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We give a semiclassical interpretation of the mass asymmetry in the fission of heavy n
Using only a few classical periodic orbits and a cavity model for the nuclear mean field,
reproduce the onset of left-right asymmetric shapes at the fission isomer minimum and the c
topology of the deformation energy surface of240Pu in the region of the outer fission barrie
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One characteristic feature of the fission of many a
tinide nuclei is the asymmetric mass distribution of t
fission fragments. The liquid drop model [1], althoug
capable of describing many aspects of the fission proc
qualitatively, cannot explain this mass asymmetry
heavy nuclei where the fissility parameterx is close to
unity [2]: the balance between the attractive surface t
sion and the repulsive Coulomb force favors left-rig
symmetric shapes and thus also the symmetric fiss
An explanation for the observed asymmetry, which s
in long before the nucleus breaks up (see below),
came possible with Strutinsky’s shell-correction meth
[3] which includes the quantal shell effects stemmi
from the discrete spectra of the nucleons in their me
fields. The total binding energy of a nucleus withN neu-
trons andZ protons is written as

EtotsN , Z; defd  ELDMsN, Z; defd

1 dEnsN ; defd 1 dEpsZ; defd . (1)

HereELDM is the liquid drop model (LDM) energy;dEn

anddEp are the shell-correction energies of the neutro
and protons, respectively, which are obtained in terms
the single-particle energies of realistic shell-model pote
tials. All ingredients depend on the shape of the nucle
which is described by some suitable deformation param
ters, summarized in (1) by “def.” The shell-correctio
approach was very successful in reproducing experim
tal nuclear binding energies and fission barriers [4–6]
times where self-consistent microscopical calculations
Hartree-Fock type were not yet available [7].

Figure 1 shows a schematic fission barrier of a typi
actinide nucleus, taken along the adiabatic path through
multidimensional deformation space. The heavy das
line is the LDM deformation energy which leads to
spherical ground state and to symmetric fission. The s
line is the total energy (1) including the shell correctio
dEn and dEp. These lead to a deformed ground-sta
minimum and a higher-lying minimum, the fission isom
[8]. The shapes used hereby have axial symmetry and
right symmetry. When the latter is relaxed, the energy
found [9,10] to be lowered along the way over the ou
0031-9007y97y79(10)y1817(4)$10.00
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barrier, starting at the fission isomer. (The axial symm
try is preserved in the whole region beyond the inner b
rier [11].) The energy gain due to left-right asymmetr
persists all the way down to the scission point where t
nucleus breaks into two fragments of unequal size. It
important to note that the onset of the mass asymme
occurs already at an early stage of the fission proce
long before the nucleus breaks up. It is a pure quant
effect which only comes about if the shell correction
are included in the total energy. Dynamical calcul
tions [12] are needed to predict the detailed fragme
mass distributions, but the most probable mass ratio
roughly that of the nascent fragments found statically
the asymmetric outer barrier [4]. The microscopic or
gin of the static instability against left-right asymmetry ha
been investigated by Gustafsson, Möller, and Nilsson [1
They found that only two specific types of single-partic
states with large angular momenta along the symme
axis are strongly sensitive to the left-right asymmetr
one of them has the maxima of its wave functions alo
the central waistline of the nucleus (see the upper rig
in Fig. 1), whereas the other has maxima along the c
cumferences of two equatorial planes at some dista
of the center (with opposite phases on either side; s
the middle right in Fig. 1). The coupling of these state
through the left-right asymmetric components of the me

FIG. 1. Left: Schematic fission barrier of a typical actinid
nucleus. Right: Schematic probability amplitudes of leadin
single-particle wave functions responsible for the onset of ma
asymmetry (after Ref. [13]).
© 1997 The American Physical Society 1817
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field leads to a decrease of one set of eigenener
below the Fermi energy, and thus to a reduction of
total energy, when the asymmetry is switched on.

In the following we give a very simple and transpare
semiclassical interpretation of this static quantum effe
We employ the periodic orbit theory (POT) [14,15] whic
expresses the oscillating part of the level density
a quantum system semiclassically through the so-ca
“trace formula,”

dgsEd . Re
X
PO

APOsEdeifs1y h̄dSPOsEd2sPOspy2dg. (2)

The sum is taken over all periodic orbits, labeled “PO
of the corresponding classical system.SPO are the classi-
cal actions along the periodic orbits, andsPO are phases
related to the number of conjugate points along the
bits. The amplitudeAPO of each orbit depends on it
period, its stability, and its degeneracy. Together w
the smooth partegsEd which can be obtained in the (ex
tended) Thomas-Fermi model, it approximates the
act quantum-mechanical level density,egsEd 1 dg sEd 
gsEd 

P
i dsE 2 Eid, whereEi are the eigenenergies o

the system and the sum runs over all quantum statei.
(See Ref. [16] for an introduction to the POT and detail
explanations of all the above ingredients.) Gutzwille
trace formula [14] has been applied for the semiclass
quantization of chaotic systems [17]. A different use
the POT [16,18] is to obtain a coarse-grained level d
sity by keeping only the shortest orbits with the large
amplitudes in the trace formula (2). This allows one
relate the gross-shell structure of interacting fermion s
tems in the mean-field approximation to a few classi
orbits. Using Eq. (2), the semiclassical expression for
energy shell correctiondE becomes

dE . Re
X
PO

APOsEFd

√
h̄

TPO

!2

eifs1y h̄dSPOsEF d2sPOspy2dg.

(3)

Here EF is the Fermi energy andTPO  dSPOydEjEF

the period of the orbit labeled PO. Pioneering wo
has been done in this direction by Strutinskyet al. [18],
who generalized the Gutzwiller theory to systems w
continuous symmetries and used it to give a semiclass
explanation of the systematics of nuclear ground-st
deformations. Another beautiful example is the beat
pattern of the coarse-grained level density in a spher
cavity, which was related by Balian and Bloch [15]
the interference of the triangular and square perio
orbits, and later predicted [19] and observed [20] in me
clusters in the form of the so-called supershells. Ar
and Matsuyanagi [21] have studied the effect of le
right asymmetric deformations of octupole type on t
supershell structure in harmonic-oscillator potentials a
discussed them in terms of periodic orbits.

For our semiclassical investigation, we replace the
clear mean field by a cavity with reflecting walls and co
sider only one kind of particles. This should yield the ma
1818
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physical effects, since the neutron contributiondEn con-
tains the strongest shell effects, as seen, e.g., in Fig. V
4 of Ref. [4]. We employ the parametrization (c, h, a)
of this reference to define the boundary of the cavity
cylindrical coordinatessr, z, fd (with z as the symmetry
axis) through a shape functionr  rsz; c, h, ad. c is the
length of the semiaxis alongz in units of the radiusR0
of the spherical cavity given byc  1, h  a  0. h
is a “neck parameter” regulating the formation of a nec
leading to the scission of the nucleus into two fragmen
a fi 0 yields left-right asymmetric shapes. The volum
of the cavity is kept constant. (See Ref. [4] for details o
this parametrization, and especially Figs. VII-1 and VIII-
for the most important shapes occurring in fission.) Th
parameterssc, hd are chosen such that the one-dimension
curveh  a  0 alongc follows the adiabatic fission bar-
rier of the LDM (shown schematically in Fig. 1). Even in
cluding the shell effects,h  0 gives a reasonable picture
of the double-humped fission barrier.

We now have to determine the shortest periodic orb
of this system to calculate the gross-shell structure indE.
At large deformations (herec * 1.4), these are the orbits
lying in equatorial planes perpendicular to the symmet
axis [22]. The positionszi of these planes along thez
axis are given by the condition that the shape function
stationary:drsz; c, h, adydzjzi

 0. The periodic orbits
have the form of regular polygons and are characteriz
by sp, td, where p is the number of reflections at the
boundary andt the number of windings around the
symmetry axis (p $ 2, t # py2). The contribution of
such orbits to Eq. (2) has been derived by Balian a
Bloch [15]; we refer to their paper for the explicit
form of the amplitudesApt and phasesspt . The lengths

of the orbits areL
sid
pt  2pRi sinsptypd, where Ri 

rszi ; c, h, ad, and their actions areS
sid
pt sEFd  h̄kFL

sid
pt in

terms of the Fermi wave numberkF 
p

2mEFyh̄.
The range of validity of Eqs. (2) and (3) is, howeve

limited. They are correct only as long as the orbits a
well separated from neighboring periodic orbits, in pa
ticular, as long as the orbits are not close to a bifurcatio
At a bifurcation the amplitudesApt diverge and the
trace formula has to be modified. Generally, bifurcation
exist in different forms, but for the situation studie
here we need consider only one type of bifurcatio
It occurs when the positionszi of several equatorial
planes coincide. In thesc, h, ad parametrization, there
are at most three such planes. One plane always exi
the other two arise at the pointssc0, h0, a0d where the
neck formation starts. In the symmetric case (a  0),
one plane is always located atz0  0 and, beyond the
bifurcation point, the other two are located symmetrical
at 6z1 (with z1 . 0) and contain identical periodic orbits

Near a bifurcation point, all neighboring orbits of typ
( p, t) from the different planes give a joint contribution
to the level density which is given [15] by an integral o
the form
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dEpt  Re
Z 1c

2c
dz fptszd exphikFLptszdj , (4)

where fptszd is a slowly varying analytic function o
z. Since the plane positionszi of the periodic orbits
are determined by the stationary points of the len
function Lptszd  2p sinsptypdrsz; c, h, ad, a stationary
phase evaluation of (4) leads back to separate contribut
to Eq. (3) for each plane, with the amplitudes and pha
given in [15]. In order to obtain an approximation
(4) that is valid at the bifurcation as well as far from
we employ a uniform approximation appropriate for t
case of three nearly coincident stationary points in a o
dimensional oscillatory integral [23]. It is expressed
terms of Pearcey’s integral and its derivatives,
i

e

th

ons
es

,
e
e-

n

dEpt  Re hfu4Psu1, u2d 1 u5Pxsu1, u2d

1 u6Pysu1, u2dgeiu3 j , (5)

where Pearcey’s integral is defined by

Psx, yd 
Z `

2`

dz expf isz4 1 xz2 1 yzdg , (6)

andPxsx, yd, Pysx, yd denotes its derivative with respect t
the first and second argument, respectively. The const
u1 . . . u6 are determined by the semiclassical amplitud
actions, and phases of the periodic orbits. If the orb
are well separated, Eq. (5) reduces to contributions to
standard trace formula (3).

In the symmetric case (a  0), the result (5) can be
simplified and yields a formula which is analogous to th
for a generic pitchfork bifurcation [24],
dEpt  Re

s
pkFjDLpt j

2

(√
h̄2A

s1d
pt

fT s1d
pt g2

1
h̄2A

s0d
pt

p
2 fT s0d

pt g2

!
fnJ1y4skFjDLpt jd eipy8 1 J21y4skFjDLpt jd e2ipy8g

1

√
h̄2A

s1d
pt

fT s1d
pt g2

2
h̄2A

s0d
pt

p
2 fT s0d

pt g2

!
fJ3y4skFjDLptjd ei3py8 1 nJ23y4skF jDLpt jd e2i3py8g

)
3 eiskF L̄pt23ppy2d. (7)
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Here L̄pt  fLs1d
pt 1 L

s0d
pt gy2 andDLpt  fLs1d

pt 2 L
s0d
pt gy2

in terms of the lengthsL
s0d
pt , L

s1d
pt of the orbitspt situated

at z  z0 andz  6z1, respectively.n equals21 before
the bifurcation (i.e., for only one orbit plane) and11 after
the bifurcation (for three orbit planes). In the gener
casea fi 0, however, the entire Pearcey integral and
derivatives have to be used and evaluated numerically.

In the right-hand panels of Fig. 2 we show contou
plots of the semiclassical shell-correction energydE in the
(c, a) plane for two values of the neck parameter. Th
energy unit isE0  h̄2y2mR2

0 . The Fermi wave number
kF  12.1yR0 was chosen such thatdE has a minimum at
the deformationc  1.42, h  a  0 of the fission iso-
mer. On the left of Fig. 2 we have reproduced the neutr
shell-correction energydEn of the nucleus240Pu, obtained
in Ref. [4] with a realistic Woods-Saxon type shell-mod
potential. We see that the semiclassical result correc
reproduces the topology of the deformation energy in t
sc, ad plane for both values ofh, in particular, the onset
of the mass asymmetry at the fission isomer. It shou
be noted that we have only included orbits with windin
number one (t  1) and with up topmax  10 reflections.
The results fordE remain the same within a few percen
when only orbits withp  2 and 3 (i.e., only diameter
and triangle orbits) are included. In the quantum resu
[4] for dE, pairing correlations are included. These lead
a suppression of the longer periodic orbits. Furthermo
the semiclassical amplitudes in (3) are suppressed by
inverse squared periodsTPO. As net result, equatorial or-
bits with winding numberst . 1 and other longer orbits
will not alter the results within the present resolution of th
shell effects indE. A detailed comparison with quantum
mechanical calculations in the same cavity model, whi
l
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confirm the excellent quality of our semiclassical approa
will be published shortly [25].

The loci of the bifurcation pointssc0, a0d are indicated
in Fig. 2 by the black heavy dashed lines (hardly visib
for h  20.075 in the upper right corner). This show
that the essential feature, namely, the energy gain du
the asymmetric deformations, is brought about by on
two classical orbits: the diameter and the triangle in t
central equatorial plane. The white dashed lines give
loci of constant actions of the periodic orbits atz0, fixing
their value ata  0. (Note that the actions of all orbits
in a given equatorial plane have the same deformat
dependence.) We see that the valley that leads fr

FIG. 2. Contour plots of deformation energy versus elo
gation c and asymmetrya for two values of the neck
parameter:h  0 (above) andh  20.075 (below). Left:
Quantum-mechanical neutron shell correctiondEn of 240Pu [4].
Right: Semiclassical shell-correction energydE, (3) and (5).
White dashed lines are the loci of constant action of the cen
equatorial orbits; black dashed lines the loci of the bifurcatio
1819
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FIG. 3. Right:dEsc, ad as in Fig. 2 (forh  0) in a 3D plot.
Arrows “symmetric” and “asymmetric” show two alternative
fission paths. Left: Shapes along the asymmetric fission pa
The planes of the leading periodic orbits are shown by vertic
lines (solid for stable and dashed for unstable orbits).

the isomer minimum over the outer fission barrier in th
energetically most favorable way is following exactly th
path of constant action of the leading classical orbit
this path is practically identical with that obtained in th
quantum-mechanical shell-correction calculations.

In Fig. 3, we show the same results as in the upp
right part of Fig. 2, but in a perspective view of a three
dimensional energy surface. On the left, the shapes
the cavity are given corresponding to the pointsA at
the isomer minimum and the pointsB and C along the
asymmetric fission barrier (see also the correspond
points in Fig. 2). Note thatC lies beyond the bifurcation
point and thus contains three planes of periodic orbits.

In summary, we have shown how a specific quantu
effect, causing a drastic rearrangement of the shape o
complex many body system, can be described semicla
cally by the constancy of the actions of the shortest p
riodic orbits. With this, we have for the first time given
a semiclassical interpretation of the mechanism leading
the asymmetry of nuclear fission. We also point at th
close correspondence of the equatorial planes of the le
ing orbits (cf. Fig. 3, left) with the locations of the wave
function maxima (cf. Fig. 1, right) of the relevant quantum
states. Whether this constitutes an analog of the so-ca
“scars,” which are of strong current interest in connectio
with chaotic systems (see, e.g., Ref. [26]), will be inves
gated in further studies. Note that the classical dynam
of the present system is also predominantly chaotic on s
spaces of small angular momentaLz [21]. Still, the regular
regions in phase space, connected to the stable periodic
bits with axial degeneracy, are strong enough to cause
important shell effect.
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