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Hydrodynamic Interactions May Enhance the Self-Diffusion of Colloidal Particles

K. Zahn,* J. M. Méndez-Alcaraz,† and G. Maret
Institut Charles Sadron, 6 rue Boussingault, 67083 Strasbourg, France

(Received 27 March 1997)

We report experimental evidence for an enhancement, due to the hydrodynamic interactions (HI), o
the self-diffusion functionDsstd of colloidal particles at intermediate and long times. Monolayers
of paramagnetic polystyrene spheres confined to an air/water interface are studied using digita
videomicroscopy. The interparticle potential tuned by an external magnetic field is accurately calibrated
by comparing measured radial distribution functions with computer simulation results. This allows one
to separate the effects of HI onDsstd from those of the direct interactions. [S0031-9007(97)03503-5]

PACS numbers: 82.70.Dd, 05.40.+j, 47.15.Pn, 61.20.–p
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During the last decades, the interest in the physical pro
erties of colloids has grown tremendously because of th
widespread technological applications and the availab
ity of both calibrated model particles and new experime
tal techniques to study their static and dynamic propert
[1,2]. Since the stability of colloidal suspensions aris
from the combined action of Brownian motion, direct in
teractions (DI) between particles, and hydrodynamic inte
actions (HI) mediated by the solvent, a major challen
is to understand the nature of these forces and to desc
their effects on the statics and dynamics of the suspens

While Brownian motion of free particles is well under
stood, the dynamics of colloidal particles is much mo
complex when DI and HI become important. Many ex
periments and theories have focused on sterically sta
lized suspensions (e.g., silica spheres) modeled as h
spheres and on charge stabilized suspensions (e.g., p
styrene spheres) modeled as suspensions of Yukawa
ticles. In hard spheres the diameters of the particles
is the only interaction parameter; it is accurately dete
mined by measuring the diffusion coefficientkBTy3phs,
in very diluted suspensions,h being the solvent viscos-
ity. Then, the effects of HI on the self-diffusion func
tion Dsstd can be isolated from those of DI; they ar
always found toslow downthe self-diffusion of colloidal
particles [3]. However, when the interaction potential
long range, different effects due to the coupling betwe
the solvent velocity field and the interparticle interaction
appear. Recent calculations have shown that the sh
time [4] and long-time [5] self-diffusion coefficient of
hard spheres may increase by putting charges on the
ticles. However, in charge stabilized suspensions the
teraction potential remains a matter of debate [6] and
experimental determination of the interaction paramet
is subject to large uncertainties. Therefore, in this kind
system it was impossible so far to separate the influen
of HI and DI onDsstd.

Introducing a new colloidal model system, where th
interaction parameters are determined with high accura
and can be changedin situ in a simple and reversible
manner, we were able to study the effects of HI onDsstd
0031-9007y97y79(1)y175(4)$10.00
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directly and found first experimental evidence of how H
can help colloidal particles to diffuse faster. In additio
this effect is qualitatively accounted for theoretically.

Our system is composed of paramagnetic polystyre
spheres (s ­ 4.7 mm) suspended on the water/air inte
face of a water drop pending from a glass plate [7,
The drop is confined by a hollow glass cylinder, which
glued onto the plate, of 8 mm inner diameter and 1 m
height. To provide a flat interface the curvature of t
water/air interface is adjusted by computer controlling t
drop’s content of liquid using a micrometrical syringe [9
A difference less than1 mm in the height of the inter-
face between the center and the border of the drop
be reached. The experiments have been performed in
center of the drop, and no appreciable changes (,1%) on
the particle concentration could be observed. In additi
it is easy to show that both the amplitude of capilla
waves of the interface and thermal fluctuations of the v
tical position of the particles are of the order of nanom
ters (the mass density of the particles is1.7 gycm3). In
this sense our samples are almost ideal two-dimensio
(2D) systems.

The particles are superparamagnetic due to Fe2O3 dop-
ing [10]. Therefore an external magnetic fieldB perpen-
dicular to the interface induces a magnetic dipole mom
M on the spheres, which for the weak field intensities
our experiments is related toB by M ­ xeffB. Here,xeff

is the effective magnetic susceptibility of the particle
The interaction potential between two particles due to
induced moments isusrd ­ sm0y4pd M2yr3, r denoting
the distance between their centers. Turning off the fie
the particles are occasionally observed to collide. The
fore, at contact the screened electrostatic interactions
of orderkBT . The van der Waals forces are of the sam
order, because the thermal energy is able to separate
ticles in contact. Finally, since the particles are close
an interface, we have to consider surface tension forc
If the particles are not completely wetted, the contact
gle between their surface and the interface introduces
additional force due to the Laplace pressure. Howev
by adding0.5 mgycm3 of a surfactant, complete wettin
© 1997 The American Physical Society 175
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is obtained. Finally a simple estimation reveals that th
weak deformation of the interface due to the weight of th
particles can also be neglected. Thus our system is e
tirely controlled by magnetic dipole interaction.

Our samples were studied using digital videomicros
copy. An optical microscope is placed above the samp
and images are monitored by means of a CCD came
From the filmed configurations, particle coordinates ar
extracted and both radial distribution functionsgsrd
and mean square displacementskfDrstdg2l calculated.
Typically about103 particles were observed in a square
box of 520 3 440 mm2, and statistics were gathered
for about 102 configurations. The time step between
two successive pictures was chosen between 3 and 5
depending on the number density of particles. Given
valueD0 . 0.1 mm2ys of the self-diffusion coefficient, a
time step corresponds to a mean displacement of the p
ticles of ø 1 mm , which approximately equals the latera
optical resolution. In the following,D0 denotes the self-
diffusion coefficient at high dilution. We foundD0 ­
s1.08 6 0.02dkBTy3phs, which is slightly higher than
the value expected from the Stokes-Einstein equatio
This difference, characterized bya ­ 1.08, is due to
the proximity of the particles to the interface since th
diffusing particles have to push less solvent as compar
to the three-dimensional (3D) case.

The particle motion can be described by the generalize
Smoluchowski equation. Since our systems are 2D on
regarding the motion of the colloidal particles (the solven
can move in all directions), it seems necessary to consid
this equation in its 3D form. However, it is straightfor-
ward to show that its 2D version becomes correct, if th
components of the 3D diffusion tensors are used as inp
for the elements of the 2D diffusion tensors. Furthermor
following Ermak and McCammon [11], the generalized
Smoluchowski equation can be rewritten as the stochas
finite differences equation

rist 1 Dtd ­ ristd 1 b

NX
j­1

Dij ? fjstdDt

1 =j ? DijDt 1 dri , (1)

provided the time stepDt is restricted totB ø Dt ø tI ,
where tB and tI are, respectively, the momentum and
structure relaxation times. Here,ristd is the position
vector of particlei at the timet, Dij the diffusion tensors,
fjstd the instantaneous force acting on particlej due to DI,
dri the Brownian random displacement due to solven
particle interactions, andb ­ 1ykBT . The Cartesian
components ofdri are random variables with a2N-variate
Gaussian distribution with zero means, and covarianc
matrix kdridrjl ­ 2DijDt. In our simulations, we apply
this algorithm neglecting HI, i.e., replacingDij by D0dij.
We allow 900 particles to move according to Eq. (1) in
a square box with periodic boundary conditions, usin
Dt ­ 1024 snD0d21, wheren is the 2D number density
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of particles. After equilibrium is reached, statistics wer
gathered for typically20 000 time steps.

At this point, it is useful to make the following
comments. Equation (1) produces the samegsrd, in-
dependent of the input forDij , since HI do not affect
the static structure. Thusn21y2 is the natural structure
scale of our systems. As a consequence, all syste
with the same value of the scaled interaction amplitu
G ­ bsm0y4pdx2

effB2n3y2 have the samegsrd, when
plotted vsrn1y2. Therefore, Eq. (1) will depend only im-
plicitly upon n throughDij andG, if tI ­ 1ynD0 is used
as the natural time unit of the systems. Thus, if HI a
neglected (Dij ­ D0dij) all normalized self-diffusion
functions DsstdyD0, with Dsstd ­ kfDrstdg2ly4t, corre-
sponding to the same value ofG should be represented by
one master curve, when plotted vsnD0t. Any deviation
from this scaling law inDsstdyD0 is imputable to HI.

Figure 1 showsgsrd vs rn1y2 for two different systems
with the same densityn, but different values ofB. The
full circles are simulation results obtained by fitting th
height of the first peak of the experimentalgsrd’s (lines),
using G as fitting parameter. Excellent agreement b
tween simulation and experiment is observed, indicati
that the magnetic dipole potential largely dominates t
interaction and suggesting that the fitted values ofG, 8.2
and 1.44, are correct. While the accuracy ofG can be
improved by exploiting more configurations in the ave
aging, the statistical errors in Fig. 1 are already smal
than the size of the circles. In the inset of Fig. 2 the fitte
values ofG are shown as a function ofB for four differ-
ent values ofn. If the abscissa is rescaled plottingB2n3y2

(main body of Fig. 2), all curves collapse onto a mast
curve, proving the expected relation amongG, n, andB
to hold over the entire range ofG, i.e., over 2 orders of

FIG. 1. Experimental pair correlation functionsgsrd of super-
paramagnetic colloidal particles in 2D and their simulation fi
obtained by adjusting the scaled interparticle potential amp
tudeG (see text). For reasons of clarity the curves correspon
ing to G ­ 1.44 are represented only forrn1y2 , 4, n being
the particle number density.
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FIG. 2. In the inset the fitted values ofG are represented as a
function of the magnetic fieldB, for four different densitiesn.
If the abscissa is rescaled plottingB2n3y2, all curves collapse
to one master curve, proving the expected scaling behav
G ~ B2n3y2.

magnitude. A linear fit was used to determine the effe
tive susceptibilityxeff ­ s7.62 6 0.2d 3 10211 A m2yT,
which is in agreement with independent results from ma
netophoresis experiments [9].

Figure 3 displaysDsstdyD0 vs nD0t for three samples
with different densities, but for the same valueG ­ 8.2
(symbols), obtained experimentally by adjusting the ma
netic field for givenn. The corresponding simulation re
sult (line) was obtained using the same value ofG as in
the experiments. First we note that the decay timet of
Dsstd is much smaller thantI , since the particles almos
instantaneously feel each other due to the long range
ture of DI. Therefore, the long- and short-time regime
have to be determined with respect tot, and not totI . It
is in this sense that we speak of measurements ofDsstd
at short (tB ø t ø t) and long (t ¿ t) times. Within

FIG. 3. Normalized self-diffusion functionDsstdyD0 in three
samples with different densities, but at the same value ofG.
The corresponding computer simulation results are also sho
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experimental error (comparable to the size of the sy
bols in Fig. 3), the short-time, self-diffusion coefficien
Dsst ! 0d of all studied systems has been observed
agree withD0. However, a strong discrepancy betwee
experiment and simulation is observed for intermedia
and long times. As discussed earlier, this must be d
to HI. All experimental curves lie above the simulation
and, in additionDsst . 0dyD0 increaseswith n. This
observation is in contrast to earlier experiments on h
spheres systems, where HI are always found toslow down
self-diffusion [3].

In order to explain the above discrepancy, let
note that the curves forDsstdyD0 in Fig. 3 never cross.
Therefore, the smaller the value of the initial slop
of Dsstd, D0

ss0d ­ fdDsstdydtgt­0, the larger the value
of Dsst . 0d. Thus, although we do not have at th
moment a theory forDsst . 0d, we can make qualitative
predictions fort . 0 using theoretical schemes fort ­
0. Specifically, from a moment expansion of the aut
correlation function att ­ 0 [2], we have

Dss0d ­ 2
1
q2 ms1d

s sqd ,

D0
ss0d ­ 2

1
2q2 hms2d

s sqd 2 fms1d
s sqdg2j ,

(2)

whereq is the scattering vector and

ms1d
s sqd ­ 2kqaqbDab

11 l ,

ms2d
s sqd ­ kqaqbqcqdDab

11 Dcd
11 1 qbqds≠c

j Dab
i1 d s≠a

i Dcd
j1 d

1 bqbqdDab
i1 s≠a

i ≠c
j UdDcd

j1 l , (3)

are the first and second moments. Here, the indicessi, jd
are running over particles andsa, · · · , dd over Cartesian
components. The sum convention for repeated indi
is applied, andU is the total interaction energyU ­
1
2

PN
i,j­1 sifijd usjri 2 rjjd. In order to evaluateDss0d and

D0
ss0d, it is necessary to obtain an input forDij . The effect

of the interface on the velocity field of the solvent ca
be described by replacing the real system by an isola
smectic layer of dumbbells in 3D. These dumbbells, ma
of two spherical particles at contact, connected throu
their centers by an axis perpendicular to the layer,
confined to move in the layer plane. The underlyin
physical idea is that the water/air interface reflects t
flow field of the solvent [12]. Therefore, we take fo
Dij in our equations the corresponding expression
dumbbells obtained in an infinite 3D space, which can
written as

Dab
ij ­ D0dab

ij 1 dij

NX
k­1

s1 2 dikdAab
ik 1 s1 2 dijdBab

ij .

(4)

The tensorsAab
ik andBab

ik are known as expansion in pow
ers ofssyrd. For dilute systemsBab

ik can be approximated
177
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by the Oseen tensor and the first term ofAab
ik is of order

ssyrd4 [4]. Thus, to leading order inssydd we find

Dss0d
D0

­ 1 2
15
64

p

a

µ
s

d

∂4 Z `

0
dr

gsrd
r3

,

D0
ss0d

nD2
0

­ 2
9pG

2

Z `

0
dr

gsrd
r4

1
63
8

pG

a

s

d

Z `

0
dr

gsrd
r5

,

(5)

wherer is scaled withd ­ n21y2. Strictly speaking,s as
appearing in the second term ofDss0dyD0 is an effective
dumbbell diameter, but since we are only interested in t
order of magnitude of this correction we use the diame
of our spheres. For highest particle concentrations (d .
3s) Dss0dyD0 is lowered by approximately 1%. This
is well below the experimental error and, consistentl
we found no dependence ofDss0d on the density. The
first term in D0

ss0dynD2
0 , which has its origin in the

DI, predicts a drastic decrease ofDsstd as a function
of t. The second one represents a correction—in t
opposite direction—due to the coupling between HI an
DI; i.e., it leads to an increase ofDsstd, as compared
to the case without HI. As the latter scales withsyd,
an enhancement ofDsstd is observed with increasing
density. The bars in Fig. 4 represent the initial slop
D0

ss0dynD2
0 of several experimentalDsstdyD0 curves

with n ­ 1.86 3 1023 mm22, for different values ofG.
D0

ss0dynD2
0 is determined by a fit based on the simpl

exponential approximation [13] and compared to Eq. (
with HI (circles) and without HI (squares). These resul
show that the Oseen approximation for HI describ
qualitatively well the experimental curves.

To give an intuitive picture for the enhancement o
Dsstd, let us note that the Oseen tensor, which determin
the HI correction toD0

ss0dynD2
0 in Eq. (5), corresponds to

a tensor field which acts in the direction of motion of th
particles. Thinking in terms of field lines, it is easy to

FIG. 4. Initial slope D0
ss0dynD2

0 of the normalized self-
diffusion function of several experimentalDsstdyD0 curves
with n ­ 1.86 3 1023 mm22, for different values ofG. They
are compared to theoretical results with HI (circles) and witho
HI (squares).
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see that the flows induced on the solvent by the tracer wi
push away the particles in front of it. On the other hand
the particles behind it will experience a drag and be pulle
closer by. The first effect opens a “window” through
which the tracer can diffuse, and the second one provide
additional momentum on the tracer in the direction of its
motion. Thus the Oseen term leads to an increase of th
self-diffusion. The fundamental difference between ou
systems and the suspensions of hard spheres is the struct
scaled. In contrast to our systems, whered ¿ s, d is
comparable tos in hard sphere suspensions. Thus, the
termAab

ij (~ ssydd4), which determines the short time self-
diffusion Dss0d, is negligible in our case, while for hard
spheres it significantly lowersDss0d. As a consequence,
we observe an overall enhancement of the self-diffusio
due to HI, in contrast to hard sphere systems.

In conclusion, introducing a novel 2D colloidal model
system where the direct interparticle interaction is ab
solutely calibrated and controlled over several orders o
magnitude, we were able to evaluate quantitatively th
role of the hydrodynamic interactions on the self-diffusion
function. This system also opens the possibility to probe
experimentally the accuracy of integral equation theorie
of simple liquids.
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