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Mean Field and Corrections for the Euclidean Minimum Matching Problem
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The minimum matching ofN random points ind-dimensional Euclidean space is a tractable model of
frustration with disorder. We use numerical simulations to obtain precise estimates of the ground-state
energy for2 # d # 10. We then consider the approximation where distance correlations are neglected.
This model’s solution leads to an excellent “random link” approximation atd $ 2. Incorporating three-
link correlations improves the accuracy, leading to a relative error of0.4% at d ­ 2 and 3. Finally,
we argue that the Euclidean model’s1yd series is beyond all orders of a link correlation expansion.
[S0031-9007(97)03532-1]
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There has been a tremendous amount of work on fru
trated disordered systems in the past twenty years,
part driven by the exact solution [1] of the Sherrington
Kirkpatrick spin glass model [2]. However, the relevanc
of this infinite range model to three-dimensional sho
range systems remains controversial [3,4]. Two of th
difficulties which have hampered attempts [5,6] to us
replicas in finite dimensions are: (i) for finite connectivity
systems, the saddle point equations involve the order p
rametersqabg··· with an arbitrary number of indices rather
than justqab [7]; (ii) in d-dimensional Euclidean space
the geometry introduces strong correlations among t
quenched bond variables because it selects which bonds
present. It is usually overlooked that these two obstac
have been overcome in a frustrated disordered system s
pler than a spin glass, the minimum matching proble
(MMP) [8]. For this problem, Mézard and Parisi have
treated the order parametersqabg··· exactly [9], and have
introduced an expansion [10] to take into account the cor
lations among the bond variables. In this Letter, we dete
mine the accuracy of their replica approach by comparin
with the actual properties of thed-dimensional Euclidean
MMP. First, we find that the relative error introduced b
the leading approximation for the zero-temperature ener
density is less than4% atd ­ 2 and3% atd ­ 3. Second,
the inclusion of the first Euclidean corrections reduces th
error by a factor of about10 atd ­ 2 andd ­ 3, showing
that the replica approach gives a quantitatively accurate d
scription of this system in finite and even low dimension
Third, we argue that the larged behavior of systems such
as the MMP and possibly spin glasses depends on arbitr
ily high order bond correlations and is thus beyond all o
ders of the expansion proposed by Mézard and Parisi [1

ConsiderN points (N even) and a specified set of link
lengthslij ­ lji separating the points, for1 # i, j # N .
One defines a matching (a dimerization) of these points
combining them pairwise so that each point belongs to o
and only one pair. Define also the energy or length of
matching as the sum of the lengths of the links associat
with each matched pair. The minimum matching proble
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is the problem of finding the matching of minimum energ
The constraint of having a dimerization introduces frustr
tion as in general all points cannot be paired to their near
neighbor. One can also consider the thermodynamics
this system, as proposed by Orland [11] and Mézard a
Parisi [12], by takingall matchings but weighting them
with the Boltzmann factor. Here we concentrate on t
T ­ 0 properties because exact ground states can be
tained for any given instance of sizeN using on the order
of N3 steps [13].

Physically, one is not interested in the properties of a
particular instance of the MMP; more relevant are typic
and ensemble properties such as the average energy w
the lengthslij are random variables with a given distri
bution. One then speaks of the stochastic MMP. The
are two frequently used ensembles for thelij, correspond-
ing to the EuclideanMMP and therandom link MMP.
In the first, theN random points lie in ad-dimensional
Euclidean volume and thelij are the usual Euclidean dis
tances between pairs of points. The points are independ
and identically distributed, so one speaks of a random po
problem. In the second ensemble, it is the link lengthslij

which are independent and identically distributed rando
variables. A connection between these two systems w
first given by Mézard and Parisi [9]: they pointed out th
the one- and two-link distributions could be made identic
in the two problems. A consequence is that the Cayley t
approximation for the random point and random link pro
lems are the same. Mézard and Parisi were able to so
the random link MMP using an approach based on replic
[9,12]. One may then consider the random link MMP to b
a “mean field model” for the Euclidean MMP. The mea
field approximationconsists of using the thermodynami
functions of the random link model as estimators for tho
of the Euclidean model. Hereafter we shall refer to it
therandom link approximation[14]. Finally, Mézard and
Parisi have shown how to derive corrections to the rand
link approximation using an expansion in link correlation
In [10], they have computed the leading corrections, as
ciated with the triangle inequality in the Euclidean mode
© 1997 The American Physical Society 167
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How accurate are these approximations? To answer th
we first give our numerical results for the Euclidean MMP
and then compare with these analytical predictions.

In the Euclidean MMP, letLE
MM be the energy or length

of the minimum matching. Taking the points to be inde
pendent and uniformly distributed in a unit volume, Stee
[15] has shown that asN ! `, LE

MMyN121yd converges
with probability one to a nonrandom,N-independent con-
stantbE

MMsdd. In physics language, this result shows tha
LE

MM is self-averaging and that the zero-temperature e
ergy density has an infinite volume limit when the densit
of points is kept fixed. To date, little has been done to com
pute the ground-state energy densitiesb

E
MMsdd. The best

estimates arebE
MMs2d ø 0.312 [16,17] and b

E
MMs3d ø

0.318 [16]. Here we use a systematic procedure [18] t
obtain b

E
MMsdd with quantifiable errors. First, in order

to have a well defined dependence onN, we have used
the ensemble average,kLE

MMlyN121yd . Second, in order to
reduce corrections to scaling in the extrapolation to th
largeN limit, we have placed the points randomly in the
d-dimensional unit hypercube with periodic boundary con
ditions. This removes surface effects and empirically lea
to the finite size scaling law

kLE
MMl

N121yd ­ bE
MMsdd

µ
1 1

Asdd
N

1
Bsdd
N2 1 . . .

∂
. (1)

Finally, in order to reduce statistical fluctuations,we hav
used a variance reduction trick [14]. Using these met
ods, we have extracted from our numerical datab

E
MMsdd

and its associated statistical error. The fits to Eq. (1) a
good, with x2 values confirming the form of the finite
size scaling law. The error bars on the extrapolated val
b

E
MM sdd are obtained by requiring thatx2 increase by one

from its minimum. We findbE
MMs2d ­ 0.3104 6 0.0002,

and b
E
MMs3d ­ 0.3172 6 0.000 15; values at higher di-

mensions are given in Table I.
Now we discuss how to use the random link model t

approximatebE
MMsdd. For any two pointssi, jd placed at

random in the unitd-dimensional hypercube, the density
distribution of lij is given at short distances byPdslij ­
rd ­ dBdrd21, whereBd ­ pdy2ysdy2d! is the volume of
an,

168
TABLE I. Comparison of MMP ground-state energies for the three models: Euclide
random link, and random link including three-link Euclidean corrections (2 # d # 10).

d bEsdd bRLsdd d bRL2bE

bE bECsdd bEC 2bE

bE

2 0.3104 6 0.0002 0.322 580 10.078 0.309 15 20.40%
3 0.3172 6 0.000 15 0.326 839 10.091 0.318 26 10.33%
4 0.3365 6 0.0003 0.343 227 10.080 0.337 56 10.30%
5 0.3572 6 0.000 15 0.362 175 10.070 0.358 18 10.27%
6 0.3777 6 0.0001 0.381 417 10.059 0.378 49 10.21%
7 0.3972 6 0.0001 0.400 277 10.054 0.398 07 10.22%
8 0.4162 6 0.0001 0.418 548 10.045 0.416 85 10.17%
9 0.4341 6 0.0001 0.436 185 10.042 0.434 85 10.17%

10 0.4515 6 0.0001 0.453 200 10.037 0.452 14 10.14%
is,
,
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thed-dimensional ball with unit radius. If we take the ran
dom link model where link lengths are independent a
have the individual distributionPdsld, then the Euclidean
and random link MMP have the same one-and two-link
distributions [9] because two Euclidean distances are in
pendent. If correlations among three or more link lengt
are weak, then the properties of the two systems sho
be quantitatively close. Thus an analytic approximati
to b

E
MM sdd is obtained by computing its analogb

RL
MMsdd in

the random link MMP. In Refs. [9,12], Mézard and Pari
solved these random link models under the replica sy
metry hypothesis. They showed further that the repl
symmetric solution is stable (at least ford ­ 1), and thus
is most likely exact. Their solution givesbRL

MMsdd in terms
of a functionGd related to the probability distribution o
link lengths for matched pairs. In our Euclidean units the
result can be written

bRL
MMsdd ­

D1sdd
2

d
s1ydd!

Z 1`

2`
Gdsxde2Gdsxd dx , (2)

whereGd satisfies the integral equation

Gdsxd ­ d
Z 1`

2x
sx 1 ydd21e2Gd syd dy , (3)

and where

D1sdd ­ lim
N!`

kL1lyN121yd ­ s1ydd! B
21yd
d (4)

is the average (rescaled) link length of the nearest nei
bor graph in the limitN ! `.

Brunetti et al. [19] have used direct numerical simu
lations of these random link models to confirm the pr
dictions to the level of0.2% at d ­ 1 and 2, and we
have done the same to the level of0.1% at 1 # d # 10,
giving further evidence that the replica symmetric s
lution is exact. From the analytical side, solving th
integral equation forGd leads tob

RL
MMs1d ­ p2y24 ­

0.411 233 5 . . . , b
RL
MMs2d ­ 0.322 580 . . . , andb

RL
MMs3d ­

0.326 839 . . . ; values at higher dimensions are given
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Table I. If we considerbRL
MMsdd as a mean field prediction

for b
E
MMsdd, the accuracy is surprisingly good. Including

the trivial valueb
E
MMs1d ­ 0.5, we see that the random

link approximation leads to a relative error of17.8% atd ­
1, of 3.9% atd ­ 2, and of3.0% atd ­ 3. Also, the error
decreases with increasing dimension. It can be argued,
the MMP as well as for other link-based problems [14], th
the random link approximation not only has a relative err
tending towards0 asd ! `, but that, in fact, this error is
at most of order1yd2. Given our high quality estimates,
we are able to confirm this property numerically. I
Fig. 1 we plot the quantitydsbRL

MM 2 b
E
MMdyb

E
MM along

with a quadratic fit given to guide the eye. As expected, t
data scales as1yd. Thus the random link approximation
gives both the leading and1yd subleading dependence o
b

E
MM sdd. In order to obtain analytic expressions for th

associated coefficients, we have derived the1yd expansion
for b

RL
MM from Eqs. (2) and (3). We used two method

to do this. The first, straightforward but computationall
lengthy, consists of setting̃Gdsxd ­ Gdsx̃ ­ xyd 1 1y2d
and then writingG̃dsxd as a power series in1yd. From
this we find

bRL
MMsdd ­

D1sdd
2

∑
1 1

1 2 g

d
1 Os1yd2d

∏
, (5)

whereg ­ 0.577 . . . is Euler’s constant. If, as claimed,
the random link approximation gives an error of orde
1yd2, Eq. (5) gives an analytic expression for the leadin
and first subleading terms in the1yd expansion ofbE

MM sdd.
This claim is strongly supported by the numerica
results: performing a fit of ourbE

MMsdd values to a trun-
cated1yd series leads to0.424 6 0.008 for the coefficient
of the 1yd term; this is to be compared to the theoretic
prediction of1 2 g ­ 0.422 784 . . . .

We have been able to obtain the next coefficient of t
series in1yd for b

RL
MM by using a second method. We

introduce a modified random link model where the link

FIG. 1. Linear scaling with1yd of the quantitydsbRL
MM 2

b
E
MMdyb

E
MM .
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are shifted and rescaled in such a way that the leading te
of the1yd expansion for this new model is exactly the1yd
coefficient for the initial one [20]. In fact, it is possible
to introduce a sequence of such “rescaled” models, wh
thekth model is designed to produce the1ydk term of the
expansion. We have computed the leading terms predic
by a replica symmetric analysis of these models fork ­ 1
and2, from which we find that the order1yd2 coefficient
in Eq. (5) isp2y12 1 g2y2 2 g.

We now come to the final point of the paper: how we
can one predictbE

MMsdd by incorporating Euclidean cor-
rections to the random link approximation? It is necessa
here to review the work of Mézard and Parisi; for great
detail, we refer the reader to their article [10]. They be
gin with the partition functionZ for an arbitrary stochastic
MMP and write the quenched average forn replicas. In
the Euclidean model, thelij have three- and higher-link
correlations. Mézard and Parisi keep the three-link cor
lations (arising only when the three links make a triangl
and neglect higher connected correlations. Note that it
not cleara priori whether these “higher order” terms ar
negligible compared to the three-link term. The resultin
expression for the quenched average becomes

Zn ­
NY

j­1

nY
a­1

√Z 2p

0

dl
a
j

2p
eil

a
j

!
3 e

P
sijd

uij1
P0

sijd skld smnd
uijuklumn

C

, (6)

whereuij is a complicated nonlinear function of the link
length lij . They then compute the limitN ! `, n ! 0
using the saddle point method while assuming that repl
symmetry is not broken. In the zero-temperature lim
just as in the standard random link model, the saddle po
equations can be expressed in terms ofGd, but nowGd

satisfies a more complicated integral equation [Eq. (3
in their paper]. From this, one can calculate new es
mates forbE

MMsdd, which we shall denotebEC
MM , whereEC

stands for Euclidean corrections.
We have solved the equations numerically for th

modified Gd, and have computedbEC
MMsdd for 2 # d #

10. We findb
EC
MM s2d ­ 0.30915 andb

EC
MM s3d ­ 0.318 26.

The results ford $ 4 are given in Table I. Comparing
with b

E
MMsdd andb

RL
MMsdd, we see that the new estimate

are considerably more accurate. Atd ­ 2, the random
link approximation leads to an error of3.9%; this error is
decreased by nearly a factor of10 by incorporating these
leading Euclidean corrections. Similarly atd ­ 3, the
error is reduced from3.0% to less than0.4%. At larger
d, the error continues to decrease, but the effect is le
dramatic.

To interpret this last result, consider how the differenc
b

EC
MM 2 b

RL
MM scales withd. Using Eq. (6), we see that it

is sufficient to estimate the size of the three-link correctio
term. Itsd dependence follows that of the probability o
finding nearly equilateral triangles asd ! `. Since this
169
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probability goes to zero exponentially withd, the three-link
correlations give tiny corrections at larged (as confirmed
by the numerics), and the power series expansion in1yd of
b

EC
MM is identical to that ofbRL

MM . This property continues
to hold if one includes 4, 5, or anyfinite number of
multilink correlations in Eq. (6). This is due to the fact tha
the Euclidean and random link graphs havelocal properties
that are identical up to exponentially small terms ind.
In particular, the statistics of fixed sized (N-independent)
loops connecting near neighbors are nearly identical.

Although this reasoning was given for the MMP, it ap
plies equally well to other link-based problems. In suc
statistical mechanics systems, if the thermodynamic fun
tions depend only on the local properties of the (short) lin
graph, then the random link approximation applied to th
Euclidean system will have an error which is expone
tially small in d. However, for combinatorial optimiza-
tion problems such as the MMP, the assignment proble
and the traveling salesman problem, theN ! ` limit and
the k-link expansion do not commute:k-link correlations
with k growing with N remain important asN ! `. In
particular, arbitrarily large loops matter and contribute
the thermodynamics at order1yd2. In a polymer picture,
we can say that the random link approximation is exp
nentially good in the dilute phase, while it leads to1yd2

errors in the collapsed phase. The1yd power series in
this phase is beyond all orders in ak-link correlation ex-
pansion such as Eq. (6). This behavior is reminiscent
that of lattice models where the1yd expansion does not
commute with theN ! ` limit (an example is the Eden
model [21]). Possibly a similar phenomenon occurs f
spin glasses, rendering the calculation of the1yd series
particularly difficult.

In summary, we have estimated by numerical simulati
b

E
MM sdd, the ground-state energy density in the Euclide

minimum matching problem at dimensions2 # d # 10.
We have computed two analytical estimates for these e
ergy densities, namely,bRL

MMsdd and b
EC
MM sdd. The first

method uses the random link approximation where all lin
correlations are neglected. Using the exact solution
Mézard and Parisi, we find that even at low dimension
the error introduced by this approximation is small:3.9%
at d ­ 2, 3.0% at d ­ 3, and 2.0% at d ­ 4. In the
second method, the connected three-link correlations
taken into account while higher ones are neglected. Us
Mézard and Parisi’s expressions, we find that this mod
fication gives excellent predictions even atd ­ 2 and 3,
with the error there being divided by almost10 compared
to the random link approximation. This provides a strin
gent quantitative test of a systematic expansion which go
beyond uncorrelated disorder variables, and suggests
170
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even the leading such correction is enough to get predi
tions for thermodynamic functions precise to better tha
1%. However, athigh dimensions, we have seen that this
k-link correlation expansion cannot give the1yd expansion
of the MMP; probably this is not special to the MMP, but
applies more generally to most link-based combinatoria
optimization problems and perhaps even to spin glasse
That leaves open the analytical determination of the1yd2

coefficient for these kinds of problems.
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