Our pres-
sure for the one-component system exceeds thus slig
the CS pressure for largeh, a result in agreement with the
available computer simulations (see [10,11]). In the o
posite limit,g ! 0, whereby the small spheres reduce
point particles (s2 ! 0) Z reduces to the expected resu
[10], Z

g­0
­ x1Z1 1 x2ys1 2 h1d, whereh1 ­

p

6 r1s
3
1

andZ1 ­ Z
g­1sh1d is the compressibility factor of a one

component system of large spheres (s1). Next we con-
sider the Helmholtz free energy per particle,f, which we
denote in this approximation asf, with bf ­ bfCS 1
j

3
0

3 DB4 1
j

4
0

4 DB5, wherefCS represents the analytic ex
1882
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FIG. 1. The dimensionless deviation,sB5 2 BCS
5 dys

12
1 , of the

fifth virial coefficient B5 from its CS approximation [12] for
a binary HS mixture of size ratio,g ­ s2ys1, and number
fraction (concentration) of large spheres,x1. The values of
B5 have been obtained [14] from a polynomial interpolation
the numerical results of [9]. It is seen thatB5 is everywhere
close toBCS

5 but becomes negative in the region0 , g & 0.5
and 0 , x1 & 0.6, while BCS

5 is always positive. When, as
proposed here, the CS theory is corrected perturbatively,
negative well insB5 2 BCS

5 dys
12
1 can be viewed as providing

an effective attraction which drives the HS fluid mixture into
two-phase state.

pression obtained forf from ZCS. From the zeros of the

determinant of the matrix,≠
2srfd

≠ri≠rj
, we find that the mix-

ture presents a spinodal instability (see Fig. 2) not unl

FIG. 2. Spinodals (broken lines) and binodals (full lines)
the demixing transition of a binary HS mixture in theh1-h2

plane, withhi ­
p

6 s
3
i ri being the packing fraction of specie

i (i ­ 1, 2). In this representation the tie lines (dot-dash
lines) between the coexisting fluid phases (full dots) are obliq
(for clarity only a few tie-lines are shown). The critica
(consolute) point is indicated by an open dot. The low
curves correspond to a size ratio,g ­ s2ys1, of g ­ 0.15
and the upper curves tog ­ 1y3. For the caseg ­ 1y3, the
experiments of Dinsmoreet al. (see [4]) clearly indicate that the
fluid mixture is stable (unstable) for the systems represented
p (1), in agreement with our theoretical spinodal.
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the one found in [3–5]. To find the corresponding bin
odals we can perform either a double-tangent construct
on the Gibbs free energy per particleg (bg ­ bf 1 Z)
versusx1 at constantp andT (or for HS at constantbp)
or else solve the coexistence conditions of equality of t

pressures and chemical potentials (mi ­
≠srfd
≠ri

) between
the coexisting phases (see Fig. 2). As already mention
above, the demixing transition is not the only phase tran
tion governing the HS mixture for smallg. It is generally
believed [3–5] that there also is a close-by freezing tra
sition of the fluid mixture into a solid alloy whose struc
ture is not known with precision but which could consi
of a crystal of large spheres permeated by a fluid of sm
spheres. Such a partial freezing or sublattice melting tra
sition is typical of superionic conductors for which the siz
asymmetry between the positive and negative ions is a
known to be crucial [15]. Here we have studied this tra
sition for an HS mixture within the GELA (“generalized
effective liquid approximation”) of [16]. The correspond
ing phase diagram is shown in Fig. 3. It is seen that f
pressures exceeding that of the lower consolute point
the demixing transition both demixing and partial freezin
can occur depending on whether the small spheres con
tute the majority or minority phase. Wheng increases the
demixing transition eventually becomes metastable, wh
for g * 0.5 other solid phases come into competition wit
the fluid mixture [17].

FIG. 3. The pressure-composition phase diagram of a bin
HS mixture of size ratiog ­ 0.15 (broken lines) andg ­
0.30 (full lines). Here pp ­ bps

3
1 is the reduced pressure

g ­ s2ys1, while s1 and x1 correspond to the diameter and
number fraction of the large spheres. The phases conside
are the fluid mixture (F) of composition x1 (x2 ­ 1 2 x1)
and a “solid” alloy (S) of compositionx1 in which the large
spheres form a face centered cubic structure while the sm
spheres remain fluid. The latter phase has been assume
compete with the demixing transition for reduced pressur
pp of the order of the critical valuepp

c of the lower critical
consolute point (we findpp

c . 29 for g ­ 0.30 and pp
c . 22

for g ­ 0.15). For larger pressures one expects solid alloys
a different structure [17] to compete with the fluid mixture.
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In conclusion, we have shown that the possibility
demixing in binary mixtures of additive hard spheres c
be traced back to the occurrence in these systems
negative fifth virial coefficient for small size ratios an
small to moderate concentrations of large spheres.
simple modification (3) of the CS equation of state (1) h
been proposed and shown to lead to results in agreem
with those obtained from other sources [3–5].
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