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Kinetics of Bose-Einstein Condensation in a Trap
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The formation process of a Bose-Einstein condensate in a trap is described using a master equation
based on quantum kinetic theory, which can be well approximated by a description using only the
condensate mode in interaction with a thermalized bath of noncondensate atoms. A rate equation of the
form n = 2W*(n)[(1 — el ~#/K)n + 1] is derived, in which the difference between the condensate
chemical potentiak, and the bath chemical potential gives the essential behavior. Solutions of this
equation give a characteristic latency period for condensate formation and appear to be consistent with
the observed behavior of both rubidium and sodium condensate formation. [S0031-9007(97)03982-3]

PACS numbers: 03.75.Fi, 05.30.Jp, 51.10.+y

The experiments on Bose-Einstein condensation of ditime there is a given numbey¥ of atoms inR¢, and the
lute atomic gases [1—3] have stimulated theoretical effortenergy levels in such a situation can be described using
which has, however, not produced any definitive result fothe number-conserving Bogoliubov method devised by
the growth of the condensate from the vapor, althougtone of us [13], so that the state Bf is fully described by
there have been significant theoretical contributions [4-thetotal numberof atomsN in R¢, and the quantum state
8]. This Letter will present guantitativeandexperimen- of the quasiparticles withiRc. In this formulation we
tally testabledescription of the growth process, based oncan write the condensate band field operator in the form
quantum kinetic theory [9,10], which can be simplified to t
. . . . . i by fm(x) + bl gm(x)

a single first-order differential equation for the numher Ye(x) = B[&V(x) + Z } 2

of atoms in the condensate. m VN
Our formulation contains the following principal fea- The quasiparticles, of energsf;, are described by anni-

tures. We use the Hamiltonian hilation operatorsh,,, while B! is the creation operator
3ot B _, which takes theR. system, for anyv, from the ground

H = f d’x ¢ (x) <_%V >¢(X) state withNV atoms to the ground state with + 1 atoms.
! The condensate wave functiondg(x), and this satisfies

+ E]‘PX] Ax'pTx)yt(x') the Gross-Pitaevskii equation
h2

X u(x — x)p(x")p(x) —%szzv + Vrén + NuléylPéy = pvén.  (3)
+ ] Ax V)T x)p(x). (1)  The amplitudes;,(x), g, (x) are for creation and destruc-

tion of quasiparticles of energgy;, and are fully defined

The potential functioni(x — x') is as usual not the true jn [10,13], but will not play any significant part in this
interatomic potential, but rather a short range potential— etter.

approximately of the formus(x — x")—which repro- In this number-conserving Bogoliubov method, the
duces the correct scattering length [11]. atomsare conserved, while the quasiparticles are mixtures

We divide the condensate into two regions calledof phononstates, and these phonons relate to the process
the condensate band&kc, and thenoncondensate band

Ryc, as in Fig. 1. We treaRyc as being thermalized,

representing the majority of the atoms as a heat bath
which provides the source of atoms for condensate
growth. The condensate band is the region of energy

levels less than a valuEg, which includes not only the Ryc
ground state, in which the condensate forms, but also

those levels which would be significantly affected by the Ep X ]
presence of a condensate. [12] In the noncondensate \ /

band, with energy levels greater thd, there is no Re

significant such effect.
The behavior in Rc is treated fully quantum-
mechanically, and a description in terms of trap levels
modified by the presence of a condensate is used. Atany FIG. 1. The condensate and noncondensate bands.

0031-900797/79(10)/1793(4)$10.00  © 1997 The American Physical Society 1793



VOLUME 79, NUMBER 10 PHYSICAL REVIEW LETTERS 8 BPTEMBER 1997

of transferring an atom from an excited quantum state t@V, large and small, since for sma¥l andu the results are

the condensate level. Thus, the operatafsh,, do not  not significantly different from perturbation theory.

change the total numbers of particles, while the operator Using quantum kinetic theory [10] it is possible to derive

B, which multiplies everything else in (2), reduces thea simple master equation for the density operatevhich

total number of particles by 1. describes the state of the condensate. The main processes
The process we wish to describe is as follows: (i) Someare caused by an atom scattering into or outRef and

of the collisions inRyc will transfer an atom toRc, this can occur in six ways; that i& — N = 1 with no

so thatV — N + 1, and there is of course the reversechange in the number of quasiparticles, the creation of a

process where a collision of a noncondensate band atoquasiparticle, or the absorption of a quasiparticle.

with one within the condensate band transfers an atom The six transition probabilities can now all be written

from the condensate band into the noncondensate band, soterms of the function®* as

that N — N — 1. (ii) We consider a situation in which WH(N) = R*(én, un/H), (€]
there is initially no condensate; however, the boundary _ -
betweenR. and Ryc is fixed to be appropriate for the Wo(N) = R (En1, -1/ 1), ©)
amount of condensate which fimally formed. (iii) By WEH(N) = R (fo. (e + un)/H), (6)
evaporative cooling, the chemical potential of the atoms in __ - .
Ryc becomes non-negative; this is permissible provided Wy (N) = R (fu. (e + pn-1)/0), (7
the chemical potential does not exceed the lowest energy WE=(N) = R" (g, (—en + un)/h), (8)
Egr of Ryc. (iv) With a weak interaction potentiad, the 4 - om
Bogoliubov spectrum and wave functions are validdtir Wy, (N) = R (gm. (—ey—y + py-1)/R). (9)
| The functionsR *(y, ») are defined by
R+(y,a)) wa d X[ dar A(F,a))Fle(l + F3)Wy(X,k), (10)
2
R (y, ) =”—2] d3x] dT AT, 0)(1 + F)) (1 + F2)F3W,(x,k), (11)
Qm)Sh ’
where we will use the notation | noncondensate atom density @g€rof phase space, and
dl' = &°K d’°K,d’K3d°k | (12)
= + —
Ao = e e T T Awis(x) = wk, (x) + wk,(x) — wk,(x)  (15)
(13) with
Here we use the notation 2K2
1 3 *< V> ( V) kv fiwg(x) = + Vr(x). (16)
' = + — - —
Wy (x, k) PImE ] d’vy'(x 5 X )¢ 2m

(14)  We can write a stochastic master equation for the occupa-
to represent the Wigner function corresponding to theion probabilitiep(N,n), wheren = {n,}, the set of all
wave functiony(x). The functionF; = F(K;,x) is the | guasiparticle occupation numbers, in the form [14]

p(N,n)=2NW* (N —D)p(N — 1,n) —2(N+ DW(N)p(N,n) + 2(N + DW (N + )p(N + 1,n) —2NW ~(N)p(N,n)

+ D20, W, (N = Dp(N — 1,n — e,) — 2(n, + DW,S ¥ (N)p(N,n)]
+ > [20n, + DW,, (N + Dp(N + 1,n + e,) — 2n,W,,” (N)p(N,n)]
+ D20, + DW,. (N — Dp(N — 1L,n + e,,) — 20, W, (N)p(N,n)]

+ > [2n,W,,"(N + Dp(N + 1,n — e,) — 2(n,, + DW,, " (N)p(N,n)]. (17)

Heree,, = {...0,0,1,0,0,.. .} has its only nonzero value at the position corresponding to the imdex

We can interpret function®*(y, w) as forward and backward collision rates for those collisions which result in a
particle entering ) or leaving (~) the condensate with an energy. The collision must also take place in a position
where the condensate Wigner function is nonzero. The terms in (17) representing transitions to the ground state of the
condensate exhibit a stimulated increase in collision rate of approximaitelyhich can be a number up t®’, but
the transition probabilitie®/ = defined in (6)—(9) are multiplied only by,,, which does not become large. Thus as an
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initial approximation we drop the quasiparticle terms,occupied) is in contact with a bath of noncondensed
which are smaller by a factor @f, and are thus negligible atoms. If (23) is used alone, it describes a situation in
for most of the condensation process. We note that therhich the thermal bath is not depleted as the conden-
condensate wave function is in practice sharply peakedate evolves. A very simple form for the differential
atx = 0 by comparison with the phase space distributionequation can be given in this case by using (22), to-
function F(K, x), and thus replace wherever it occurs by gether with a harmonic trap potentigf(x) = m(w?2x* +

0, except inW, (x,k), whose integral gives the space wjy* + w;z?)/2, and the Thomas-Fermi approximation
condensate probability densitgy(k)[>. We finally get Uy = (15Nuwxwywzm3/2/16m/§)2/5 [with, however, a
the simple master equation which consists of only the firsfinear interpolation asv — 0 to give the correct nonin-
line of (17), and in which the transition matrix elementsteracting value ofu(0) = /(w, + w, + w;)/2] yields a

take the simplified form differential equation which can be easily integrated nu-
N u? merically. We present solutions for the parameters of
WT(N) :Wf dUA[T, w(N)/ K] the original rubidium [1] and sodium [2] experiments in
. ) Fig. 2. In both cases there is a latency time during which
X FiFy(1 + F3)lén(®)I%, (18)  the condensate is initiated by the spontaneous term [the
B u? last term inside the curly brackets in (23)], after which
W= (N) = Wf dUA[T, uw(N)/h] the stimulated term [the term proportional 1 inside

- ) the curly brackets in (23)] takes over, causing a rapid
X (1 + F)(1 + F)Fslén(K)I°. (19)  growth until saturation sets in when the condensate chemi-

The evaluation oW = can be done in various degrees of cal potentialu, approaches the chemical potentialof

approximation; we shall take here a thermRal- with the bath.
F(K,x) = [eli@ktVi=—p/kT _ 1771 (20) The time scales for th(_e growth of the. condensate are of
the same order of magnitude as experimentally observed,
from which one easily obtains [choosiftg(0) = 0] although no measurements have been published. In com-
WH(N) = e mI)/KTy=(N) (21)  paring with experiment, one should bear in mind that this

treatment (i) neglects fluctuation effects and (ii) neglects
e quasiparticle effects. Inclusion of these should not
hange the growth curve in the region whatés substan-
?ially larger than 1, but could possibly speed up the process
which the first 100 or so atoms enter the condensate.
The solutions in Fig. 2 assume thatandT, the chemi-
al potential and temperature of the bath of noncondensed
atoms, are constant. They nevertheless exhibit the funda-
mental nature of the process of condensation. For a treat-
ment more appropriate to comparison with experiment,
one must couple the condensate growth equation (23) to
ppropriate time development equations for the process
of evaporative cooling, such as those of [15—-17]. There
re three principal time scales in the problem; the time
scale of equilibration of the noncondensate “bath,” which
is very fast, the time scale of condensate growth, as given
by solutions of (23), and the time scale of the evaporative

which indicates that a steady state is reached at lar
N when the chemical potential of the condensate almos
equals that of the noncondensate. (Inclusion of th
smaller terms in the master equation also shows that t
temperatures oRc- and Ryc are equal in equilibrium.)
Evaluation of W* can be done by taking the energy .
range ofR¢ to be negligible compared to that 61K, 0),
and by taking the range df to be small compared to
that of K in F(K,0). We also approximate the Bose
function (20) by its Boltzmann equivalent for most of
the range of integration since the integrals can then b
evaluated analytically; however, this is a purely technica
issue, which does not affect the essence of the result
(However, a fully quantum mechanical treatment coul
increasew ™ by about an order of magnitude). Using
u = 4mah?/m, wherea is the s-wave scattering length,

we get cooling process, which is in practice considerably slower
W) = 4m(ak3T)2 ezﬂ/kr[Mm(M)} (22) than both of the others. Under these conditions one would
mh kT kT
Here K(z) is a modified Bessel function. Notice also
that the prefacto#m(akT)?/mh* is essentially the elastic 2500 6:10°
collision ratepov, where the quantities are evaluated at (a) s ()
the critical point for condensation. Under the assumption § 2000 4
that the majority of the atoms are in the condensate, thes 1% 3
major behavior of the master equation (17) is given by § 1000 Rubidium 2 Sodium
the rate equation for the mean number of atoms in theZ soo 1
condensate (written as), 0 0
n= 2W+(n) [(1 - e{'unilu}/kT)n + 1] (23) ° Time?n seconds 0 ° Tim(:'zufseconds 02

Since (21) has been used, this represents a situatigng. 2. Condensate growth for (a) rubidium and (b) sodium.
in which a condensate (which may be initially un- Scattering lengths ar®71 and2.75nm, respectively.
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expect that a model in which the noncondensate bath digo into the mode with the highest gain, even if it is only
tribution function is considered to be always thermalizedmarginally the highest gain.
for particles below the “cut” energy, which we shall call One can also conclude that adaptations of the conden-
nkT, and is zero above this cut energy would be valid.sate growth equation for different configurations of the
Provided the cooling process is slow enough, we can useoncondensate bath will prove a useful tool in the even-
(21) with the resulting time-dependeiit and & (values tual design of an atom laser, or “Boser.”
appropriate to the truncated distribution), after modifying This work was supported by the Marsden Fund under
the evaporative cooling equations to take account of theontract number PVT-603, and by Osterreichische Fonds
transfer of particles and energy between condensate ardir Férderung der wissenschaftlichen Forschung.
noncondensate.
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