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Kaluza-Klein Dyons in String Theory
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S duality of heterotic or type II string theory compactified on a six dimensional torus requires the
existence of Kaluza-Klein dyons, carrying winding charge. We identify the zero modes of the Kaluza-
Klein monopole solution which are responsible for these dyonic excitations, and show that we get
the correct degeneracy of dyons as predicted byS duality. The self-dual harmonic two form on the
Euclidean Taub-NUT space plays a crucial role in this construction. [S0031-9007(97)03933-1]
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Type II or heterotic string theory compactified onT6

has been conjectured to have an exact SL(2,Z)S duality
symmetry that forms a subgroup of the full duality grou
of these theories [1,2]. Acting on an elementary strin
state carrying pure winding charge along one of t
compact directions, theS duality transformation produces
a state carrying Kaluza-Klein magnetic charge, as w
as winding charge. The existence of these states i
prediction of S duality symmetry. Furthermore, ifS
duality is an exact symmetry of the theory, then the
states must have degeneracy identical to that of
elementary string state carrying pure winding charg
In this Letter we shall verify this prediction for a
class of Kaluza-Klein dyons, namely, those with on
unit of magnetic charge. [Classical solutions carryin
Kaluza-Klein magnetic charge and winding charge can
constructed by using the standard trick of duality rotatio
[3] (see, for example, [4]).]

Let us denote the six internal directions labelingT6 by
x4, . . . , x9. The momentum and winding charge quantu
numbers alongx4 are labeled by a two dimensiona
vector,

$a ­

√
p
w

!
, (1)

where p and w are integers. SupposenK and nH

are integers labeling Kaluza-Klein monopole charge a
H-monopole charge associated with thex4 direction,
respectively. Then we can define another two dimensio
vector $b through the relation [1]

L $b ­

√
nK

nH

!
, (2)

where

L ­

√
0 1
1 0

!
, (3)

is the natural metric on the two dimensional lattice
momentum and winding charges alongx4. SL(2,Z) S
duality group acts ons $a, $bd as [1]√

$a
$b

!
!

√
l q
r s

! √
$a
$b

!
, (4)

where
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l, q, r , s [ Z, ls 2 qr ­ 1 . (5)

An elementary string state carrying one unit of windin
charge alongx4 has

$a ­

√
0
1

!
, $b ­ 0 . (6)

Acting on this state, the SL(2,Z) transformation given
Eq. (4) produces a state with

$a ­

√
0
l

!
, $b ­

√
0
r

!
, (7)

i.e.,

w ­ l, nK ­ r . (8)

Standard argument shows that as a consequence
Eq. (5), l and r are relatively prime. Thus according t
S duality, for every pair of integersl and r relatively
prime, the theory must contain dyons withr units of
Kaluza-Klein magnetic charge andl units of winding
charge. The degeneracy of these states must m
the degeneracy of the elementary string states carry
quantum numbers (6).

We shall focus on states withr ­ 1 and identify
the dyonic excitations of the monopole carrying windin
charge. (These areT dual to theH-dyon states analyzed
in Ref. [5].) We begin by writing down the Kaluza-Klein
monopole solution in ten dimensional string metric [6,7

ds2 ­ 2dt2 1

9X
m­5

dxm dxm 1 ds2
TN , (9)

wheredsTN denotes the Euclidean Taub-NUT metric,

ds2
TN ­ V hdx4 1 4ms1 2 cosuddfj2

1 V 21sdr2 1 r2du2 1 r2 sin2 udf2d , (10)

V ­

√
1 1

4m
r

!
21

. (11)

In order for the solution to be nonsingular at the origi
we need the periodicity ofx4 to be16pm.

This solution has three bosonic zero modes, wh
are simply the translational modes of the solution
the Euclidean space labeled by the polar coordina
© 1997 The American Physical Society 1619
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sr , u, fd. The momenta conjugate to these zero mo
represent spatial momenta of the monopole. Note
since the solution is invariant under a translation along
x4, . . . , x9 direction, there is no zero mode associated w
translation in these directions, and hence the monop
cannot carry momentum along these directions.

If these were all the bosonic deformations of t
solution, there would not be any dyonic excitation of t
solution carrying winding charge along thex4 direction.
However, the presence of the antisymmetric tensor ga
field Bmn in this theory, and the existence of a harmon
two form in the Euclidean Taub-NUT space [8–11
allows us to construct new bosonic zero modes of
solution, by considering deformations of the form [12]

B ­ QV , (12)

whereQ is the deformation parameter, andV is the self-
dual harmonic two form,

V ­ C
r

r 1 4m

√
ds3 1

4m
rsr 1 4md

dr ^ s3

!
. (13)

HereC is a normalization constant, and

s3 ­ s4md21fdx4 1 4ms1 2 cosud dfg . (14)

The normalization constantC is chosen in such a way tha
the imaginary part of the string action for an Euclide
world sheet, wrapped on a (noncompact) two cycle d
to V, is given byiQ. This will make the coordinateQ
periodic with period2p.

Note thatV can be written as

V ­ dj , (15)

where

j ­ C
r

r 1 4m
s3 . (16)

j represents a nonsingular one form atr ­ 0, but does
not vanish asr ! `. This shows that the zero mode d
formation that we have introduced corresponds to a p
gauge deformation of the solution, with the gauge tra
formation parameter not vanishing at̀. The situation
is exactly analogous to the case of Bogomolny-Pras
Sommerfield (BPS) monopoles, for which the collecti
coordinate conjugate to the electric charge correspo
to a pure gauge deformation. SinceQ ! Q 1 a is a
gauge transformation, the collective Hamiltonian does
depend explicitly onQ. Hence the momentumpQ con-
jugate toQ is conserved, and can be interpreted as
winding charge. [To see this let us consider a config
ration of constantpQ , for which Q ­ at 1 Q0. Using
Eqs. (12)–(14) we see that for this solution, asr ! `,

H ­ dB . aCr22dt ^ dr

^ fdx4 1 4ms1 2 cosuddfg

1 aC sinudt ^ du ^ df .

The term in H proportional to dt ^ dr ^ dx4 indi-
cates that the solution carries winding charge~ a ~ pQ.
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The other terms can be interpreted as nontrivial axi
background in the four dimensional theory.] Upon qua
tizationpQ is quantized in integer units, and would corre
spond to the winding numberw.

This establishes the existence of the required dyo
excitations carryingnK ­ 1, w arbitrary. In order to
verify the predictions ofS duality, we also need to
make sure that these states have degeneracy iden
to that of a singly wound elementary BPS excitatio
in the corresponding string theory. For type II strin
theory, the degeneracy of the elementary string st
is 256, corresponding to an ultrashort multiplet of th
supersymmetry algebra. For the Kaluza-Klein dyon
this degeneracy comes from quantizing the fermion
zero modes associated with the broken supersymme
generators. Since the monopole solution breaks half
the 32 two supersymmetry generators, the sixteen bro
generators give rise to sixteen fermionic zero mode
whose quantization gives a28 ­ 256-fold degenerate
state. Thus for type II theory onT6, we get exactly the
right degeneracy for the Kaluza-Klein dyons.

The situation in the heterotic string theory is somewh
more complicated. In this case, in the elementary stri
spectrum, a BPS state carrying pure winding charge
16 3 24-fold degenerate, corresponding to 24 short mul
plets. (The number 24 is related to the number of boso
oscillators in the left-moving sector of the theory.) O
the other hand, the Kaluza-Klein monopole solution brea
eight of the sixteen supersymmetry generators. This giv
eight fermionic zero modes, and hence24 ­ 16-fold de-
generacy, corresponding to one short multiplet. Thus
are missing a factor of 24.

The resolution to this problem comes from the fact th
the Kaluza-Klein monopole solution that we have di
played carries one unit of gravitational instanton numb
[14], and hence acts as a source of21 unit of H-magnetic
charge. These states are dual to elementary string st
with sp ­ 21, w ­ 1d, which indeed have degenerac
16, corresponding to a single short multiplet. If we wa
a state whose magnetic charge is only of the Kaluza-Kle
type, we must cancel thisH-magnetic charge. This can
be done by placing a gauge instanton inside the Euclide
Taub-NUT space. At a generic point in the moduli spa
of the theory, the gauge group is purely Abelian, an
hence the instanton must necessarily have zero size. T
corresponds to a heterotic five-brane wrapped on theT5

labeled byx5, . . . , x9. This will have extra fermionic and
bosonic zero modes which must be taken into accoun
computing the degeneracy of the state. However, this
precisely the problem that has been addressed in the c
text of calculating degeneracy ofH monopoles [15,16],
and it is known that the quantization of these degre
of freedom enhances the degeneracy by a factor of
[17–19]. In the present case we also get a set of e
tra bosonic and fermionic zero modes associated with
location of the small instanton in the Taub-NUT spac
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and their fermionic partners. Quantization of these ze
modes gives an extra multiplicative factor in the degen
acy equal to the number of normalizable harmonic form
on the Taub-NUT space. This number is known to b
unity [10]. This then gives the right counting of the de
generacy of states of Kaluza-Klein dyons for the hetero
string theory.
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