
VOLUME 79, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JULY 1997

y

ys

.

Mechanism for the Non-Fermi-Liquid Behavior in CeCu62xAux
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We propose an explanation for the recently observed non-Fermi-liquid behavior of metallic allo
CeCu62xAux : Near x ­ 0.1, the specific heatC is proportional toT lnsT0yT d, and the resistivity
increases linearly with temperatureT over a wide range ofT . These features follow from a model in
which three-dimensional conduction electrons are coupled totwo-dimensional criticalferromagnetic
fluctuations near the quantum critical pointxc ­ 0.1. This picture is motivated by the neutron
scattering data in the ordered phase (x ­ 0.2) and is consistent with the observed phase diagram
[S0031-9007(97)03504-7]
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Fermi-liquid (FL) theory has traditionally led to an
accurate description of the low temperature properties
metals. Even in the heavy-fermion compounds, whe
the bare electron parameters are renormalized by up
3 orders of magnitude by the interaction, FL behavior
observed at low temperaturesT with a specific heatC ~ T ,
a magnetic susceptibilityx ø const, and a resistivityr ø
r0 1 AT2. However, in several heavy-fermion system
[1–7], pronounced deviations from FL behavior have bee
found in a number of physical properties.

Three main theoretical scenarios have been propos
to explain the occurrence of the non-Fermi-liquid (NFL
behavior: In the first one [4,8,9] it is assumed tha
disorder introduces a distribution of (one-channel) Kond
temperaturesTK in the system; this distribution can be
directly related to an anomalous low temperature behavio
The second model proposes a single-impurity origin of th
NFL, e.g., associated with the quadrupolar (two-channe
Kondo effect [1,3].

In CeCu62xAux , there is clear experimental evidence
[5–7] for a third mechanism based on the proximity t
a quantum phase transition (QPT) [10–13] nearxc ­
0.1. For x . xc the system orders magnetically with a
Néel temperatureTN ~ sx 2 xcdm with m ­ 1 as shown
in Fig. 1. The QPT can be interpreted as the result
the competition between the Kondo effect, which tend
to screen the magnetic moments, and the Ruderma
Kittel-Kasuya-Yosida (RKKY) interaction, which favors a
magnetically ordered state. The Kondo effect is weaken
by increasing doping which, as suggested experimental
mainly leads to a volume increase with no apparent chan
in the number of carriers.

CeCu62xAux remains metallic for allx with typical
FL properties at low temperatures both atx ­ 0 and for
x ¿ xc. However, atx ­ xc, TN vanishes and NFL be-
havior is observed in all accessible quantities down to th
lowest temperatures,T ø TK ø 6 K. As an example, we
show in Fig. 2 the specific heat withCyT ~ lnsT0yTd over
nearly two decades. At the same doping, the static susc
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T and the resistivityr ø r0 1 A0T
show a remarkable NFL behavior over a substantialT
range [5].

Up to now [5,7,14] it was assumed that the critica
fluctuations of the QPT are dominated by incommens
rate three-dimensional correlations. This would strong
suggest a description by a quantum-critical theory wit
d ­ 3, z ­ 2 as investigated in [10,11,14]. However
this well-established theory is in contradiction to the the
modynamic properties which are observed in the expe
ment, as it would suggestCyT ~ 1 2 B

p
T and r ø

r0 1 A00T3y2 at low temperatures [11,14]. One could
however, argue that in the experiments only a crossov
region is accessible [14]. In our opinion this is not fully
convincing, and it appears not to be possible to fit bo
resistivity and specific heat over the observedT range by
such a theory [7,15].

Below we will focus on a novel feature of the mag
netic fluctuations observed by elastic neutron scatteri

FIG. 1. Phase diagram of CeCu62xAux . The points are Néel
temperatures [7] (open and closed symbols for single a
polycrystals, respectively), the solid line denotes the pha
transition, the dashed lines are theoretical crossover lines. T
regions are described in the text.
© 1997 The American Physical Society 159
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FIG. 2. The specific heatCyT of CeCu62xAux (from [7]) on
a logarithmic scale.

experiments near the quantum critical point (QCP), pe
formed at the triple axis spectrometer TAS7 at Risø. Th
data taken in the ordered phase (x ­ 0.2) are displayed in
Fig. 3. A scan alongsh, 0, 0d reveals besides the nuclea
reflections two magnetic features. The satellite peaks
s60.79, 0, 0d describe a three-dimensional incommensu
rate magnetic order. The magnitude of the ordered ma
netic moment is extremely small and is estimated to be
the order of0.02mB. The correlation length determined
from the peak width is approximately20 lattice constants
a (orthorhombic notation), with4 Ce atoms per unit cell.

FIG. 3. Elastic neutron scattering of CeCu5.8Au0.2 along the
ap axis (reciprocal lattice direction) at70 mK. The inset shows
that all magnetic features are equally sharp in thebp direction.
Theq resolution ats1, 0, 0d is Dh ­ 0.04 reciprocal lattice units
(rlu) andDk ­ 0.01 rlu (FWHM).
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The second feature is a broadq-dependent signal
ranging from 500 to 700 countsy25 min, which has a
factor of 3–4 higher integrated weight. It is importan
to stress that both features are sharp in thebp direction
with a width of order 20 unit cells as can be seen
from scans alongsh0, k, 0d for different h0 (Fig. 3). The
intensity of both structures decreases strongly towar
TN . However, some of the anisotropic signal remains u
to 1 K, possibly due to quasielastic contributions in the
experimental energy window of0.15 meV.

In this Letter, we propose that the magnetic fluctuation
associated with the second broad structure in the neutr
scattering cross section dominate the critical fluctuation
at the QPT in the observedT range. Starting from this
assumption we will show that the logarithmic increas
of CyT for decreasingT , the linear resistivity, and the
phase diagram can easily be derived. We interpret th
structure as arising from ferromagnetically ordered plane
perpendicular to thea direction. A sine modulation
as drawn in Fig. 3 would suggest that effectively two
of these ferromagnetic planes with distanceay2 couple
antiferromagnetically in thea direction, but different pairs
of planes are incoherent. While it is possible to identify
slightly corrugated planes of Ce atoms in the crysta
structure, we do not see an obvious reason for a strong
asymmetric coupling, which could directly explain the
observed two-dimensional structure. For the following
the details of the magnetic order are irrelevant—e.g
one could also fit the broadq dependence in theap

direction with an incommensurate double structure. W
will assume only that some critical two-dimensiona
fluctuations exist.

To derive an effective action near the phase transitio
in a Ginzburg-Landau-Wilson approach [10] we have t
account for the damping of the critical fluctuations. To
describe the critical modes, we introduce a scalar fie
Fqjj

; the experiments suggest a preferred direction of th
magnetic moments along thec axis [7,16]. qjj is a two-
dimensional vector in thebc plane. Ordering will occur at
qjj ­ 0. The primary damping mechanism is the coupling
to particle-hole pairs. The dynamics of the quasiparticle
is three dimensional; this can be inferred from th
transport properties which vary at most by a factor of
in different directions [15]. We assume a coupling o
the critical fluctuations to the heavy quasiparticles (wit
creation operatorsc

y
k) by the following Hamiltonian:

Hc ­ g
X

k,q,a,b

scy
a,k1qsz

abcb,kdFqjj
hsq'd . (1)

q ­ qjj 1 q' is the transferred momentum split up in
two components parallel and perpendicular to the plane
si are the Pauli matrices andg is the coupling constant.
hsq'd is some smooth function describing the magneti
structure perpendicular to the planes.

Integrating out the fermions (cf. [10] for a thorough
discussion) induces damping of and interaction betwee
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the critical modesFqjj,v. To quadratic order, we obtain
the following contribution to the effective action in
imaginary time [b ­ 1yskBT d]:

Sd ­
g2

b

X
vn ,qjj

∑Z
jhsq'dj2x0sq, ivnd dq'

∏
jFqjj,ivn j

2.

vn ­ 2pnyb are bosonic Matsubara frequencies. Th
damping is described by the imaginary part of the particl
hole bubble x0, Im

R
dq'jhsq'dj2x0sq, v 1 i0d ø

gv 1 Osvq2
jjd. Near the QCP, after a proper rescaling

the effective action takes the following form:

S ­ S2 1 Sint ,

S2 ­
1
b

X
vn

Z
Fp

qjj,ivn
sd 1 q2

jj 1 jvnjdFqjj,ivn d2qjj.
(2)

Sint describes the interaction between the crit
cal modes; the leading term is given bySint ø
U

Rb
0 dt

R
d2rjFsr, tdj4 [10]. The distance from the

QCP is measured byd. At a critical valuedc, determined
by the strength of interaction, the system is at the QC
i.e., d 2 dc ~ xc 2 x. The effective action corresponds
to a quantum-critical theory ind ­ 2 with a dynamic
exponentz ­ 2. This dynamic exponent describes th
fact that if one scales momenta byk °! lk one has to
scale frequencies (or the temperature) byv °! lzv.

This theory has been widely investigated by man
authors (e.g., [10–12,17]), mainly in the context of th
antiferromagnetic spin-fluctuation picture of high-Tc com-
pounds. We will primarily employ the results of Millis
[11], who did a careful renormalization-group study o
Eq. (2). The effective dimension of this theory atT ­ 0 is
d 1 z ­ 4; the scaling dimension of the interactionSint is
4 2 sd 1 zd ­ 0, therefore it is marginal. Nevertheless
the leading behavior of the specific heat in the disorder
phase can be directly calculated from the Gaussian p
S2, of the action of Eq. (2). The free energy per volum
corresponding toS2 is

F ­
Z Lk

0

d2qjj

s2pd2

Z Lv

0

de

p
coth

e

2T
arctan

e

d 1 q2
jj

~
T2

vc
ln

v2
c

T 2 1 sd 2 dcd2
. (3)

Note that dc ­ 0 in this approximation;vc is a typi-
cal cutoff energy of the order of the Kondo temperatu
in the system. Consequently, the coefficient of the sp
cific heat g ­ CyT ­ 2d2FydT 2 diverges logarithmi-
cally with decreasing temperature at the QCP, as obser
in the experiment. Ford . dc, i.e., x , xc, g stays fi-
nite. Note that the logarithmic terms do not arise from
some marginal operators. They are due to a pure ph
space effect, which typically happens atd 1 z ­ 2z [11].

By a solution [11] of the scaling equations for the mod
of Eq. (2) a phase diagram emerges as displayed in Fig
Region I, the low temperature phase forx . xc, is the
ordered phase. The behavior nearTN will depend on
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the structure of the order parameter, e.g., whether the
dering is of Ising type or how it is stabilized by three
dimensional coherence. The Ginzburg criterion for o
model in Eq. (2) predicts [11] thatTN is proportional to
the distance from the critical pointTN ~ x 2 xc. This re-
lation is fulfilled by the experiment over an astonishingl
large range. The other crossover lines are hard to anal
quantitatively with the existing experimental data; ther
fore we do not attempt to fit them. The qualitative trend i
however, consistent with the phase diagram. In Fig. 1 w
include the theoretical curves of [11]. Region II is dom
nated by the fluctuations of the finite-temperature pha
transition; in region III true quantum-critical behavior with
g ~ lnsT0yTd and, as we shall see,r ø r0 1 A0T can
be observed. In this quantum-critical regime—in [11]
is called “classical Gaussian regime”—the temperature
the most important energy scale. The correlation lengthj

depends on temperature asj22 ~ T with logarithmic cor-
rections. In region IV, a pure crossover regime which
probably hard to observe,j is determined by the distance
from the critical pointj22 ~ xc 2 x, while energy fluc-
tuations and therefore the specific heat are governed
the temperature withg ~ lnsT0yT d. For region V, FL
behavior is expected with a linear specific heatCyT ~

2 lnsxc 2 xd and a finite correlation lengthj22 ~ xc 2 x
as in region IV.

The whole scenario is in qualitative agreement with th
experiments [5–7]. In particular, the logarithmic increas
of the specific-heat coefficient in region III, theT -linear
resistivity which we will calculate in the following, and
the linear increase ofTN with x are confirmed by the
experiments.

For the calculation of the resistivity we closely follow
Hlubina and Rice [18], who have calculated the resistivi
of electrons in two dimensions coupled to quantum
critical antiferromagnetic spin fluctuations. In our cas
the dynamics of the quasiparticles is three dimensional
mentioned above. Our starting point is Eq. (1) and th
corresponding collision term in a Boltzmann equation:

≠fk

≠t

Ç
coll

­
2g2

T

X
k0

Z `

2`
dvnsvdf0

k0 s1 2 f0
kd swk0 2 wkd

3 dsek 2 ek0 2 vd Imxk0
jj2kjj

svd . (4)

Here we have already linearized the collision term; th
occupation of a state with momentumk is given byfk ­
f0

k 1 wks≠f0
ky≠ed, wheref0

k ­ f0sekd is the usual Fermi
function;nsed is the Bose function. We have omitted th
factor jhsq'dj2, the qualitative behavior of the resistivity
is not influenced by this smooth function.xqsvd ­
kFp

q,vFq,vl is the order-parameter susceptibility. In th
following we use for the disordered phase

xqjj
svd ø

A

Tp 1 cT 1 q2
jj 2 iv

, (5)

with temperature-independent constantsA, c, and Tp.
This phenomenological form corresponds to the beha
ior of the correlation length described above,j22 ~ T in
161
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the quantum-critical region up to logarithmic corrections
T p ~ d 2 dc measures the distance from the QCP. Equ
tion (5) is valid in regions III–V; we are primarily in-
terested in the quantum-critical regime III withT p ø T .
Following [18], the resistivity can be determined within
Boltzmann theory from the minimization of a functiona
of wk

r

r0
­ min

wk

" P
kk0 Wkk0swk 2 wk0d2

h
P

k wkvk ? n̂s2≠f0
ky≠edj2

#
, (6)

where n̂ is the direction of the applied electric field,vk
the velocity of the electronsr0 ­ h̄ye2, and

Wkk0 ­
2g2

T
f0

ks1 2 f0
k0dnsek0 2 ekd Imxk0

jj2kjj
sek0 2 ekd.

Note that a second contribution due to impurity scatterin
has to be added, which is not given here. For simplici
we assume a spherical Fermi surface. The radial p
of the momentum integration can be rewritten as a
energy integration. Using

R
f0sedf1 2 f0se 1 vdgde ­

vsss1 1 nsvdddd and
R`

0 vnsvdf1 1 nsvdg Imxk0
jj2kjj

3

svddv ­ IfbsT p 1 cT 1 sk0
jj 2 kjjd2dgTA with Ifxg ø

p2y3xsx 1 2py3d [18] we can perform the energy
integration. As long as the resistivity is dominated b
impurity scattering—this is true in the whole range wher
a linear temperature dependence has been observed—
can assume [18]wk ø vk ? n̂ and arrive at

Dr ~ T 2
Z gsad

sTp 1 cT 1 k2
Fad sTp 1 c0T 1 k2

Fad
da,

gsad ­
Z Z

dVk dVk0 sn̂ ? k̂2n̂ ? k̂0d2dfa2sk̂0
jj2k̂jjd2g,

(7)

with c0 ­ c 1 2py3. k̂ denotes a unit vector in the
direction ofk, andk̂jj its projection to thebc plane. For̂n
not parallel to the planes, we findgsad ø const for small
a, and therefore we get approximately

Dr ~
T

c 2 c0
ln

Tp 1 cT
Tp 1 c0T

ø

(
T2, T , T pyc0

T
ln cyc0

c2c0 , T . T pyc
.

(8)

For a finite T p and small temperatures we recover th
usualDr ~ T2 of a FL. However, in the quantum critical
regime, i.e., for Tp ø cT , the resistivity is linear in
temperature as observed in the experiment [5,7,15].

For an electric field parallel to the planes, we ob
tain gsad ~ 2a ln a and, accordingly,Dr ~ T2 ln T for
T p ­ 0. This is, however, an artifact of our approxima
tion of using a spherical Fermi surface and an isotrop
s-wave scattering amplitude. In a more realistic approac
different directions would mix and give a linear increas
of the resistivity with temperature in all directions, as ob
served [15]. Nevertheless, one would still expect that th
linear increase of the resistivity at the QCP is largest
the direction perpendicular to the plane which is indee
observed [15].
162
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The NFL character is also manifest in an anomalou
self-energy of the electrons. Calculation of the lifetime i
Born approximation atT ­ 0 using Eqs. (1) and (5) gives
1ytk ~ ek ln 1yek for directions parallel to the planes and
1ytk ~ ek in the a direction. Averaging over the Fermi
surface results ink1ytk l ~ ek ln 1yek, in sharp contrast to
the usual1ytk ~ e

2
k in a Fermi liquid.

In [5,7] the static susceptibility forx ­ xc was fitted by
x ~ 1 2 a

p
T from the lowest measuring temperature o

80 mK up to 3 K. However, the data can also be reason
ably well described byx ø a0 1 1ysa1 1 a2Td for tem-
peratures up to1.4 K. One would expect a susceptibility
of the latter form for two antiferromagnetically coupled
planes with an order-parameter susceptibility as given
Eq. (5). Further theoretical and experimental studies a
needed to clarify this point. It will also be important to
investigate further the interplay of the two- and three
dimensional order which could finally lead to a change i
the observed properties at some lower temperature. W
think that the explanation of the phase diagram, of the lin
ear increase of the resistivity with temperature, and of th
anomalous specific heat in CeCu62xAux by a quantum-
phase transition withd ­ 2, z ­ 2 is already promising.
To our knowledge, this would establish the first clear ex
perimental realization of such a theoretical scenario.
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