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Semiclassical Interpretation of the Mass Asymmetry in Nuclear Fission
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We give a semiclassical interpretation of the mass asymmetry in the fission of heavy nuclei.
Using only a few classical periodic orbits and a cavity model for the nuclear mean field, we
reproduce the onset of left-right asymmetric shapes at the fission isomer minimum and the correct
topology of the deformation energy surface dPPu in the region of the outer fission barrier.
[S0031-9007(97)03997-5]
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One characteristic feature of the fission of many acbarrier, starting at the fission isomer. (The axial symme-
tinide nuclei is the asymmetric mass distribution of thetry is preserved in the whole region beyond the inner bar-
fission fragments. The liquid drop model [1], althoughrier [11].) The energy gain due to left-right asymmetry
capable of describing many aspects of the fission proces®rsists all the way down to the scission point where the
qualitatively, cannot explain this mass asymmetry innucleus breaks into two fragments of unequal size. It is
heavy nuclei where the fissility parameteris close to important to note that the onset of the mass asymmetry
unity [2]: the balance between the attractive surface teneccurs already at an early stage of the fission process,
sion and the repulsive Coulomb force favors left-rightlong before the nucleus breaks up. It is a pure quantum
symmetric shapes and thus also the symmetric fissioreffect which only comes about if the shell corrections
An explanation for the observed asymmetry, which set@re included in the total energy. Dynamical calcula-
in long before the nucleus breaks up (see below), betions [12] are needed to predict the detailed fragment
came possible with Strutinsky’s shell-correction methodmass distributions, but the most probable mass ratio is
[3] which includes the quantal shell effects stemmingroughly that of the nascent fragments found statically at
from the discrete spectra of the nucleons in their meathe asymmetric outer barrier [4]. The microscopic ori-
fields. The total binding energy of a nucleus wikhneu-  gin of the static instability against left-right asymmetry has
trons andZ protons is written as been investigated by Gustafsson, Mdller, and Nilsson [13].

. _ . They found that only two specific types of single-particle

BN, Z;def) = ELpu(N, Z; def states with large angular momenta along the symmetry
+ 8E,(N;def) + 6E,(Z;def). (1) axis are strongly sensitive to the left-right asymmetry:
one of them has the maxima of its wave functions along

andoE, are the shell-correction energies of the neutron§he central waistiine of the nucleus (see the upper right

and protons, respectively, which are obtained in terms of’ F'fg' . wherfe?s the otr:er_ r;asl maX|m:[51 along (’;het cir-
the single-particle energies of realistic shell-model poten-Cum erences of two equalorial planes at some distance
f the center (with opposite phases on either side; see

tials. All ingredients depend on the shape of the nucleus’ i SN .
which is degcribed by S(F))me suitable defF())rmation paramet:ne middle right n Fig. 1). Th_e coupling of these states
ters, summarized in (1) by “def.” The shelI-correctionthroth the left-right asymmetric components of the mean
approach was very successful in reproducing experimen-
tal nuclear binding energies and fission barriers [4—6] at — -
times where self-consistent microscopical calculations of R - AR G
Hartree-Fock type were not yet available [7]. . ---- LDM

Figure 1 shows a schematic fission barrier of a typical
actinide nucleus, taken along the adiabatic path through the
multidimensional deformation space. The heavy dashed
line is the LDM deformation energy which leads to a \
spherical ground state and to symmetric fission. The solid |- =
line is the total energy (1) including the shell corrections ground state Q
O0E, and 6E,. These lead to a deformed ground-state deformation . =
minimum and a higher-lying minimum, the fission isomer IG. 1. Left: Schematic fission barrier of a typical actinide
[8]. The shapes used hereby have axial symmetry and le iucleus. Right: Schematic probability amplitudes of leading

right symmetry. When the latter is relaxed, the energy isingle-particle wave functions responsible for the onset of mass
found [9,10] to be lowered along the way over the outerasymmetry (after Ref. [13]).

Here Ey pyv is the liquid drop model (LDM) energWE,,

potential energy
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field leads to a decrease of one set of eigenenergigshysical effects, since the neutron contributi®a, con-
below the Fermi energy, and thus to a reduction of thdains the strongest shell effects, as seen, e.qg., in Fig. VIlII-
total energy, when the asymmetry is switched on. 4 of Ref. [4]. We employ the parametrization, {, «)

In the following we give a very simple and transparentof this reference to define the boundary of the cavity in
semiclassical interpretation of this static quantum effectcylindrical coordinatesp, z, ¢) (with z as the symmetry
We employ the periodic orbit theory (POT) [14,15] which axis) through a shape functign= p(z;c, h, @). cisthe
expresses the oscillating part of the level density ofength of the semiaxis along in units of the radiusk,

a quantum system semiclassically through the so-calledf the spherical cavity given by = 1, h = a« = 0. h
“trace formula,” is a “neck parameter” regulating the formation of a neck
, leading to the scission of the nucleus into two fragments.
8g(E) = Re> Apo(E)elV/MSoB)=aw@/2] - (2) 4 % 0 yields left-right asymmetric shapes. The volume
PO of the cavity is kept constant. (See Ref. [4] for details of
The sum is taken over all periodic orbits, labeled “PO,”this parametrization, and especially Figs. VII-1 and VIII-5
of the corresponding classical systerfipo are the classi- for the most important shapes occurring in fission.) The
cal actions along the periodic orbits, ango are phases parametergc, i) are chosen such that the one-dimensional
related to the number of conjugate points along the oreurveh = a = 0 alongc follows the adiabatic fission bar-
bits. The amplitudeApy of each orbit depends on its rier of the LDM (shown schematically in Fig. 1). Evenin-
period, its stability, and its degeneracy. Together withcluding the shell effects; = 0 gives a reasonable picture
the smooth parg(E) which can be obtained in the (ex- of the double-humped fission barrier.
tended) Thomas-Fermi model, it approximates the ex- We now have to determine the shortest periodic orbits
act quantum-mechanical level densig{E) + 8g(E) =  of this system to calculate the gross-shell structuréfh
g(E) = >, 8(E — E;), whereE; are the eigenenergies of At large deformations (here = 1.4), these are the orbits
the system and the sum runs over all quantum states lying in equatorial planes perpendicular to the symmetry
(See Ref. [16] for an introduction to the POT and detailedaxis [22]. The positiong; of these planes along the
explanations of all the above ingredients.) Gutzwiller'saxis are given by the condition that the shape function be
trace formula [14] has been applied for the semiclassicadtationary:dp(z; ¢, h, «)/dz|,, = 0. The periodic orbits
quantization of chaotic systems [17]. A different use ofhave the form of regular polygons and are characterized
the POT [16,18] is to obtain a coarse-grained level denby (p, ), where p is the number of reflections at the
sity by keeping only the shortest orbits with the largestboundary and: the number of windings around the
amplitudes in the trace formula (2). This allows one tosymmetry axis ¢ = 2, t = p/2). The contribution of
relate the gross-shell structure of interacting fermion syssuch orbits to Eq. (2) has been derived by Balian and
tems in the mean-field approximation to a few classicaBloch [15]; we refer to their paper for the explicit
orbits. Using Eq. (2), the semiclassical expression for théorm of the amplitudesA ,, and phases,,. The lengths
energy shell correctiof E becozmes of the orbits areLgt) = 2pR;sin(«t/p), where R; =
8E = Re> Apo(Er) (%) e[/ MSro(Er)=aro(m/2)], p(zis ¢, h, @), and their actions ars\ (Ex) = hikrL\ in
PO PO terms of the Fermi wave numbgp = /2mEr /h.
(3) The range of validity of Egs. (2) and (3) is, however,
Here Er is the Fermi energy andpo = dSpo/dE|g, limited. They are correct only as long as the orbits are
the period of the orbit labeled PO. Pioneering workwell separated from neighboring periodic orbits, in par-
has been done in this direction by Strutinsiyal. [18], ticular, as long as the orbits are not close to a bifurcation.
who generalized the Gutzwiller theory to systems withAt a bifurcation the amplitudesA ,, diverge and the
continuous symmetries and used it to give a semiclassicétace formula has to be modified. Generally, bifurcations
explanation of the systematics of nuclear ground-statexist in different forms, but for the situation studied
deformations. Another beautiful example is the beatinghere we need consider only one type of bifurcation.
pattern of the coarse-grained level density in a sphericdt occurs when the positiong; of several equatorial
cavity, which was related by Balian and Bloch [15] to planes coincide. In théc, h, «) parametrization, there
the interference of the triangular and square periodi@are at most three such planes. One plane always exists;
orbits, and later predicted [19] and observed [20] in metathe other two arise at the pointsy, ho, @g) where the
clusters in the form of the so-called supershells. Aritaneck formation starts. In the symmetric case =€ 0),
and Matsuyanagi [21] have studied the effect of left-one plane is always located & = 0 and, beyond the
right asymmetric deformations of octupole type on thebifurcation point, the other two are located symmetrically
supershell structure in harmonic-oscillator potentials anét +z; (with z; > 0) and contain identical periodic orbits.
discussed them in terms of periodic orbits. Near a bifurcation point, all neighboring orbits of type

For our semiclassical investigation, we replace the nuf p,t) from the different planes give a joint contribution
clear mean field by a cavity with reflecting walls and con-to the level density which is given [15] by an integral of
sider only one kind of particles. This should yield the mainthe form
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+c _
5Ep = Re [ deful)exstikrLu) (@) PEp = ReluaPlun, ) + usPilus, )

¢ + uePy(ur, uz)]e™}, )

where f,,(z) is a slowly varying analytic function of where Pearcey's integral is defined by
z. Since the plane positions; of the periodic orbits °° o 5
are determined by the stationary points of the length P(x,y) = ffoo dz exfli(z” + xz= + yz)],  (6)

functionL ,,(z) = 2p sin(wt z;c, h, a), a stationar . o .
pi(2) = 2psin(mt/p)p( ) y @ndP.(x,y), P,(x,y) denotes its derivative with respect to

phase evaluation of (4) leads back to separate contributio i .
to Eq. (3) for each plane, with the amplitudes and phase@e first and second'argument, respe.ctlvely. The constants
.. ug are determined by the semiclassical amplitudes,

given in [15]. In order to obtain an approximation to “! - o ) ;
(4) that is valid at the bifurcation as well as far from it, actions, and phases of the periodic orbits. If the orbits
we employ a uniform approximation appropriate for the&® well separated, Eq. (5) reduces to contributions to the
case of three nearly coincident stationary points in a oneStandard trace formula (3).

dimensional oscillatory integral [23]. It is expressed in N the symmetric caseq = 0), the result (5) can be
terms of Pearcey’s integral and its derivatives, simplified and yields a formula which is analogous to that

| fora generic pitchfork bifurcation [24],

(1) (0)

[7kel ALl [( B2 B A i i

6Ept = Re - ‘( (I)Pl + — (g)’ [VJ1/4(kF|ALpt|)e /8 + J*1/4(kF|ALpt|)e /8]
2 [To P V2[Tp P

pt
(ﬁU\ﬁ}? Ay
1 — 0
TP V2IT]
X olkrLy=3pm/2) 7)

2) [J3/4(kF|ALpt|) ei3ﬂ-/8 + VJ73/4(kF|ALpl|) e_i?’ﬂ-/g]

HereL, = [LS,) + Lﬁ?,)]/z andAL,, = [Lﬁ,l,) - Lﬁ?}]/z | confirmthe excellent quality of our semiclassical approach,
in terms of the length&., LY, of the orbitspr situated Wil be published shortly [25].

atz = zpandz = *z,, respectively.» equals—1 before  The loci of the bifurcation pointéco, ao) are indicated
the bifurcation (i.e., for only one orbit plane) ard after N Fig. 2 by the black heavy dashed lines (hardly visible
the bifurcation (for three orbit planes). In the generalfor 7 = —0.075 in the upper right corner). This shows

casea # 0, however, the entire Pearcey integral and itsthat the essential feature, namely, the energy gain due to
derivatives have to be used and evaluated numerically. the asymmetric deformations, is brought about by only
In the right-hand panels of Fig. 2 we show contourfWo classical orbits: the diameter and the triangle in the
plots of the semiclassical shell-correction eneddyinthe ~ central equatorial plane. The white dashed lines give the
(c, a) plane for two values of the neck parameter. Theloci of constant actions of the periodic orbitszgt fixing
energy unit isEy = /i2/2mR3. The Fermi wave number their value ata = 0. (Note that the actions of all orbits

kr = 12.1/R, was chosen such tha has a minimum at in a given equatorial plane have the same deformation
the deformatione = 1.42, h = a = 0 of the fission iso- dependence.) We see that the valley that leads from

mer. On the left of Fig. 2 we have reproduced the neutron
shell-correction energ§ E,, of the nucleug*’Pu, obtained
in Ref. [4] with a realistic Woods-Saxon type shell-model
potential. We see that the semiclassical result correctly S
reproduces the topology of the deformation energy in the
(c, @) plane for both values of, in particular, the onset
of the mass asymmetry at the fission isomer. It should
be noted that we have only included orbits with winding
number onef = 1) and with up topm.x = 10 reflections.
The results fors E remain the same within a few percent
when only orbits withp = 2 and 3 (i.e., only diameter
and triangle orbits) are included. In the quantum results
[4] for 6 E, pairing correlations are included. These lead to 02
a suppression of the longer periodic orbits. Furthermore,
the semiclassical amplitudes in (3) are suppressed by thHdG. 2. Contour plots of deformation energy versus elon-
inverse squared period%o. As net result, equatorial or- gation ¢ and asymmetrye for two values of the neck
bits with winding numbers > 1 and other longer orbits Parameter:z =0 (above) andh = —0.075 (below). Left

. - . Quantum-mechanical neutron shell correctif, of “**Pu [4].
will not alter'ghe results Wthln the present re;olutlon of theRight: Semiclassical shell-correction energy, (3) and (5).
shell effects i E. A detailed comparison with quantum- white dashed lines are the loci of constant action of the central
mechanical calculations in the same cavity model, whictequatorial orbits; black dashed lines the loci of the bifurcations.
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