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Emergence of Quantum Chaos in Finite Interacting Fermi Systems
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We study the level spacing statistif$s) in many-body Fermi systems and determine a critical two-
body interaction strengttv. at which a crossover from Poisson to Wigner-Dyson statistics takes place.
Near the Fermi level, the results allow one to find a critical temperafiufeabove which quantum
chaos and thermalization set in. [S0031-9007(97)03971-9]

PACS numbers: 05.45.+b, 05.30.Fk, 24.10.Cn

The random matrix theory (RMT) was developed toalso be useful for a description of interacting electrons in
explain the general properties of complex energy spectrelusters [11] and mesoscopic quantum dots [12].
in many-body interacting systems such as heavy nuclei, While the statistical properties of the TBRIM were
many electron atoms and molecules [1]. Later, it foundstudied in some detail, surprisingly, the most important
many other successful applications in different physicafjuestion about the critical interaction stren@that which
systems. Among the most recent of them, we can quotthe WD level spacing statistics sets in was omitted.
models of quantum chaos, where RMT appears duépparently the reason for this is based on the common
to the classically chaotic but deterministic underlyinglore in nuclear physics that the level density grows
dynamics [2]. One of the most direct indications of theexponentially with the number of particles, and therefore
emergence of quantum chaos is the transition of the levedln exponentially small interaction is sufficient to mix
spacing statistics?(s) from Poisson to Wigner-Dyson nearby levels [7,10]. However, recent estimates on few-
(WD) distribution. This property has been widely used toparticle modeldn = 2, 3,4) showed that, in spite of the
detect the transition from integrability to chaos not onlyhigh many-body density of states, only an interaction
in systems with a few degrees of freedom [2] but also instrength comparable to the two-particle level spacings can
solid-state models with many interacting electrons [3]. Itgive a level mixing [13,14]. Therefore the dependence
was also applied to determine the delocalization thresholdf U, on the number of particles and orbitals, as well as
in noninteracting disordered systems [4]. the excitation energy, should still be determined. This is

While the conditions for the appearance of the WDthe main purpose of this paper. The above borde¥in
distribution in noninteracting systems is qualitatively wellis physically very important. Indeed, fé&f < U,, levels
understood, the situation is more intricate in the presencare not mixed by interaction, and hence the system is not
of interaction. Indeed, in this case, the size of the totathermalized. Consequently, the occupation numbers are
Hamiltonian matrix grows exponentially with the number not described by the Fermi-Dirac statistics. However, a
of particles, and it becomes very sparse as a result of theufficiently strong interaction leads to thermalization as
two-body nature of the interaction. Because of this, it washas been seen in numerical simulations [7,9,10].
initially not obvious whether switching on the interaction To study the effect of interaction on the spectral prop-
would lead to the WD statistics. To study this problemerties of finite Fermi systems we used the TBRI model
a two-body random interaction model (TBRIM) was described in [7]. It consists of particles distributed
proposed [5,6]. This model consistsmofermions which over m orbitals with energiese,,, m' = 1,2,...,m.
can occupym unperturbed energy orbitals with mean These energies are randomly distributed over the interval
one-particle level spacing. The multiparticle states are [0, m] with average spacing = 1. The total number of
coupled by two-body random transition matrix elementsmultiparticle states iV = m!/[n!(m — n)!]. They are
of typical strengthU. It was found that a sufficiently coupled by random two-body transition matrix elements
strong U leads to a level mixing and appearance ofdistributed in the intervall—U,U]. Because of the
WD statistics. Very recently, the interest for this modeltwo-body nature of the interaction, only states differing
has been renewed, and its statistical properties wergy, at most, two one-particle indices are coupled. As a
investigated in more detail [7]. This rise in interestresult, each multiparticle state is coupled wikh=1 +
was stimulated by the understanding that many statistical(m —n) + n(n — 1) (m — n) (n—n —1)/4 states [7].
properties of real physical systems such as the rare-earfkl these transitions occur inside a two-body energy
Ce atom [8] and thé®Si nucleus [9,10] are well described interval B =2m — 4 around the energy of an initial multi-
by the TBRIM. In addition, this model is quite similar particle state. For large andr, the number of transitions
to the s-d shell model used for a description of complex K is much smaller than the size of the matfik but is
nuclei [9,10]. Since interaction is generically of a two- much larger than the number of different two-body matrix
body nature, it is reasonable to assume that this model wiklementsN, =~ m?/2. The total energy of the system
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varies from the ground-state valug, ~ n>A/2 to the 1.00

maximal valueE;, =~ mnA — E,, and the Fermi energy is

er = nA. The typical level spacing in the middle of the

spectrum aE;, = (E, + E;)/2is A, = (E, — E,)/N. 075 | F
Let us first discuss the situation at high energies

E,, where allK transitions are energetically allowed. In

this case, the density dfirectly coupled states ip,. =

K /B because all transitions take place inside the two-

body energy band. According to perturbation theory,

these levels will be mixed when the transition matrix

elementU between them becomes of the order of the 0.25

corresponding spacing. =1/p.. This determines the

critical couplingU.,
U. = Cﬁ ~ %€ . @ 0.0 1.0 2.0 30 N80
K pon? s

Here, we introduced the two-particle densijty =~ N,/ y , , L
B~m/4, assumingm > n>> 1, and a numerical con- rhIG. 1. Transmon_from P(ﬂss.on to V\/_|gner-Dyson SiatIStICS in

. . e TBRIM form = 12, n = 6: U/A = 0.01 and n = 0.93
stantC to be determined. Fol/ < U, the perturbation (). 1;/A = 0.055 and 5 = 0.3 (s); U/A = 0.13 and 5 =
theory works, levels are not mixed amis) is close to  0.063 (x). Solid lines show the Poisson and Wigner-Dyson
the Poisson distribution. Fdr > U, we expect a strong distributions. The inset showg(s) at fixedn = 0.3 for half-
mixing of levels not only on a scalA. but on a much filing » = n/m = 0.5 andn = 4 (dotted line),n = 5 (dashed
smaller scaleA,. There are few arguments in favor of "€).7 = 6 (long dashed line), and = 7 (dot-dashed line).
this statement. The first of them is based on the results
for few-particle systemgn =2,3,4) [13]. According to  in (1). We note that this; value is close to the value
Ref. [13], the effective transition matrix element betweeny, = 0.215 corresponding taP(s) at the Anderson tran-
nearby levels in high orders of perturbation theory be-sition in 3D [4] (in [4] a criterion slightly different from
comes comparable td, when the first-order transition ours was used).
mixes directly coupled stated/ > U.). Recently the The fact that the concrete choice gf is not crucial
same conclusion was drawn in [14]. The second arguis also confirmed by Fig. 2, which shows the existence
ment is based on an analogy with superimposed bangf a scalingn = 7(U/U.). Indeed, the numerical data
random matrices (SBRM) with strongly fluctuating di- in a large parameter range demonstrate the existence of
agonal elements [15-18]. There it was shown that, fobne scaling curve (Fig. 2). This scaling is very similar
a sufficiently large band (number of nonzero diagonalgo the one observed in the SBRM models [15-18]. Italso

2b + 1> +/N), the eigenstates are extended over thelearly shows that the situation in our model is qualitatively
whole matrix sizeN, and P(s) has the WD form if the

transition matrix elements are larger than the energy spac-
ing between directly coupled states. This condition is 1.00

0.00

rather similar to the above border (1). %

To check the prediction (1), we numerically computed K 4
P(s) in the middle of the spectrum of the TBRIM (keep- 075 | ’% ]
ing only +25% of the levels nearE,) for n = 8 and >

m = 80 at various interaction strengtlig. Up to 5000 *

different realizations of disorder have been used to ob- < 050 | X ]

tain the total spacing statistidg; = 30000. A typical ’ \

example of the transition from Poisson to WD statistics *

is shown in Fig. 1. As expected, the level repulsion dis- ‘s’

appears at small/ while for largeU the distribution ap- 0.25 |

proaches the WD form. To characterize this transition %,

we computed for each gistributioﬁ(s) the valuen = TN Ko
o [P(s) — Pwp(s)lds/ [ [Pp(s) — Pwp(s)lds. Here 0000 o5 10 15 20 25 30 35

Pp(s) and Pwp(s) are the Poisson and the WD distri- U/u

butions, respectively, angy = 0.4729... is their intersec- FIG. 2. D q of on th led interaction strendth
; ; ; ; — . 2. Dependence of on the rescaled interaction streng
tion pomt._ln this way,n varies fr(_)m 1P(s) _ _Pp(_s)] UJU. for 3= n=8 4=m=80, 1/40 = » = 1/2, and

to 0[P(s) = Pwn(s)]. We determined the critical inter-  (,'" U, = 0.2 (diamonds). Open circles show the scaling
action strengthU. by the conditionn(U.) = 7. = 0.3.  close to the Fermi level (see text). The straight line marks
The choice ofyn. influences only the numerical factat 7 = 5. = 0.3.
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different from then scaling in the solid-state models close to the Fermi level. Indeed, as is well known, at
with Anderson transition. There, in the limit of large a temperaturel’, only én ~ Tn/er ~ T/A > 1 parti-
system size, only three values,= 1 (localized phase), cles interact near the Fermi surface. At this excitation
n = 0 (delocalized), andy = 7,4 (at the transition), are energye ~ T < €r, the density of two-particle states is
possible [4]. However, in our case, the scaling functionp,.s ~ T/A%. By replacing [in (1)]n by 6n and p, by
varies smoothly from 1 to 0, with the rescaled transitionp,.¢, we obtain that at a given interaction strength the lev-
matrix elementl/ /U, for different system size& which  els become mixed, an#l(s) takes the WD form at a tem-
varied over more than 2 orders of magnitude. We relat@erature higher than the critical temperattlitg given by
this qualitative difference between the two models to the
fact that in the TBRIM all orbitals are coupled by direct Ten = CIA(A/U)', 2)
transitions, whereas in the Anderson model, the hopping
couples only nearby sites. Because of this, the TBRIMwhere C; is a numerical constant. The conditions of
is more similar to the SBRM models with a broad band,validity of this equation ar&., > A(én > 1) andT., <
where many states are directly coupled. er = nA which correspond to: 3 < U/A < 1. It is
The condition for the critical/,. (». = 0.3) allows one also assumed that the WD statistics imply thermalization
to check the theoretical prediction (1). The numericalwith Fermi-Dirac statistics. Such a conjecture looks quite
data for which the number of direct transitions variesnatural, since the quantum chaos should be related with
over more than 2 orders of magnitude are presented ithe excitation of many unperturbed modes and mixing.
Fig. 3. They give a clear confirmation of the estimateAlso, without mixing of nearby levels and WD statistics,
(1) giving C = 0.58. The results of Figs. 1-3 show that the thermalization is not possible since, generally, the
for U > U, from (1) all nearby levels are mixed by two- Poisson distribution indicates an existence of uncoupled
body interaction, and’(s) converges to the RMT result parts in the whole system. As a result, the thermalization
with WD distribution. We stress that, for large andr, does not exist below,,.
the value ofU,. remains parametrically much larger than Since near the Fermi level the total system energy
the multiparticle spacing,,. counted fromE, is 6E = E — E, = Tdn, the relation
So far, the results were obtained in the middle of the(2) implies that the thermalization takes place only for
energy spectrunt,, where allK direct transitions are en- eigenstates with eigenenergiés = E, + 6 E so that
ergetically allowed and effectively work. The situation
becomes quite different close to the Fermi level. There, SE > SE., = CIA(A/U)Y. (3)
the estimate (1) should be modified in the following way.
First, we should take into account that the density of ef-The above restriction fol/ requires1 < §E/A < n?.
fectively coupled two-particle statgs.; becomes energy This result shows that they parameter should depend
dependent so thaiyr(e) ~ €/A? [19,20]. Second, the on the excitation energy. Indeed, our numerical data,
number of effectively interacting particles is also changedextracted fromP(s) computed in a small energy interval
near a fixeddE, clearly show thatn decreases with
increasing excitation energypE (Fig. 4). Using the
relation (3), we can determine for a givéik an effective
U. value beingU. = C3A(A/SE)*?. The condition
n(6E) = n. = 0.3 for the data of Fig. 4 atn = 6,
m =12, andU/A = 0.147 givesC, = 1.08. With the
value C; = 1.08 and the above dependence &f on

- Oon=2 SE, we can check if the data of Fig. 4 will follow the
2 0n=3 general scaling law of Fig. 2. For that, in Fig. 2 we plot
=) o n=4 the n values of Fig. 4 vs the ratid//U. with U, =
.| an=s 1.26(8E)~32, ¢, = 1.08, andA = 1 (open circles). The
107+ en=6 fact that these data follow the scaling curve confirms the
Xn=7 theoretical estimates (2) and (3) for the thermalization
* n=8 border. The direct check of the dependence af;, on

U (inset in Fig. 4) also confirms the prediction (3).

The obtained estimates for the quantum chaos border
(2) and (3) can be applied to different finite interacting
N _ ~ Fermi systems such as complex nuclei with residual
FIG. 3. Dependence of the rescaled critical 'meraCt'oninteraction, atoms and molecules, clusters and quantum
strength U./B, above which P(s) becomes close to the dots. H briefly di i f metalli i
Wigner-Dyson statistics, on the number of directly coupled OfS. Here we briefly diSCuss the case of metallic guantum
statesk for 4 =m =< 80 and 1/40 = » = 1/2. The line dots [12]. In this case, the interparticle interaction is

shows the theory (1) witid = 0.58. relatively weak so that/ /A ~ 1/gwithg = E./A > 1
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FIG. 4. Dependence ofy on the rescaled excitation energy
SE/Aforn =6,m = 12, andU/A = 0.147 (0). The straight
line marksn = 5. = 0.3. The inset gives the numerically
found dependence ofE., with n = 5. = 0.3 on U (dia-
monds); the straight line shows the theory (3) with= 1.08.

being the conductance of the dot afd the Thouless

energy [21]. According to (3), the thermalization will take

place above the excitation energyE., ~ Ag?3. This

is in satisfactory agreement with the experimental result
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