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The Light Quark Masses from Lattice Gauge Theory
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We study the masses of the light quarks with lattice QCD. Most of the dependence on the lattice
spacinga, observed previously with Wilson fermions, is removed by anOsad corrected action. In the
quenched approximation, we obtain a strange quarkMS massmss2 GeVd ­ 95s16d MeV, and an aver-
age of the up and down quark massesmls2 GeV d ­ 3.6s6d MeV. Correcting for quenching, the masses
likely are 20% to 40% smaller:54 , mss2 GeV d , 92 MeV and 2.1 , mls2 GeV d , 3.5 MeV.
We argue that most lattice determinations are consistent with these low values, which are outside
the range conventionally given. [S0031-9007(97)03896-9]

PACS numbers: 12.38.Gc, 12.15.Ff, 14.65.Bt
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Among the most important applications of lattice gau
theory to particle physics are the calculations required
determine the fundamental parameters of the quark se
of the standard model. One of the most important of th
is the overall scale of the light quark masses. It is o
of the least well known of the fundamental paramete
of the standard model. (Estimates for the strange qu
mass range from 100 to 300 MeV for theMS masses
renormalized at a “high” energy scale, 1 GeV, and for t
average light quark mass from 3.5 to 11.5 MeV [1].)
is also one for which lattice methods are almost uniqu
reliable, unlike quark mass ratios or the strong coupl
constantas, for which other powerful methods exis
Values for quark masses have been obtained since alm
the beginning of lattice phenomenology [2,3]. Howeve
improved understanding of perturbation theory and fin
lattice spacing errors has been required to make sens
the various lattice determinations, which initially range
over a factor of 3.

Lattice determinations of standard model paramet
consist of two pieces. Calculations of experimenta
measurable quantities such as hadron masses are
to fix the bare coupling and quark masses in the latt
Lagrangian. Short distance calculations are used to re
the bare parameters in the lattice theory to renormaliz
running couplings and masses, such as those of theMS
scheme.

Quark masses are best obtained in lattice calculati
by matching pseudoscalar meson masses to experim
These are among the easiest lattice calculations, w
small statistical and finite volume errors. Experimen
uncertainties are also negligible. Uncertainties are do
nated by truncation of perturbation theory and discreti
tion errors, and by errors arising from the omission
light quark loops (the “quenched” approximation).

The calculations relating the parameters in vario
regulators may be performed by equating short dista
2 0031-9007y97y79(9)y1622(4)$10.00
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quantities. It is desirable to do the lattice part of su
calculations as nonperturbatively as possible, to test
nonperturbative short distance effects and possible p
convergence of perturbation theory. But nonperturbat
short distance analyses for quark masses are currently
far advanced.

Perturbative relations between the lattice bare massm0
and theMS massm may be obtained by demanding tha
on-shell Green functions calculated with both regulato
be equal. Analogous perturbative expressions for
renormalization of as were initially rendered almost
useless by sick behavior in the lattice perturbation ser
In Ref. [4] it was shown that such behavior could b
understood and mostly eliminated by a mean field the
resummation of large “tadpole” graphs.

To reduce the effects of such graphs further, the relat
betweenm and m0 may be rewritten with a mean field
improved mass̃m,

msmd ­ m̃f1 1 asg0sln C̃m 2 ln amd 1 · · · g , (1)

where g0 ­ 2yp is the leading anomalous dimension
and lnC̃m is the result of a one loop calculation. Her
m̃ ­ lns1 1 1y2k̃ 2 1y2k̃cd, with the mean field im-
proved hopping parameter̃k ; ku0, and u0 ; kUPl1y4.
The nonperturbative value of the plaquette expectat
value kUPl incorporates an estimate of higher order ta
pole graphs intom̃. The one loop term lñCm is ad-
justed to remove the one loop part of this express
u0 ­ 1 2 pasy3. The ellipsis denotes higher orders i
a2

s and ina.
In Fig. 1 we show a compilation of previous results [2

Quenched results obtained with staggered fermions
almost cut-off independent for lattice spacings less th
1 GeV21. However, for staggered fermions the consta
in Eq. (1) is C̃m ­ 132.9 [5]. The one-loop relation is
thus of doubtful reliability: The correction is 50%–100%
most of which is unexplained by mean field theory.
© 1997 The American Physical Society
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FIG. 1. Previous lattice results for theMS masses of the light
quarks, renormalized at 1 GeV, with the lattice spacing set
the r mass. Lattice spacing dependence is large for quenc
Wilson fermions (diamonds) and small for quenched stagge
fermions (filled squares). Results from two-flavor stagge
fermion QCD (open squares) lie below those from quench
approximation staggered fermions. Data from Ref. [2].

For Wilson fermionsC̃m ­ 1.67 [5], so the perturba-
tion series behaves well (to first order inas). However,
the results for the Wilson action show strong cut-off d
pendence. They lie far above the results for stagge
fermions and fall as the lattice spacing is reduced. T
Wilson action contains an error ofOsad, which is absent
for staggered fermions. After extrapolating ina, the result
is much closer to the results of staggered fermions. (S
for example, Ref. [6].) However, further sources of cu
off dependence are an unknown combination ofOsa2

s d,
Osasad, Osa2d, etc. Without a full theory of their func-
tional form one cannot extrapolate confidently.

One should therefore try to remove the dominantOsad
error from the Wilson action. A convenient action fo
doing so [7] incorporates an extra dimension 5 te
cSW csmnFmnc, the so-called “clover” term, whose co
efficient can be adjusted to remove theOsad error. At
tree levelcSW ­ 1, but the one-loop correction to the co
efficient of the clover term is large [8], as suggested
mean field theory [4]. It is a three-tadpole correction a
can be approximated bycSW ø u23

0 . For the improved
action,C̃m ­ 4.72 [9], so Eq. (1) is still well behaved (to
one loop).

We use this action to determine the overall scale
the light quark masses. We fit for the coefficient ofml

in the expressionM2
p ­ Bml 1 . . . . (We do not see

deviations from this leading-order equation, see belo
The slopeB is the main result of our calculation, a
though we present results as the quark massesml and
ms for comparison with Ref. [1]. Our lattice spacing
range from 1.26 GeV21 (where perturbative uncertaintie
are nearly 50%), down to 0.39 GeV21 (where perturba-
tion theory appears well behaved). We have perform
the calculation at the largest lattice spacing to inves
by
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gate its behavior where perturbation theory is beginnin
to break down, but we omit it from the analysis lead
ing to our final results. The lattice spacings have bee
obtained from the 1P-1S splitting of the charmonium sys-
tem,DM ; Mhc

2 s3MJyc 1 Mhc
dy4, for which the un-

certainties of lattice calculations are particularly small an
easy to understand. Numerical uncertainties in our resu
for the quark masses thus arise from a combination of u
certainties in the charmonium and pion calculations. S
Ref. [10] for more details.

We use improved lattice perturbation theory to conve
to theMS mass at renormalization scalem ­ 2 GeV and
DM to determine the lattice spacing, whereas previou
work typically used bare perturbation theory at sca
m ­ 1 GeV and ther meson mass to determine the
lattice spacing. Although renormalization at 1 GeV i
conventional in nonlattice results, the low scale induce
additional perturbative uncertainty, which is not presen
in the underlying lattice results.

Charmonium calculations are discussed in Ref. [11
Some details and results of our pion calculations a
given in Table I. We calculated the pion mass from
correlated fits of2 3 2 correlation functions (using two
operators and fitting two states), with statistical error
from 1000 bootstrap samples. On the smaller lattices w
checked for contamination from excited states by compa
ing with 1 3 1 and 3 3 3 fits. Detailed descriptions of
our numerical methods are in preparation [12].

In Table I and Fig. 2 we give our results for the ligh
quark masses in the quenched approximation. We app
Eq. (1) at the scalesm ­ 1ya and pya and then run
to 2 GeV. The errors shown are statistical only. Th
diamonds are our results for unimproved Wilson fermion
They are consistent with the existing work (diamonds i
Fig. 1). The triangles are our results for the mean-field
improved clover action. Most, but not all, of the cut-off
dependence has been removed.

Remaining sources of cut-off dependence could includ
largea2

s corrections to the mass relation, Eq. (1), furthe
corrections to the clover coefficient in the pion numerica
calculations, andOsa2d corrections toDM. LeadingOsad
corrections are expected to be negligible forDM, but
quark momenta are larger in charmonium than in pion
and we estimateOsa2p2d corrections toDM to range
from 4%–20% on our three finest lattice spacings. Th
one-loop result [8] for the coefficientcSW agrees with the

TABLE I. Our results formls2 GeV d, the average of theu
andd quark masses, renormalized at 2 GeV.

b 5.5 5.7 5.9 6.1

a sGeV21d 1.26 0.86 0.57 0.39
volume 83 3 16 123 3 24 163 3 32 243 3 48
ml sc ­ 0d 6.31(26) 5.93(17) 4.88(18) 4.62(22)
ml (improved) 4.75(19) 4.41(12) 3.90(13) 3.84(18)
cSW 1.69 1.57 1.50 1.40
1623
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FIG. 2. Our results for the masses of the light quark
Most of the lattice spacing dependence of unimproved Wils
fermions (diamonds) is removed by the use of anOsad
corrected action (triangles) with a tadpole improvedcSW . The
lattice spacing is set by the charmonium 1P-1S splitting DM.
Errors are statistical only.

mean field estimate, but a nonperturbative determinat
favors an even larger correction [13]. Purely perturbati
errors in the relation between the lattice andMS masses
should be of ordera2

s , 5% at our finest lattice spacing.
Other smaller uncertainties include finite volume effec
which should be a couple of percent or less, and statisti
errors, which are 4% and arise mostly from the lattic
spacing from the charmonium system.

We examined the pseudoscalar meson mass square
a function of the quark mass. It should be linear plu
small corrections in the small quark mass limit. Ou
numerical data are for quark masses in the range0.4ms

to ms. In this range, we find no statistically significan
evidence for quadratic terms inM2

p vs ml , much less
the large quadratic terms that have been postulated
make mu ­ 0 consistent with experiment. Therefore
our results for the ratio of the strange to light qua
masses agree with lowest order chiral perturbation theo
sms 1 mldys2mld ø M2

K0 yM2
p0 ø 13.6.

Despite significant reduction, the small remaining cu
off dependence produces the least reliably understo
uncertainty in the quenched approximation. Pendi
further understanding of this error, we take our result
the smallest lattice spacing as the top of our lattice spac
error bar. We take a linearly extrapolated result (th
lower of two plausible extrapolation methods) through th
three finest lattice spacings as the bottom. This give
range of 0.8 MeV for the cut-off dependence uncertain
The perturbative uncertainty was added to this range
applying the perturbative correction usingaV (as defined
in Ref. [4]) renormalized at the two scales1ya andpya
to the results of the two extrapolations. The outermost
the four results were taken as the errors bars, increas
the errors by 5%, or abouta2. This gives our continuum
limit, quenched approximation result:
1624
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mls2 GeVd ­ 3.6s6d MeV ,

mss2 GeVd ­ 95s16d MeV .
(2)

The perturbative and cut-off dependence uncertainties
added linearly, since they are related. All others are add
in quadrature to the total error.

We now consider the most poorly understood source
uncertainty, the quenched approximation. Without lig
flavors in loops, QCD couplings run incorrectly. Fo
example,as runs too fast [11]. To leading logarithmic
accuracy,asspyad is too small by a factor of about
b

s3d
0 yb

s0d
0 , whereb

s0d
0 and b

s3d
0 are the leading quenched

and unquenchedb functions, respectively. The running
of the quark mass is proportional toas, in the perturbative
region. It runs too slowly in the quenched approximatio
leading to too large a quark mass at short distances.
Ref. [14], the ratio of quenched and unquenched qua
masses arising from the perturbative region was estimat
to leading logarithmic accuracy, to be

mspyadjqu

mspyadjunqu
ø asspyadsg0yb

s0d
0 2g0yb

s3d
0 dy2 ø 1.2 , (3)

for asspyad ø 1y6 to 1y8. There is, of course, a further
unknown contribution from the nonperturbative region
Still, a reduction of tens of per cent due to light quar
loops in the perturbative region is not unexpected.

Some unquenched staggered results summarized
Ref. [2] are shown in Fig. 1. (Unquenched Wilso
fermion calculations appear to be more difficult to pe
form and harder to interpret.) The unquenched resu
lie below the quenched results, roughly as expecte
Although the unquenched calculations are not yet as so
as the quenched calculations, we take them seriou
enough for estimating the gross effect of quenching. W
argued above that quenched staggered quark masses
good, except that the large lñCm points to poor con-
vergence of perturbation theory. However, the ratio
quenched to unquenched quark masses is useful, bec
the perturbative factor cancels. To minimize effects d
to differences in analysis methods, we estimate the ra
from the results of a single group [15,16], at simila
volumes and lattice spacings (about 0.4 GeV21), finding

mls1.0 GeV dnf ­0

mls1.0 GeV dnf ­2
ø

2.61s9d
2.16s10d

­ 1.21s7d . (4)

Since there are three flavors of light quarks, not two, w
use this ratio as a lower bound on the actual ratio and
square (i.e., four light quarks) as an upper bound.

Combining our quenched result, Eq. (2), with th
correction ratio suggested by Eq. (4), we obtain th
unquenched results

mss2 GeVd in the range54 92 MeV ,

mls2 GeV d in the range2.1 3.5 MeV .

Running down to 1 GeV, where conventional mas
estimates are often quoted, the estimates are raised
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about 10%, tomss1 GeVd in the range 59–101 MeV, an
mls1 GeV d in the range 2.3–3.9 MeV.

Another determination [17] of the quenched stran
quark mass obtainsmss2 GeVd ­ 128s18d MeV. This is
an average of results with the Wilson action and the tr
level clover action. Reference [17] makes no attemp
remove the remaining lattice spacing dependence o
estimate the effects of the quenched approximation. M
of the discrepancy with our quenched results arises fr
the treatment of cut-off effects. Again, we try to redu
cut-off effects with much larger clover coefficients, a
by extrapolating away remaining effects even so.

While this paper was under review, a new result w
unquenched Wilson fermions appeared [18]. It uses
(unimproved) Wilson action and does not check t
dependence on lattice spacing. It supports our conclu
that the real-world quark masses likely lie below t
quenched approximation, but it presents two values
ms, which differ from one another by nearly a factor of
(3 times their quoted uncertainty).

Finally, we place our results in the overall pictu
of existing determinations [2,3,6,17]. We disregard
sults with physical volumes smaller than 1.5 fm and l
tice spacings larger than 0.2 fm (or 1.0GeV21). We
also disregard unquenched work with Wilson fermion
which is more primitive than that with staggered ferm
ons. Of the remaining determinations, Fig. 2 shows t
the cut-off dependence and resulting large size of qu
masses from quenched Wilson fermions arise mostly fr
the well-known Osad error. The discrepancy betwee
the quenched clover-improved fermion results and
quenched staggered fermion results is plausibly attribu
to the apparent poor convergence of staggered ferm
perturbation theory, and to the remaining cut-off dep
dence in the improved results. The difference betwe
quenched and unquenched staggered fermion resul
roughly what is expected. In summary, after making r
sonable cuts, existing determinations are compatible, w
discrepancies explained by cut-off or perturbative effe
Hence, our results for the light quark masses, includ
estimated corrections for the effects of light quark loo
are consistent with others based on lattice gauge theo
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