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Ultrametric Structure of Multiscale Energy Correlations in Turbulent Models
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The ultrametric structure of the energy cascade process in a dynamical model of turbulence is
studied. The tree model we use can be viewed as an approximated one-dimensional truncation of
the wavelets-resolved Navier-Stokes dynamics. Varying the tree connectiveness, the appearance of
a scaling transition in the two-point moments of energy dissipation is detected, in agreement with
experimental turbulent data. [S0031-9007(97)03998-7]

PACS numbers: 47.27.Eq

Spatiotemporal intermittency is the most intriguing as-practice, introducing the mixed moments,
pect of a fully developed three-dimensional turbulent flow. g »

Experiments [1] show that the energy dissipation de- (e, ) Leix + )17, (1)
fines a multifractal measure on the fluid volume. Theone can study correlations between different scales by
multifractal measure is characterized by the scaling propehangingr and [ and/or correlations between different
erties of the coarse-grained energy dissipation on a box aints in the fluid volume by changing
scaler, &,, namely,{&,(x)]?) ~ r""), where(-) means Different interactions among nodes of the hierarchical
averaging over all boxes of sizeand centered inx in  dynamical structure can lead to very different prediction
which the volume can be partitioned. The measurge)  for the scaling behavior of (1).
exponents show a clear intermittent behavior, i.e., a non- An ultrametric organization of the tree can be detected
linear dependency on the order of the moment by looking for a phase transition in the set of scaling

The simplest way to explain phenomenologically theexponents characterizing correlations (1). An ultrametric
presence of intermittent deviations consists in describingpace (see [8] for a review) is defined as a metric space
the energy transfer mechanism in terms of fragmentatioendowed with a distancé(a, b) satisfying the inequality
stochastic processes. In these models (see [2] for &(a,c) = max(d(a,b),d(b,c)). Itis simple to see that
recent proposal), one introduces a set of eddies leaving multiplicative cascade process is characterized by an
on a dyadic structure and connected through a randomltrametric organization. Indeed, let us consider two
multiplicative process. eddies of scale sizé, = 27"Ly (Lo being the integral

Let us remark that all stochastic fragmentation modelscale), and let us assume that the two eddies have a
so far proposed lack any direct linking with the original smallest common “ancestor” (in terms of the cascade
Navier-Stokes (NS) equations. Dynamical deterministigprocess) of scalé,; that is,/,, is the size of the smallest
models on hierarchical structures are therefore invokeéddy containing the two eddies at scdle Then, by
for improving our understanding of the energy transferdefining the distance as lg@,,/l,), one can easily see
mechanism. that the ultrametric inequality is verified.

In this paper, we study dynamical models which fill the In [7] the analysis of the two-point observables (1)
gap between purely stochastic fragmentation models angerformed on experimental turbulent data gave a first
the original NS dynamics. In particular, we consider asupport for an ultrametric organization of the main triadic
dynamical model on one-space and one-time dimensionateractions in Navier-Stokes equations.

[3]. One can look at this model as an approximation of In the following, we are going to analyze the same kind
the original NS equations in a wavelets basis [4—6]. of observables measured on a direct numerical integration

In order to specify the model one has to selectof a dyadic-tree model for turbulent energy cascade. In
the set of interactions connecting eddies at differenparticular, by changing the set of interacting triads we
scales and at different spatial locations. By changingvant to disentangle the basic symmetries behind the
the interactions set, one changes the scale organizatidransition observed in real turbulent data.
of energy structures: in order to study it, new tools Let us turn to a brief review of the model (for a
are required [7], which characterize intermittency morecomprehensive description see [3]). The tree model can
completely than the multifractal spectrum(p) alone. be viewed as an extension of shell models, which can be
An obvious generalization of the single-point statisticsseen as a severe truncation of the NS equations (see [9] for
is to inquire about the scaling of two-point moments. Ina general introduction). The most popular shell model is
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the Gledzer-Ohkitani-Yamada (GOY) model ([10]-[15]). S
Recently, a new class of shell models based upon the e n-2
helical decomposition of NS equations [16] has been o ' S - n-1
suggested [17] and studied [18,19]. In these models, one S e
or few complex variablesw, represent an entirshell of B s n
wave numberg such thatk, < k < k,+;, with k, = 2". e 2 e 2 n+1
Shell models can be thought of as field problems in zero n+2
spatial dimensiond = 0). In order to include also some @
real space dynamics we need to transformcti@nmodel e
into atreemodel withd = 1. This is achieved by letting el n-2
grow the number of degrees of freedom with the shell index =N o n-1
n as2". The tree model can be regarded as describing the . o " n
evolution of the coefficients of an orthonormal wavelets s o s e n+1
expansion of a one-dimensional projectiop of the velocity Judy 2
field. Inthe tree model, we use the notatigyy, to indicate
a complex variable having positive or negative defined (b)
helicity and living on scalé, and spatial position labeled o
by the indexj. For a given shelk, the index; can vary e n-2
from 1 to2" !, L{O e n-1
We report here the structure of the tree model dynami- L I
cal equations (for more details, see [3]), = - e "
S e 2 9 < 9 n+1
u;] = iky Z [a”h"le»izuzllJl u,Z]?]* - v O it O O | nez
ny,N02,j1,)2 «©
- sz%”;,j + 6,,,,,0F+. () FIG. 1. Pictorial representation of interactions in model A: in

. thi th li t in (2 It f th f t
Hore,n = 1....N, where N is the total number of (s (5% e nonlinear ems i (2) result from the sum of pats

shells,v is the viscosity F* the external forcing acting on
the large-scale shelly, = 1, anda,, ,, , ;, are parameters,
which are determined by imposing conservation of energy
and helicity in the inviscid and unforced limit. The and

s, indices are the helicity signs-() of interacting modes.

The single-point statistical properties of the tree model
have been studied in [3]: in both cases A and B,
; . L the system turned out to have an intermittent energy
Tb? same equations hold, with all helicities reversed, fO'fransfer qualitatively similar to what one can find in the
Un.j- original NS equations. The treelike structure imposed

In restricting the possible choices of the nonl!nearon the velocity fluctuations does not necessarily imply
terms, we can phenomenologically require a certain de;

ree of locality for interactions among variables at differ—that the energy dissipation can be described in terms
9 ty X nong val . of fragmentation processes. In order to test the scale
ent scales and at different spatial positions. Regardin

: ; grganization of the energy structures, ultrametric-sensitive
i allowed o imteract only with néarcst and next-CDServables should be studied
tug-’f'learest levels: indeed andyn can vary only from In order to compare our system with pr_evious findings
(n—2) to(n + '2) Reg’é\rding ?s,pace numbeys and [7], we shall detect possible ultrametric structure in

) : . i . the energy cascade of the tree model looking at two-
I]é’ ivc\:/:I 2‘;12;?;\'2 gl;f{ﬁ(reegt rrlg(r)r?iig ?n?\e"rg%t?ﬂirer%thfﬁg oint statistical quantities. All parameter settings and
mgdel hereafter called n)1/odel A, is a model Which has umerical methods are as in [3]. In particular, we

’ . o ) consider a total number of level& = 16: the total
anultrametric structure. That is, each eddy is allowed to

interact only with bigger eddies which spatiall containmm]b(_:‘r of sites forming the tree is thafy = 2% — 1 =
. only gge ) patially . 65535, each one described in terms of two complex
it and with smaller eddies spatially contained in it. This

model is the natural dvnamical representative of all S,[oyariables. Numerical simulations needed state-of-the-art
y P multiprocessor computers.

chastic fragmentation models which phenomenologically The fields we focus on are the coarse-grained energy

reproduce single-point intermittent exponents. The Se.célissipation densities, here denotede$ ), obtained as

ond model, hereafter called model B, has an enlarged méverages over spatial regioms (n) of length2". We

teractions set containing also horizontal couplings, Whic%onsider the mixed moments (1) with= [ andp = —
allow eddies covering different spatial regions to interac(NhiCh in our notation become p 7

with each other. In Figs. 1 and 2, we pictorially show the
set of interactions defining models A and B. (el(j)e, 1(j + 5)) = Culq,s). 3)
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s o s assume the exponentially spaced values 2™, with
o n-2 et n-2 m=1,2,...,n — 2. In order to test the presence of
E o nd o ool a scaling transition, the mixed moments (3) have been
s o om s A o on computed fol0.5 < g < 4.
§ % $ % n+1 S /\, P n+l Figure 3 shows the mixed moments (4) as a function
ni2 | HAGLAAA 042 of s in log-log coordinates, for increasing valuesqoéind
@ @ for the two versions A and B of the tree model. The
®(g) exponents have been calculated by linear fit in the
@ e inertial range region: they are reported in Fig. 4, where
e n-2 o n-2 they are compared with the curde-7(¢) — 7(—q)],
' n-1 /\ ° n-l obtained using the single-point moments exponents and
n g o oo corresponding to the predicted form@f(g) if the scaling
n+l T n+l transition were absent. In the case A, the data support
ne2 | ooge T m2 a sharp transition in the derivative di(q) at ¢ ~ 1.5,
(e) " with a much slower variation ob(g) for ¢ > 1.5. This
transition is absent in case B.
o o We thus conclude that version A gives support for a
a2 o e n2 scaling transition in the mixed moments of coarse-grained
n-1 o o & u nl dissipation. This result agrees with the experimental
N AN AN A behavior found in [7] (see Fig. 17 of this reference) using
el e+l data measured in a turbulent wake. The physical picture
o s implied by_ this scaling transition is that of uncorre!ated
) small eddies that come close together even sharing no
common history during the energy cascade.

FIG. 2. Pictorial representation of interactions in model B: in L€t us summarize our results. o _ S
this case the nonlinear terms in (2) result from the sum of parts A dynamical model in one spatial dimension originating

(@), (b), (c), (d), (e), and (f) in the figure. from a wavelets-like decomposition of a one-dimensional
cut of a turbulent velocity field has been studied. We found

The behavior of this quantity for intermittent ultramet- that a scaling transition appears as soon as the tree has a

fic measures resulting from random multiplicative pro-Pure ultrametric dynamical structure. -

cesses has already been analyzed in the framework of the 1 N€ fact that decreasing the number of triad interac-
two-point multifractal formalism [7,20]. In this case, the tions one can reproduce th_e real data s_callng transition
average can be properly decomposed and a general res@itServed in [7] may seem in contrast with the observa-

can be obtained for its dependence on the spatial distan&@N that in the original Navier-Stokes equations all pos-
s between the two points, sible interactions are switched on. This contradiction is

min[—r(—q)—r(g11] — D(g) qnly apparent: divergenceless character of the original NS
Culg,s) ~ s =5 (4)  field, added to complex phase-coherence effects, can very

This expression implies that for some momenta  easily introduce different dynamical weights in the pos-
sharp transition occurs in the derivative of the scalingsible triad interactions, leading to a situation where only a
exponent®(g). This scaling transition is the analog of few of them govern the global dynamical evolution. For
a phase transition in the thermodynamic interpretation oéxample, Grossmann and co-workers showed [5,22], by
multifractals [21]. The behavior of (3) is dominated by performing suitable truncation of NS equations, that in-
pairs of points at which the dissipation is very large attermittency depends on the typical degree of locality in
one point and very low at the other. This constitutes
the subset of points that are likely to be independent
from each other and lie on the boundary of their bigger
predecessors. Indeed, it must be recalled that in an
ultrametric structure nearby (in space) eddies could lie
on the boundaries of much bigger ones, then having an
effective large ultrametric distance.

The two spatial scales of interest are the coarse-graining
scalel, = 27" and the offset scalg = I,s: they should 100,020 40 60 80 100 220 20 40 60 80 100
be such thaty < I, < I, < Az, wheren and Ay are log,s log,s
the Kolmogorov r_:md integral_ scales, respecti.vely. Fokg. 3. Loglog plot of mixed moments of order
this reason, we fixed: = 11, in order to consider the ; —05,1,15,...,4 (from bottom to top) against the
largest inertial scale in our tree structure, and we letlistances, for models A (left) and B (right).
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