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Ultrametric Structure of Multiscale Energy Correlations in Turbulent Models
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The ultrametric structure of the energy cascade process in a dynamical model of turbulenc
studied. The tree model we use can be viewed as an approximated one-dimensional truncati
the wavelets-resolved Navier-Stokes dynamics. Varying the tree connectiveness, the appearan
a scaling transition in the two-point moments of energy dissipation is detected, in agreement
experimental turbulent data. [S0031-9007(97)03998-7]
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Spatiotemporal intermittency is the most intriguing a
pect of a fully developed three-dimensional turbulent flo

Experiments [1] show that the energy dissipation d
fines a multifractal measure on the fluid volume. T
multifractal measure is characterized by the scaling pr
erties of the coarse-grained energy dissipation on a bo
scaler , ´r , namely,kf´rsxdgpl , rtspd, wherek?l means
averaging over all boxes of sizer and centered inx in
which the volume can be partitioned. The measuredtspd
exponents show a clear intermittent behavior, i.e., a n
linear dependency on the order of the momentp.

The simplest way to explain phenomenologically t
presence of intermittent deviations consists in describ
the energy transfer mechanism in terms of fragmenta
stochastic processes. In these models (see [2] fo
recent proposal), one introduces a set of eddies lea
on a dyadic structure and connected through a rand
multiplicative process.

Let us remark that all stochastic fragmentation mod
so far proposed lack any direct linking with the origin
Navier-Stokes (NS) equations. Dynamical determinis
models on hierarchical structures are therefore invo
for improving our understanding of the energy trans
mechanism.

In this paper, we study dynamical models which fill th
gap between purely stochastic fragmentation models
the original NS dynamics. In particular, we consider
dynamical model on one-space and one-time dimens
[3]. One can look at this model as an approximation
the original NS equations in a wavelets basis [4–6].

In order to specify the model one has to sele
the set of interactions connecting eddies at differ
scales and at different spatial locations. By chang
the interactions set, one changes the scale organiza
of energy structures: in order to study it, new too
are required [7], which characterize intermittency mo
completely than the multifractal spectrumtspd alone.
An obvious generalization of the single-point statist
is to inquire about the scaling of two-point moments.
0031-9007y97y79(9)y1670(4)$10.00
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practice, introducing the mixed moments,

kf´rsxdgqf´lsx 1 sdgpl , (1)

one can study correlations between different scales
changingr and l and/or correlations between differen
points in the fluid volume by changings.

Different interactions among nodes of the hierarchic
dynamical structure can lead to very different predictio
for the scaling behavior of (1).

An ultrametric organization of the tree can be detecte
by looking for a phase transition in the set of scalin
exponents characterizing correlations (1). An ultrametr
space (see [8] for a review) is defined as a metric spa
endowed with a distancedsa, bd satisfying the inequality
dsa, cd # maxsssdsa, bd, dsb, cdddd. It is simple to see that
a multiplicative cascade process is characterized by
ultrametric organization. Indeed, let us consider tw
eddies of scale sizeln ­ 22nL0 (L0 being the integral
scale), and let us assume that the two eddies have
smallest common “ancestor” (in terms of the cascad
process) of scalelm; that is,lm is the size of the smallest
eddy containing the two eddies at scaleln. Then, by
defining the distance as log2slmylnd, one can easily see
that the ultrametric inequality is verified.

In [7] the analysis of the two-point observables (1
performed on experimental turbulent data gave a fir
support for an ultrametric organization of the main triadi
interactions in Navier-Stokes equations.

In the following, we are going to analyze the same kin
of observables measured on a direct numerical integrati
of a dyadic-tree model for turbulent energy cascade.
particular, by changing the set of interacting triads w
want to disentangle the basic symmetries behind t
transition observed in real turbulent data.

Let us turn to a brief review of the model (for a
comprehensive description see [3]). The tree model c
be viewed as an extension of shell models, which can
seen as a severe truncation of the NS equations (see [9]
a general introduction). The most popular shell model
© 1997 The American Physical Society
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the Gledzer-Ohkitani-Yamada (GOY) model ([10]–[15]
Recently, a new class of shell models based upon
helical decomposition of NS equations [16] has be
suggested [17] and studied [18,19]. In these models,
or few complex variablesun represent an entireshell of
wave numbersk such thatkn , k , kn11, with kn ­ 2n.
Shell models can be thought of as field problems in z
spatial dimension (d ­ 0). In order to include also some
real space dynamics we need to transform thechainmodel
into a treemodel withd ­ 1. This is achieved by letting
grow the number of degrees of freedom with the shell ind
n as2n. The tree model can be regarded as describing
evolution of the coefficients of an orthonormal wavele
expansion of a one-dimensional projection of the veloc
field. In the tree model, we use the notationu6

n,j to indicate
a complex variable having positive or negative defin
helicity and living on scalekn and spatial position labeled
by the indexj. For a given shelln, the indexj can vary
from 1 to 2n21.

We report here the structure of the tree model dyna
cal equations (for more details, see [3]),

Ùu1
n,j ­ ikn

X
n1,n2,j1,j2

fan1,n2,j1,j2 u
s1
n1,j1

u
s2
n2,j2

gp

2 nk2
nu1

n,j 1 dn,n0F
1. (2)

Here, n ­ 1, . . . , N , where N is the total number of
shells,n is the viscosity,F1 the external forcing acting on
the large-scale shelln0 ­ 1, andan1,n2,j1,j2 are parameters
which are determined by imposing conservation of ene
and helicity in the inviscid and unforced limit. Thes1 and
s2 indices are the helicity signs (6) of interacting modes.
The same equations hold, with all helicities reversed,
u2

n,j.
In restricting the possible choices of the nonline

terms, we can phenomenologically require a certain
gree of locality for interactions among variables at diffe
ent scales and at different spatial positions. Regard
scale numbersn1 and n2, in our Eq. (2) each variable
u1

n,j is allowed to interact only with nearest and nex
to-nearest levels: indeed,n1 and n2 can vary only from
sn 2 2d to sn 1 2d. Regarding space numbersj1 and
j2, we define two different models having different top
logical structures of the dynamical interactions. The fi
model, hereafter called model A, is a model which h
anultrametric structure. That is, each eddy is allowed
interact only with bigger eddies which spatially conta
it and with smaller eddies spatially contained in it. Th
model is the natural dynamical representative of all s
chastic fragmentation models which phenomenologica
reproduce single-point intermittent exponents. The s
ond model, hereafter called model B, has an enlarged
teractions set containing also horizontal couplings, wh
allow eddies covering different spatial regions to intera
with each other. In Figs. 1 and 2, we pictorially show t
set of interactions defining models A and B.
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FIG. 1. Pictorial representation of interactions in model A:
this case the nonlinear terms in (2) result from the sum of pa
(a), (b), and (c) in the figure.

The single-point statistical properties of the tree mod
have been studied in [3]: in both cases A and
the system turned out to have an intermittent ener
transfer qualitatively similar to what one can find in th
original NS equations. The treelike structure impos
on the velocity fluctuations does not necessarily imp
that the energy dissipation can be described in ter
of fragmentation processes. In order to test the sc
organization of the energy structures, ultrametric-sensit
observables should be studied.

In order to compare our system with previous findin
[7], we shall detect possible ultrametric structure
the energy cascade of the tree model looking at tw
point statistical quantities. All parameter settings a
numerical methods are as in [3]. In particular, w
consider a total number of levelsN ­ 16: the total
number of sites forming the tree is thenNT ­ 2N 2 1 ­
65 535, each one described in terms of two comple
variables. Numerical simulations needed state-of-the
multiprocessor computers.

The fields we focus on are the coarse-grained ene
dissipation densities, here denoted asens jd, obtained as
averages over spatial regionsLjsnd of length 22n. We
consider the mixed moments (1) withr ­ l andp ­ 2q,
which in our notation become

k´q
ns jd´2q

n s j 1 sdl ; Cnsq, sd . (3)
1671
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FIG. 2. Pictorial representation of interactions in model B:
this case the nonlinear terms in (2) result from the sum of p
(a), (b), (c), (d), (e), and (f) in the figure.

The behavior of this quantity for intermittent ultrame
ric measures resulting from random multiplicative pr
cesses has already been analyzed in the framework o
two-point multifractal formalism [7,20]. In this case, th
average can be properly decomposed and a general r
can be obtained for its dependence on the spatial dista
s between the two points,

Cnsq, sd , sminf2ts2qd2tsqd,1g ; sFsqd. (4)

This expression implies that for some momentq, a
sharp transition occurs in the derivative of the scal
exponentFsqd. This scaling transition is the analog o
a phase transition in the thermodynamic interpretation
multifractals [21]. The behavior of (3) is dominated b
pairs of points at which the dissipation is very large
one point and very low at the other. This constitut
the subset of points that are likely to be independ
from each other and lie on the boundary of their bigg
predecessors. Indeed, it must be recalled that in
ultrametric structure nearby (in space) eddies could
on the boundaries of much bigger ones, then having
effective large ultrametric distance.

The two spatial scales of interest are the coarse-grain
scaleln ­ 22n and the offset scalels ­ lns: they should
be such thath ø ln ø ls ø LT , whereh and LT are
the Kolmogorov and integral scales, respectively. F
this reason, we fixedn ­ 11, in order to consider the
largest inertial scale in our tree structure, and we
1672
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s assume the exponentially spaced valuess ­ 2m, with
m ­ 1, 2, . . . , n 2 2. In order to test the presence o
a scaling transition, the mixed moments (3) have be
computed for0.5 , q , 4.

Figure 3 shows the mixed moments (4) as a functi
of s in log-log coordinates, for increasing values ofq and
for the two versions A and B of the tree model. Th
Fsqd exponents have been calculated by linear fit in t
inertial range region: they are reported in Fig. 4, whe
they are compared with the curvef2tsqd 2 ts2qdg,
obtained using the single-point moments exponents a
corresponding to the predicted form ofFsqd if the scaling
transition were absent. In the case A, the data supp
a sharp transition in the derivative ofFsqd at q , 1.5,
with a much slower variation ofFsqd for q . 1.5. This
transition is absent in case B.

We thus conclude that version A gives support for
scaling transition in the mixed moments of coarse-grain
dissipation. This result agrees with the experimen
behavior found in [7] (see Fig. 17 of this reference) usin
data measured in a turbulent wake. The physical pictu
implied by this scaling transition is that of uncorrelate
small eddies that come close together even sharing
common history during the energy cascade.

Let us summarize our results.
A dynamical model in one spatial dimension originatin

from a wavelets-like decomposition of a one-dimension
cut of a turbulent velocity field has been studied. We fou
that a scaling transition appears as soon as the tree h
pure ultrametric dynamical structure.

The fact that decreasing the number of triad intera
tions one can reproduce the real data scaling transit
observed in [7] may seem in contrast with the observ
tion that in the original Navier-Stokes equations all po
sible interactions are switched on. This contradiction
only apparent: divergenceless character of the original
field, added to complex phase-coherence effects, can v
easily introduce different dynamical weights in the po
sible triad interactions, leading to a situation where only
few of them govern the global dynamical evolution. Fo
example, Grossmann and co-workers showed [5,22],
performing suitable truncation of NS equations, that i
termittency depends on the typical degree of locality

FIG. 3. Log-log plot of mixed moments of order
q ­ 0.5, 1, 1.5, . . . , 4 (from bottom to top) against the
distances, for models A (left) and B (right).
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FIG. 4. The exponentsFsqd (solid circles) as a function ofq
for models A (left) and B (right). For comparison, the values
the functionf2tsqd 2 ts2qdg are also reported (open circles

Fourier space of the survived triad interactions; very sim
lar results have also been found in shell models at vary
the intershell ratiol [19].

Recently, some theoretical studies and experime
analysis have been done on multipoint multiscale veloc
correlation functions in turbulent flows [23]. Our dynam
cal investigation suggests that, in the presence o
strong ultrametric structure, correlations among veloc
fluctuations at different scales should depend on th
ultrametric distance rather than on the separation len
only, as predicted in [23].

These and similar studies performed on such kinds
models can improve our understanding of basic mec
nisms underlying turbulent cascade. For instance, i
important to recognize those interactions which are m
effective in the energy transfer mechanism when co
structing eddy-viscosity models and in simulating sm
scale statistics by some closure approach.
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