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We present results of fully nonlinear calculations of decay of the inflaton interacting with another
scalar fieldX. Combining numerical results for a cosmologically interesting range of the resonance
parameterg = 10°, with analytical estimates, we extrapolate them to laggerWe find that scattering
of X fluctuations off the Bose condensate is a very efficient mechanism limiting growtl of
fluctuations. For a single-componekit the resulting variance, at largg is much smaller than that
obtained in the Hartree approximation. [S0031-9007(97)03914-8]

PACS numbers: 98.80.Cq, 05.70.Fh

In recent years, we have come to realize that the postirthe size ofX fluctuations for large values af, such as
flationary universe had probably been a much livelier placeequired [1,4] to produce particles much heavier than the
than was previously thought. In many models of infla-inflaton. This scattering process involves the condensate
tion, the decay of the inflaton field is not a slow pertur-of zero-momentum inflatons and, for that reason, is
bative process but a rapid, explosive one. At the initialespecially enhanced, cf. Refs. [3,6,7]. Fluctuationsof
stage of this rapid process, called preheating [1], flucean reach larger values for smaller values gof The
tuations of Bose fields coupled to the inflaton grow ex-suppression of the maximal size Xffluctuations for large
ponentially fast, which can be thought of as “parametricg significantly restricts the possibility of grand unified
resonance” [2], and achieve large occupation numbers. Aheory (GUT) baryogenesis after inflation, as well as
the second stage, called semiclassical thermalization [3}he types of phase transitions that could take place after
the resonance smears out, and the fields reach a slowlfeheating.
evolving turbulent state with smooth power spectra [3,4]. Our present results should be compared with those

The explosive growth of Bose fields leads to very largeobtained in the Hartree approximation. We find that
variances of these fields close to the end of the resonané@’ & single-component field in flat space-time, the
stage. That could result in several important effects takingiiartree approximation does not give an adequate estimate
place shortly after the end of inflation. These includeOf the maximal size ofX fluctuations for anyq >
symmetry restoration, baryogenesis, and supersymmetdy A similar conclusion was made in Ref. [4] for the
breaking [5]. To find out if these effects had indeedcqnformally invariant case of massless mflgton interacting
occurred, one needs a good estimate of the maximal size ¥fith @ massless field(, based on our simulations of
Bose fluctuations. The semiclassical nature of processdge fully nonlinear problem for that case. The Hartree
involving states with large occupation numbers allows ugPProximation, with its characterlstlc_posmve feedback of
to treat a resonant decay of the inflaton, and any Bos& ON the inflaton decay [1,4], may still apply whénhas
condensate in general, as a classical nonlinear problegt/fficiently many components; it remains to be seen if this
with random initial conditions for fluctuations [3]. This can happen for realistic sizes of GUT multiplets.
classical problem can be analyzed numerically. In the model with a massive inflaton (model 1 of

In this Letter we report results of fully nonlinear calcu- Ref. [4]), the full scalar potential i (¢, X) = 3m*¢> +
lations for the most interesting case when the coupling ofg*¢>X> + %M)Z(Xz. For comparison, we will present
a massive inflatorp to some other scalar field is rela-  results for the model with massless inflaton (model 2),
tively large. That means, more precisely, that the systerm which the potential i9/,(¢, X) = %x\d)“ + %g2¢2X2.
is in the regime of wide parametric resonance [1], charBoth fields ¢ and X) have standard kinetic terms and
acterized by a large value of the resonance paramgeter are minimally coupled to gravity. We will often use
g > 1. We have studied both expanding and static uni+tescaled variables: for model I, = mn, where n is
verses, to cover both postinflationary dynamics and dethe conformal time;& = mx; ¢ = ¢a(r)/p0); x =
cays of possible other Bose condensates. Our objectivEa(7)/¢(0). For model 2, one should replace with
was to obtain an estimate for the maximal sizeXofluc- /A ¢(0) in these rescalings. Herter) is the scale factor
tuations, the importance of which we emphasized above.of the Universe, defined so thai0) = 1, and ¢(0) is

Our results are as follows. We have found thatthe value of the homogeneous inflaton field at the end
scattering ofX fluctuations off the Bose condensatedf of inflation, whend¢ /d+ = 0. The resonance parameter
which knocks inflaton quanta out of the condensate ang is g = g*>¢2(0)/4m> for model 1, andy = g2/4A for
into low-momentum modes, is very efficient in limiting model 2.
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In order for resonance to fully develop in the expanding
universe, the resonance parametershould exceed a
certain minimum valuegmin, Which depends on the mass
My of X [4]. In model 1, forMy = 0, gmin ~ 10%; for
Mx = 10m, gmin ~ 108. We have simulated this model
for ¢ up to ¢ = 10* in flat space-time and for a few
g ranging from10* to 10° in the expanding universe.
We have developed an analytical approach, and we use
analytical estimates to extrapolate our results to larger
needed to produce heavier particles. . AMY.. 2

The full nonlinear equations of motion fas and y, 1020 30 40 50 60 70 8O 90 100
which follow from the action described above, are solved . . . .
directly in configuration space with initial conditions cor- FIG. 1. Variances of the field¥ and ¢ in model 1 in flat
responding to conformal vacuum at the end of inflation fors'o‘e‘c‘;"'tlme 6, = 0). The filled square marks the spike value

. . . of (X?) at the end of the linear stage. The dotted curwid
all modes Wlth nonzero momenta. The initial con_dmonsin the Hartree approximation.
for y are given in Ref. [4]; those fob¢ are obtained
similarly, along the lines of Ref. [3]. Classical fluctua-
tions evolve from quantum ones, and, in cases we conf d°k ni(r), the spikes are replaced by comparatively
sider, their typical initial sizes are much smaller than thesmall steps at times whep, = 0. We will distinguish
scale of nonlinearity. Hence, initial evolution is linear between(y2) in spikes and in “valleys” between them by
with respect to fluctuations. During the initial linear stage,a subscript: “s” or “v.”

Hartree (X2

. {92}/ ¢%(0)

(X#)/$%(0)

the equation of motion for Fourier componentsofcan We have monitored the power spectPdk), of ¢ and y
be approximated as in all our integrations. The strongest resonant momentum
) 5 of yx is typically of orderg'/#; for someg, though, it can
Xe + wi(T)xe =0, (1) be close to zero. Development of resonance peakg fer
wi(r) = mia® + K> — d/a + 4q93(1),  (2) followed by appearance of peaks fprdue to rescattering,

cf. Ref. [3]. Later, rescattering leads to a turbulent state,
m, = Mx/m, andg is the zero-momentum mode @f,  characterized by smooth power spectra.
¢0(0) = 0. By virtue of our rescalinge(0) = 1. The linear stage is followed by a plateauj?(7)) (un-

The computations were done dr28’ lattices, for a less we consider an exceptiongl for which the reso-
single-componenk. For the case of the expanding uni- nance peak was close to zero). There, the variances of
verse, we usedn® = 10~'2M3,. Energy nonconserva- fluctuations do not grow, but an important restructuring
tion in flat space-time typically was less thdf 3; in  of the power spectrum of¢ takes place. The power
the expanding universe in linear regime our calculationspectrum ofy changes from being dominated by a reso-
closely reproduced calculations in the Hartree approximanance peak at some nonzero momentum to being domi-

tion, which have much better accuracy. nated by a peak near zero. The width of this new peak
Let us first consider the case without expansion of thetk =~ 0 is of order one. When this peak becomes strong
Universe. In the formulas above, one substitutés) =  enough, the growth of variances resumes. The resumed

1. The variances of the fieldg and ¢ in model 1 at growth (atr = 50in Fig. 1) is quite rapid (compared to the

g = 2000, m, = 0 as functions of time are shown in subsequent slow evolution) and is strongly affected by

Fig. 1. The angular brackets denote averaging over rarrescattering. This stage can be called semiclassical ther-

dom initial conditions; for space-independent quantitiesmalization [3], or chaotization stage. During it, the power

like variances, this is equivalent to averaging over spacespectra smoothen out; both power spectra are now domi-

The exponential growth of the varian¢g?) at early times  nated by momenta of order one.

is a parametric resonance. The linear stage in the presentAn important effect seen in Fig. 1 is the rapid growth of

case ends at = 40. fluctuations of the fieldr. Indeed, at late times, they are
At large ¢, fluctuations of X are produced by the much larger than fluctuations gf. Fluctuations ofp are

resonance stage only during short intervals of time negproduced by the scattering process in whicHuctuations

moments wheng, passes through zero [1,8]. Theseknock ¢ out of the zero mode. For some time, though,

are intervals in which the adiabatic (WKB) condition the fluctuation6p = ¢ — ¢( can be neglected. Then, in

@r/wi > 1 is broken for somek. Notice a series of addition to Eq. (1) we obtain the equation

spikes in{y?) at the same moments of time. They are

due to modulation ofw; by the oscillatinge,. Indeed, @0 — (d/a)py + a*(T)po + 4¢{x>eo =0. (3)

introduce analogs of occupation numbersvia (y?) =

[ &k P, (k) « [d*k ni(7)/wi(7). Even at the resonance Equations (1) and (3) comprise the Hartree approximation

stage, change in; during one oscillation is much smaller in the present model. The classical average in (3) approxi-

than variation ofw;: when instead of y2(7)) we plot mates the corresponding quantum average (used, e.g., in
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the second paper by Boyanovsky al. in Ref. [2]) with  order of the first. We find that that happens at timg
accuracyO(1/n,mp), Wheren,n, is a typical occupation when, in terms of the physical fields,

number in amplified modes. $%(0)
The end of the linear stage is (at laigjea Hartree effect: (X?), ~ T YR (84)*) ~ ¢*(0)/q, (6)
it is due to the shift of the frequency of, caused by y?); P (1e)

see Eq. (3). This is confirmed by Fig. 1 and the data invhere is the amplitude ofpy. At that time the system

Fig. 2, where we compare spike valu¢g;);, at the end becomes dominated by rescattering. In Fig. 1, that time

of the linear stage in the Hartree approximation and in thgs r.. ~ 60. When variances of fields reach values (6),

full problem; they agree well. Using analytical results of the analogs of occupation numbers, introduced as before,

Ref. [8], we find that the width of the resonance peak scalegeach values of orderr/g2 for bothX and¢.

asq'/*, up to a power of Ig. We then estimate that the At r > 7., the maxima and minima ofy2) evolve

linear stage ends whey?); ~ ¢ *2. The data of Fig. 2 slowly. The variance of continues to grow rapidly for a

atq = 100 are well fitted by the; */> dependence. while; see Fig. 1. Indeed, according to Eq. (4), a periodic
To go beyond the Hartree approximation, we develogor close to periodic) can still drive the growth of ¢,

the perturbation expansion iy near it. This assumes via a force-driven (as opposed to parametric) resonance.

that|d¢| < @, whereg is the amplitude ofpy. Solving  This growth ofs ¢ will stop only when the approximation

the equations obtained in the first order &y with  |eading to (4) breaks down, that i8¢ ~ ¢.

the help of the Green functions, we get, for Fourier | et us now turn to model 1 in the expanding universe,

components o6 ¢ and y, see Figs. 3 and 4. We usepl(0) = 0.28Mp, [4]. For
, masslessy, the evolution of the scale factor was deter-
Pp(7) =~ — 4q dr'sifQ,(r — 7)]eo(r’) mined self-consiste_ntly, ingluding the influence of pro-
Q, Jo duced fluctuations in the Einstein equations; for massive
N , X, the Universe was assumed matter dominated.
X ] dk xxicp(T) (4) In the expanding universe, particle creation acquires a

qualitatively new feature [4]: because of the time depen-
) T / 3« dence ofg, the resonance peak scans the entire instability
x(7) =X+ Sq[o dr F"(T’T)qoof 4’ ¢pXitp- pand; see Fig. 4. As our numerical integrations confirm
(5) (see also [4]), in order for production of fluctuations to
be efficient, variation of the frequency gf Eq. (2), need
Here Q, = (p? + )Y/ )(l((O)(T) solves Eq. (1) in the not be periodic. What is required is that every once in a
Hartree approximation, ani(, 7’) is the retarded Green while the adiabatic condition breaks down. In this situ-
function for it. At times wheny grows on average, the ation, “nonadiabatic amplification” seems to be a bet-
main contribution to the time integral in (5) comes fromter term for stimulated particle creation than “parametric
7/ nearr. Using the random phase approximation, weresonance.”
then obtain{|¢p? ~ ¢2&2V " [ d®k {xil® {xi+pl?, Time dependence of variances is shown in Fig. 3 for
whereV is the total spatial volume. the casey = 10° andm, = 2. The variances of fields at
The Hartree approximation breaks down when thethe time when rescattering begins to dominatg & 8.5
second term in the right-hand side of (5) becomes of thén the figure) can be estimated in the same way as before,
and we obtain again Eq. (6). Note that naf(r,) <
¢ (0), due to the redshift of the field.
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FIG. 2. Filled squares and crosses are the spike va{¥é,,

at the end of the linear stage, obtained in fully nonlinear
simulations of models 1 and 2 in flat space-time; empty 10-12
boxes are the spike values at the first plateau in the Hartree
approximation. Stars and pentagon correspondXto at the

moment when the zero-momentum mode decays in model 1 ifIG. 3. Variances of fieldX and ¢, together with the inflaton
the expanding universe. zero-momentum mode, in model 1 in the expanding universe.
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If instead of a single-component we considetX with
N real components, our estimate f&x?), at 7 = 7
becomes larger than in (6) by a factor\d. For realistic
GUT values ofN, this can increaséX?),.x by an order
of magnitude.

Because the number densitygtays constant for a while,
despite the expansion, the time-integrated conversion of
inflatons intoX fluctuations in this two-field model is, in
fact, quite efficient. For definite predictions for baryon
asymmetry generated in decays of leptoquarks, however,
one has to include other fields, which can have smaller

o q and thus provide faster alternative channels of inflaton
FIG. 4. Power spectrum of the field in model 1,m, = 0, ay.

dec
in the expanding universe, output every period at maxima . . .
of ¢o(r). The result can be trusted fdr smaller than the The relatively quick complete exponential decay/f

Nyguist momentumky ; in this particular caseky =~ 32 (in  S€e€ Fig. 3, is adistinctive feature of model 1, as opposed to

units of the inflaton mass). After rescatteririgy, (k) decreases the conformally invariant model 2. In the latter case, we

exponentially in a range of below ky, . find that at the time when rescattering starts to dominate,
(82 ~ ¢2/q, (X?), ~ $2/¢*?, and in the subsequent
evolution(X?) redshifts together witle?.
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