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We study the masses of the light quarks with lattice QCD. Most of the dependence on the lattice
spacinga, observed previously with Wilson fermions, is removed by®&(a) corrected action. In the
quenched approximation, we obtain a strange qu&Skmassii, (2 GeV) = 95(16) MeV, and an aver-
age of the up and down quark mas&g$2 GeV) = 3.6(6) MeV. Correcting for quenching, the masses
likely are 20% to 40% smaller54 < m (2 GeV) < 92 MeV and 2.1 < m;(2 GeV) < 3.5 MeV.

We argue that most lattice determinations are consistent with these low values, which are outside
the range conventionally given. [S0031-9007(97)03896-9]

PACS numbers: 12.38.Gc, 12.15.Ff, 14.65.Bt

Among the most important applications of lattice gaugequantities. It is desirable to do the lattice part of such
theory to particle physics are the calculations required ta@alculations as nonperturbatively as possible, to test for
determine the fundamental parameters of the quark sectoonperturbative short distance effects and possible poor
of the standard model. One of the most important of theseonvergence of perturbation theory. But nonperturbative
is the overall scale of the light quark masses. It is oneshort distance analyses for quark masses are currently not
of the least well known of the fundamental parameterdar advanced.
of the standard model. (Estimates for the strange quark Perturbative relations between the lattice bare mass
mass range from 100 to 300 MeV for tidS masses and theMS massm may be obtained by demanding that
renormalized at a “high” energy scale, 1 GeV, and for theon-shell Green functions calculated with both regulators
average light quark mass from 3.5 to 11.5 MeV [1].) Itbe equal. Analogous perturbative expressions for the
is also one for which lattice methods are almost uniquelyenormalization of @y, were initially rendered almost
reliable, unlike quark mass ratios or the strong couplinguseless by sick behavior in the lattice perturbation series.
constantay, for which other powerful methods exist. In Ref. [4] it was shown that such behavior could be
Values for quark masses have been obtained since almastderstood and mostly eliminated by a mean field theory
the beginning of lattice phenomenology [2,3]. However,resummation of large “tadpole” graphs.
improved understanding of perturbation theory and finite To reduce the effects of such graphs further, the relation
lattice spacing errors has been required to make sense bétweenm and my may be rewritten with a mean field
the various lattice determinations, which initially rangedimproved mass,
over a factor of 3. — _ .

Lattice determinations of standard model parameters () = mll + asyonCy = Inap) + 1. (1)
consist of two pieces. Calculations of experimentallywhere y, = 2/7 is the leading anomalous dimension,
measurable quantities such as hadron masses are usmtl InC,, is the result of a one loop calculation. Here
to fix the bare coupling and quark masses in the latticen = In(1 + 1/2k — 1/2£.), with the mean field im-
Lagrangian. Short distance calculations are used to relafgroved hopping parameter = kug, and uy = (Up)'/*.
the bare parameters in the lattice theory to renormalizedihe nonperturbative value of the plaquette expectation
running couplings and masses, such as those ofMfe value(Up) incorporates an estimate of higher order tad-
scheme. pole graphs intoiz. The one loop term 1@, is ad-

Quark masses are best obtained in lattice calculationsisted to remove the one loop part of this expression
by matching pseudoscalar meson masses to experimeny = 1 — 7a;/3. The ellipsis denotes higher orders in
These are among the easiest lattice calculations, witk? and ina.
small statistical and finite volume errors. Experimental In Fig. 1 we show a compilation of previous results [2].
uncertainties are also negligible. Uncertainties are domiQuenched results obtained with staggered fermions are
nated by truncation of perturbation theory and discretizaalmost cut-off independent for lattice spacings less than
tion errors, and by errors arising from the omission ofl GeV !. However, for staggered fermions the constant
light quark loops (the “quenched” approximation). in Eq. (1) isC,, = 132.9 [5]. The one-loop relation is

The calculations relating the parameters in varioughus of doubtful reliability: The correction is 50%—100%,
regulators may be performed by equating short distanceost of which is unexplained by mean field theory.

1622 0031-900797/79(9)/1622(4)$10.00  © 1997 The American Physical Society



VOLUME 79, NUMBER 9 PHYSICAL REVIEW LETTERS 1 8PTEMBER1997

8 T T T T T T gate its behavior where perturbation theory is beginning
| n=1Gev i to break down, but we omit it from the analysis lead-
- 1 ing to our final results. The lattice spacings have been
~ or IR Y ] obtained from the B-1S splitting of the charmonium Sys-
S i ;g ] tem,AM = M, — (3M,;;, + M, )/4, for which the un-
T 4} B certainties of lattice calculations are particularly small and
Z & i easy to understand. Numerical uncertainties in our results
|8 L ‘ a H n g for the quark masses thus arise from a combination of un-
2r o ] certainties in the charmonium and pion calculations. See
s . Ref. [10] for more details.
0 [y We use improved lattice perturbation theory to convert

0.4 0.8 to the MS mass at renormalization scale= 2 GeV and
1 AM to determine the lattice spacing, whereas previous
a(GeV™) work typically used bare perturbation theory at scale
FIG. 1. Previous lattice results for tiéS masses of the light u = 1 GeV and thep meson mass to determine the
quarks, renormalized at 1 GeV, with the lattice spacing set byattice spacing. Although renormalization at 1 GeV is
the p mass. Lattice spacing dependence is large for quemh?@nventional in nonlattice results, the low scale induces

=]
=
o

Wilson fermions (diamonds) and small for quenched staggere " : : S
fermions (filled squares). Results from two-flavor staggere dditional perturbative uncertainty, which is not present

fermion QCD (open squares) lie below those from quenchedn the under_lying lattice results. _ '
approximation staggered fermions. Data from Ref. [2]. Charmonium calculations are discussed in Ref. [11].

Some details and results of our pion calculations are
given in Tablel. We calculated the pion mass from

For Wilson fermionsC,, = 1.67 [5], so the perturba- correlated fits of2 X 2 correlation functions (using two
tion series behaves well (to first orderdn). However, operators and fitting two states), with statistical errors
the results for the Wilson action show strong cut-off de-from 1000 bootstrap samples. On the smaller lattices we
pendence. They lie far above the results for staggerecdhecked for contamination from excited states by compar-
fermions and fall as the lattice spacing is reduced. Théng with 1 X 1 and3 X 3 fits. Detailed descriptions of
Wilson action contains an error @ (a), which is absent our numerical methods are in preparation [12].
for staggered fermions. After extrapolatingdnthe result In Table | and Fig. 2 we give our results for the light
is much closer to the results of staggered fermions. (Seguark masses in the quenched approximation. We apply
for example, Ref. [6].) However, further sources of cut-Eq. (1) at the scalegt = 1/a and 7/a and then run
off dependence are an unknown combinationQdix?), to 2 GeV. The errors shown are statistical only. The
O(a,a), O(a?), etc. Without a full theory of their func- diamonds are our results for unimproved Wilson fermions.
tional form one cannot extrapolate confidently. They are consistent with the existing work (diamonds in

One should therefore try to remove the dominé&ttz)  Fig. 1). The triangles are our results for the mean-field-
error from the Wilson action. A convenient action for improved clover action. Most, but not all, of the cut-off
doing so [7] incorporates an extra dimension 5 termdependence has been removed.
CSWJUWFMM, the so-called “clover” term, whose co-  Remaining sources of cut-off dependence could include
efficient can be adjusted to remove tta) error. At large a? corrections to the mass relation, Eq. (1), further
tree levelcsw = 1, but the one-loop correction to the co- corrections to the clover coefficient in the pion numerical
efficient of the clover term is large [8], as suggested bycalculations, and (a?) corrections taAM. LeadingO(a)
mean field theory [4]. It is a three-tadpole correction andcorrections are expected to be negligible foM, but
can be approximated bysw =~ ug°. For the improved quark momenta are larger in charmonium than in pions,
action,C,, = 4.72 [9], so Eq. (1) is still well behaved (to and we estimateD(a’p?) corrections toAM to range
one loop). from 4%—-20% on our three finest lattice spacings. The

We use this action to determine the overall scale obne-loop result [8] for the coefficientw agrees with the
the light quark masses. We fit for the coefficientmof
H H 2
?e\ttzioenxsp:‘(reszotﬂi/[swIea(ljgir’:lé—(—)i—rdé.r 'qul;/t?ogosgzt bS:IgW gABLE I Our results form,(2 GeV), the average of the

s . ' ; ‘andd quark masses, renormalized at 2 GeV.

The slopeB is the main result of our calculation, al-

though we present results as the quark magsesnd B 5.5 5.7 5.9 6.1
m, for comparison with Ref. [1]. Our lattice spacings ; (Gev!) 1.26 0.86 0.57 0.39
range from 1.26 GeV' (where perturbative uncertainties volume 8 X 16 12° X 24 16° X 32 24% X 48
are nearly 50%), down to 0.39 GeV (where perturba- . (c = 0) 6.31(26) 5.93(17) 4.88(18)  4.62(22)

475(19) 4.41(12) 3.90(13) 3.84(18)
1.69

. 7, (improved)
tion theory appears well behaved). We have performed! 157 150 140

the calculation at the largest lattice spacing to investi CSW
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8 T T T T T T T T T T T WI(Z GCV) = 36(6) MeV s
w=2GeV 71,(2 GeV) = 95(16) MeV .

The perturbative and cut-off dependence uncertainties are
added linearly, since they are related. All others are added
in quadrature to the total error.

We now consider the most poorly understood source of
uncertainty, the quenched approximation. Without light
flavors in loops, QCD couplings run incorrectly. For
example,a; runs too fast [11]. To leading logarithmic
accuracy, as(r/a) is too small by a factor of about

0.4 0.8 ,8(()3)//3(()0), where,B(()O) and ,8(()3) are the leading quenched

2 (Gev'h and unquenche@ functions, respectively. The running

of the quark mass is proportional &q, in the perturbative
FIG. 2. Our results for the masses of the light quarks.region. It runs too slowly in the quenched approximation,
Most of the lattice spacing dependence of unimproved Wilsorleading to too large a quark mass at short distances. In
fermions (diamonds) is removed by the use of @a)  Ref [14], the ratio of quenched and unquenched quark
corrected action (triangles) with a tadpole improveg;,. The P . . .
masses arising from the perturbative region was estimated,

lattice spacing is set by the charmoniurR-1S splitting AM. - . .
Errors are statistical only. to leading logarithmic accuracy, to be

m('ﬂ'/a)lqu

mean field estimate, but a nonperturbative determination (/@) ungu
favors an even larger correction [13]. Purely perturbativeor es(m/a) =~ 1/6 to 1/8. There is, of course, a further
errors in the relation between the lattice aWd masses Uunknown contribution from the nonperturbative region.
should be of ordern? ~ 5% at our finest lattice spacing. Still, a reduction of tens of per cent due to light quark
Other smaller uncertainties include finite volume effects|0oops in the perturbative region is not unexpected.
which should be a couple of percent or less, and statistical Some unquenched staggered results summarized in
errors, which are 4% and arise mostly from the latticeRef. [2] are shown in Fig. 1. (Unquenched Wilson
spacing from the charmonium system. fermion calculations appear to be more difficult to per-
We examined the pseudoscalar meson mass squaredfagm and harder to interpret.) The unquenched results
a function of the quark mass. It should be linear plusiie below the quenched results, roughly as expected.
small corrections in the small quark mass limit. OurAlthough the unquenched calculations are not yet as solid
numerical data are for quark masses in the rage:, as the quenched calculations, we take them seriously
to m,. In this range, we find no statistically significant enough for estimating the gross effect of quenching. We
evidence for quadratic terms W2 vs m;, much less argued above that quenched staggered quark masses look
the large quadratic terms that have been postulated @00d, except that the large dn, points to poor con-
make m, = 0 consistent with experiment. Therefore, vergence of perturbation theory. However, the ratio of
our results for the ratio of the strange to light quarkdquenched to unquenched quark masses is useful, because
masses agree with lowest order chiral perturbation theoryhe perturbative factor cancels. To minimize effects due
(mg + my)/(2m;) =~ 1‘/112(0/1‘47270 ~ 13.6. to differences in analysis methods, we estimate the ratio
Despite significant reduction, the small remaining cut-ffom the results of a single group [15,16], at similar
off dependence produces the least reliably understoogelumes and lattice spacings (about 0.4 Gé) finding
uncertainty in the quenched approximation. Pending m;(1.0 GeV),,—o 2.61(9)
further understanding of this error, we take our result at (1.0 Ge V), ~ 2.16(10) 121(7). (4
the smallest lattice spacing as the top of our lattice spacing, th three fi f liaht K (e
error bar. We take a linearly extrapolated result (the ince there are three fiavors ot fight quarks, not two, we

lower of two plausible extrapolation methods) through the/S€ this _ratlo asa lower bound on the actual ratio and its
uare (i.e., four light quarks) as an upper bound.

three finest lattice spacings as the bottom. This gives 3 Combining our quenched result, Eq. (2), with the

range of 0.8 MeV for the cut-off dependence uncertainty. orrection ratio suagested by Ea. (4). we obtain the
The perturbative uncertainty was added to this range b 99 y Eq. (4),
nquenched results

applying the perturbative correction using (as defined
in Ref. [4]) renormalized at the two scaléga and 7 /a m(2 GeV) in the range54-92 MeV,
to the results of the two extrapolations. The outermost of _ )
the four results were taken as the errors bars, increasing m;(2 GeV) in the range2.1-3.5 MeV.

the errors by 5%, or aboui?. This gives our continuum Running down to 1 GeV, where conventional mass
limit, quenched approximation result: estimates are often quoted, the estimates are raised by

)

m MeV)

N
LI I LU I LI | 1 LI

(=]
Y
[\

~ a(m/a) /B B2 < 10 (3)
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about 10%, tan,(1 GeV) in the range 59-101 MeV, and was carried out on ACPMAPS, which is operated and
m;(1 GeV) in the range 2.3-3.9 MeV. maintained by the High Performance and Parallel Com-

Another determination [17] of the quenched strangeputing and Electronic Systems Engineering Departments
guark mass obtaing (2 GeV) = 128(18) MeV. Thisis of Fermilab’s Computing Division; we thank past and
an average of results with the Wilson action and the treepresent members of these groups for making this work
level clover action. Reference [17] makes no attempt tgossible. Fermilab is operated by Universities Research
remove the remaining lattice spacing dependence or tAssociation Inc. under contract with the U.S. Department
estimate the effects of the quenched approximation. Mosif Energy. A.X.K. was supported in part by the DOE
of the discrepancy with our quenched results arises fror®Jl program under Contract No. DE-FG02-91ER40677.
the treatment of cut-off effects. Again, we try to reduceT. O. would like to thank the Nishina Foundation for sup-
cut-off effects with much larger clover coefficients, andport during his visit to Fermilab.
by extrapolating away remaining effects even so.

While this paper was under review, a new result with
unquenched Wilson fermions appeared [18]. It uses the
(unimproved) Wilson action and does not check the
dependence on lattice spacing. It supports our conclusion
that the real-world quark masses likely lie below the :
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quenched approximation, but it presents two values for[l] R.M. Bamnettet al., Phys. Rev. D54, 1 (1996).
ms,_wh|ch dl_ffer from one anqther by nearly a factor of 2 [2] A. Ukawa, Nucl. Phys. B (Proc. SuppBB0, 3 (1993).
(3 times their quoted uncertainty). [3] R. Gupta, Nucl. Phys. B (Proc. Supp#®, 85 (1995).

Finally, we place our results in the overall picture [4] G.P. Lepage and P.B. Mackenzie, Phys. Revi@)2250
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